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NONBASIC HARMONIC MAPS ONTO CONVEX WEDGES

BY

JOSEPH A. C IMA (CHAPEL HILL, NORTH CAROLINA) AND

ALBERT E. L IV INGSTON (NEWARK, DELAWARE)

We construct a nonbasic harmonic mapping of the unit disk onto a convex
wedge. This mapping satisfies the partial differential equation fz̄ = afz

where a(z) is a nontrivial extreme point of the unit ball of H∞.

1. Introduction. There are several papers in the literature dealing
with harmonic mappings of the unit disk onto plane domains. For univa-
lent harmonic mappings there are results on coefficient estimates, boundary
behavior, normality of certain families and integral representations of some
subfamilies of these mappings [3], [4], [7].

If D is the unit disk in C, we let H(D,Ω) be the set of one-to-one
harmonic maps f = u + iv, mapping D onto a simply connected domain Ω.
These mappings satisfy a partial differential equation

(1.1) fz̄ = afz

where a(z) is a function in the closed unit ball of H∞. The following ques-
tions arise in this situation. First, assume the simply connected domain Ω is
given and a function a(z) in the closed unit ball of H∞ is given. Fix w0 ∈ Ω
and ask whether there exists f in H(D,Ω), normalized by f(0) = w0 and
fz(0) > 0, which satisfies (1.1). A second question in this regard is the
following. Assume again that Ω is a simply connected domain and w0 ∈ Ω
is given. For which a(z) in the closed unit ball of H∞ can we find f in
H(D,Ω) with f(0) = w0, fz(0) > 0, and satisfying (1.1)? The Riemann
mapping theorem says that for a(z) ≡ 0, the first question has a unique
answer and we call such analytic harmonic maps basic.

For these two questions, the best answers to date are those given in the
papers by Hengartner and Schober [6] and Abu-Muhanna and Schober [1].
As an example to prove that question one does not always have a positive
answer we refer to [6] where Ω = D and a(z) = z and there is no function
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from H(D,D) satisfying (1.1). The authors in these papers refer to this
phenomenon as a collapsing effect.

Little is known about the set of functions a(z) for which question two
has an affirmative answer. Since nontrivial inner functions are the extreme
points of the unit ball H∞, it would be useful to know for which inner
functions question two has an affirmative answer. There are several explicit
examples of harmonic functions in the literature [1]. One can calculate the
a(z) for the simple examples and these are not inner functions. In this paper
we show by construction that there are nontrivial inner functions a(z) for
which question one has an affirmative answer with Ω being a convex wedge
of opening less than π.

Again, with Ω a convex wedge, we have examples of some functions a(z)
in the unit ball of H∞ for which question two has an affirmative answer
[1]. None of these are inner functions. Our construction provides another
positive answer to this question, with a(z) being an extreme point of the
unit ball in H∞.

We thank Peter Duren for pointing out the Kneser proof [9] of the Cho-
quet Theorem [2] and indicating that it should hold in more general con-
texts. We also include another example of harmonic maps of D onto a
convex wedge, shown to us by Don Marshall.

The authors wish to acknowledge the patience of Warren Wogen in lis-
tening to a preliminary version of this material.

2. Definitions and notation. Let f = u + iv be harmonic in D and
let F = u + iũ and G = v + iṽ be analytic completions of u and v. Then
f = h+ g where h = (F + iG)/2 and g = (F − iG)/2 are analytic in D. It is
known [4] that f is locally one-to-one and sense preserving in D if and only
if the function

S(z) =
g′(z)
h′(z)

=
F ′(z)− iG′(z)
F ′(z) + iG′(z)

is analytic in D and satisfies |S(z)| < 1 for z in D. Functions f that
are harmonic, one-to-one and sense preserving in D will be called harmonic
maps for brevity. A harmonic map f = u+iv will be called basic if v = aũ+b
where a and b are real numbers.

We are concerned with constructing a nonbasic map of D onto a cone of
aperture opening less than π. Since harmonic maps remain harmonic under
affine change of variables w → aw + bw + c, with |b| < |a|, we may assume
without loss of generality that K is the cone

K = {(x, y) : x > 0, −x < y < 0} .

The spaces H∞ and H1 are the usual Hardy spaces on the disk and the
space of Cauchy transforms of finite Borel measures on ∂D = Π is written
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as K. A function of S in H∞ is called an inner function if |S(eiθ)| = 1 a.e.
on Π. In the case that we will be considering, since u > 0 and v < 0 in D,
we know that the completions F and G are in K. Also, there is an at most
countable set {ζj} ⊂ Π such that F is continuous on D \ {ζj}. This latter
statement follows by applying a technique used by the authors in an earlier
paper [3].

3. The mapping construction. Let π/2 > β1 > β2 > . . . > 0
decrease to 0 in such a way that

∞∑
j=1

j Log j(βj − βj+1)

converges and if εj = βj−1 − βj there exists a constant c > 0 such that
εj/βj ≥ c for all j. (For example βj = 1/2j .) Define F for |z| < 1 by

(3.1) F (z) =
i

π

∞∑
j=1

Log
(

ζj

z − ζj

z − ζj

)
where ζj = eiβj and the principal branch is taken for Log.

We first prove that the series converges uniformly on compact subsets
of D. Let

Fn(z) =
i

π

n+1∑
j=1

Log
(

ζj

z − ζj

z − ζj

)
.

Then

F ′n(z) = −2i

π

n+1∑
j=1

sinβj

(z − ζj)(z − ζj)
.

If |z| ≤ r < 1 and m > n,

|F ′m(z)− F ′n(z)| ≤ 2
π

m+1∑
j=n+2

sinβj

|(z − ζj)(z − ζj)|

≤ 2
π(1− r)2

m+1∑
j=n+1

βj .

Since
∑∞

j=1 βj converges, it follows that the sequence F ′n(z) converges uni-
formly on compact subsets of D. Thus the series in (3.1) also converges
uniformly on compact subsets of D.

It is easily seen that Re (1 − z2)F ′(z) > 0 for z in D. Using a result
of Hengartner and Schober [6, Theorem 1] it follows that F (z) is univalent
on D and maps D onto a domain which is convex in the direction of the
imaginary axis. An examination of the boundary values gives that F maps
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the arcs

Ij = (eiβj , eiβj+1) ⊂ Π, j = 1, 2, . . . ,

onto line segments of the form {z = j + iy : y ≥ n(j) > 0}. The reflected
arc Ij is mapped by F onto {z = j + iy : y ≤ −n(j)}.

Let u(z) = Re F (z). Since u(z) ≥ 0 and
2π∫
0

u(eit) log+ u(eit) dt = 2
∞∑

j=1

j(Log j)(βj − βj+1) < ∞ ,

we may apply a theorem of Zygmund [10, p. 135] once we have proven the
following lemma.

Lemma. The function u(z) is the Poisson integral of u(eit).

P r o o f. By the Herglotz theorem, since u(z) = Re F (z) > 0, we know
there is a positive measure µ such that

u(z) = Pz ∗ dµ

where Pz is the Poisson kernel. Because of the form of u (u is locally
bounded near eiθ 6= 1) we see that dµ(θ) = u(eiθ) dθ

2π + cdδ, where c ≥ 0 and
dδ is the point mass at ζ = 1. We prove c = 0. It is sufficient to produce a
sequence xJ in (0, 1) tending to 1 such that

lim
J→∞

(1− xJ)u(xJ) = 0 .

A computation shows

arg
(

ζj

x− ζj

x− ζj

)
= arg ω(βj , x)

where
ω(βj , x) = ((1 + x2) cos βj − 2x) + i(1− x2) sinβj

≡ (b cos βj − 2x) + i(a sinβj) .

Having fixed an x value it is notationally more convenient to write ω(βj , x)
as ω(βj) and we shall do so. Fix a positive integer J and choose xJ to be
the solution to the equation

cos β∗J =
2xJ

1 + x2
J

where β∗j = 1
2 (βJ + βJ−1); then xJ → 1 as J →∞. Then∣∣∣ J−1∑

j=1

arg ω(βj)
∣∣∣ ≤ π(J − 1)
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and

lim
J→∞

(1− xJ)(J − 1) = lim
J→∞

(J − 1)βJ−1

(
1− xJ

βJ−1

)
≤ lim

J→∞

1− xJ

β∗J
· lim

J→∞
(J − 1)βJ−1 .

Since

lim
x→1−

1− x

arccos
(

2x
x2+1

) = 1 ,

it follows by the definition of xJ that

lim
J→1

1− xJ

β∗j
= 1 .

The convergence of
∑∞

j=1 j(βj − βj+1) implies that the term (J − 1)βJ−1

goes to zero. Hence,

lim
J→∞

(1− xJ)
J−1∑
j=1

arg ω(βj) = 0 .

For j ≥ J (i.e., βj ≤ βJ) we have

arg ω(βj) = arctan
(

a sinβJ

b cos βj − 2x

)
.

Solving the equation

cos β∗J =
2xJ

1 + x2
J

yields

xJ =
1− sinβ∗J

cos β∗J
and it follows that

1− x2
J =

2(1− sinβ∗J) sinβ∗J
cos2 β∗J

,

1 + x2
J =

2(1− sinβ∗J)
cos2 β∗J

.

Also, a calculation yields

(1 + x2
J) cos βJ − 2xJ =

2(1− sinβ∗J)
cos2 βJ

[cos βJ − cos β∗J ] .

Further, it is easy to compute

∂ω

∂β
=

a(b− 2x cos β)
(b cos β − 2x)2

,
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which is positive if j ≥ J . We claim there is an M independent of J for
which

ω(βj) ≤ ω(βJ) ≤ M .

This follows since

ω(βJ) =
(sinβJ)(sinβ∗J)
cos βJ − cos β∗J

≤ M
sinβJ

β∗J + βJ
· sinβ∗J
β∗J − βJ

where M is independent of J . Our assumptions guarantee that
sinβ∗J

β∗J − βJ
' sinβ∗J

β∗J

is uniformly bounded independent of J and similarly
sinβJ

β∗J + βJ

is bounded independent of J .
Hence, there is a constant C independent of J (and independent of xJ)

with
arctanω(βj) ≤ Cω(βj)

for all j ≥ J . Consider
∞∑

j=J

arctanω(βj) ≤ C

∞∑
j=J

ω(βj) ≤
a

b cos βJ − 2xJ

∞∑
j=J

βj .

Denote the series term in this last equation by δ(J) and note that δ(J) → 0
as J →∞. Using our hypothesis (and the estimates above) we conclude

(1− xJ)
∞∑

j=J

arctanω(βj) ≤
C(1− x2

J)2

b cos βJ − 2xJ
δ(J)

≤ C(sinβ∗J)2

(β∗J − βJ)(β∗J + βJ)
δ(J) .

Since the term
(sinβ∗J)2

(β∗J − βJ)(β∗J + βJ)
is bounded, we conclude

lim
J→∞

(1− xJ)
∞∑

j=J

arctanω(βj) = 0 .

This establishes our claim.
We may now apply a theorem of Zygmund [10, p. 135] to conclude that

the conjugate ũ of u is in the harmonic h1 space. Hence F (z) = u(z)+ iũ(z)
is the sum of two h1 functions and thus F is in H1.
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Next we consider the function G defined by

(3.2) G(z) =
−i

π

∞∑
j=1

Log
(

ηj

z − ζj

z − 1

)
where |ηj | = 1 and arg ηj = arg(1 + ζj) = (arg ζj)/2. The series in (3.2)
converges uniformly on compact subsets of D by the same argument as
applied to (3.1). For future reference we note the following. Let

Gn(z) =
−i

π

n+1∑
j=1

Log
(

ηj

z − ζj

z − 1

)
.

We have

Fn(z) =
i

π

n+1∑
j=1

Log
[
ζjηj

ηj
· z − ζj

z − 1
· z − 1
z − ζj

]

= −Gn(z) +
i

π

n+1∑
j=1

Log
[(

ζj

ηj

)
· z − 1
z − ζj

]
.

Since ζj/η2
j = 1 and since

iLog
(

ηj

z − 1
z − ζj

)
= −iLog

(
ηj

z − 1
z − ζj

)
= −

[
−iLog

(
ηj

z − ζj

z − 1

)]
we have

(3.3) Fn(z) = −(Gn(z) + Gn(z)) .

Thus

(3.4) F (z) = −(G(z) + G(z)) .

We note at this stage that we may prove that G is in H1 in exactly the
same way that we proved F is in H1.

For future reference, we note that Im (1− z)2G′(z) < 0 for z in D. Thus
by a result of Hengartner and Schober [5], G is one-to-one and maps D
onto a domain which is convex in the direction of the imaginary axis. An
examination of the boundary values shows that G maps D onto the left half
plane with line segments of the form {z = −j− iy : y ≥ m(j)}, j = 1, 2, . . . ,
removed.

We now define

f = u + iv = Re F + iRe G .

We will prove in the next two sections that this is the required mapping
function.
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4. Boundary correspondence. The L1 boundary values of u and v
are related as follows:

−v(eiθ) = χ
Q

(eiθ)u(eiθ)

where

χ
Q

(eiθ) =
{

1 if eiθ ∈
⋃∞

j=1 Ij ,
0 otherwise.

This implies 0 < −v(z) ≤ u(z) for z ∈ D. If eiθ is in Ij , then −v(eiθ) =
u(eiθ) = j. If eiθ is not in (

⋃∞
j=1 Ij) ∪ (

⋃∞
j=1 Ij), then u(eiθ) = v(eiθ) = 0

and u(eiθ) = j and v(eiθ) = 0, if eiθ is in Ij . To see what happens at the
end points of Ij0 and Ij0 we first note that we can write

(4.1) u(z) =
∑
j<j0

ωj(z) + ωj0(z) +
∑
j0<j

ωj(z)

where ωj is the harmonic measure of the arc Kj on Π, containing z = 1
and joining ζj to ζj . If z tends to ζj0 , the first term on the right side of
(4.1) tends to j0 − 1 and the third term tends to zero. If the sequence zn

tends to ζj0 along a chord making an angle γ with the tangent line to Π at
ζj0 , then wj0(zn) tends to γ/π. A similar statement holds for v(z). If we let
C(f, ζj) be the cluster set of f at ζj , then we have

C(f, ζj0) = {w = u− iu : j0 − 1 ≤ u ≤ j0}

for j0 = 1, 2, . . .

Similarly we obtain

C(f, ζj0) = {w = u : j0 − 1 ≤ u ≤ j0} .

5. Univalence. In this section we prove that f is one-to-one in D. Our
proof is based on a technique used by Kneser [9] to give a proof of Choquet’s
Theorem [2]. Let f = h + g where h = (F + iG)/2 and g = (F − iG)/2.
As pointed out in the last paragraph of Section 3, h − g = iG is convex
in the direction of the real axis. According to Clunie and Sheil-Small [4,
Theorem 5.3], f will be one-to-one provided it is locally one-to-one and sense
preserving. Thus by remarks made in Section 2, to prove that f is one-to-
one it is sufficient to prove that |g′(z)| < |h′(z)| for z in D. This in turn is
equivalent to proving that the Jacobian of f , J(f), is positive in D. Since
F ′(0) > 0 and Re(iG′(0)) > 0 it follows that J(f)(0) = |h′(0)|2 − |g′(0)|2 =
|F ′(0) + iG′(0)|2 − |F ′(0)− iG′(0)|2 > 0. Thus it will be sufficient to prove
that J(f) 6= 0 in D.

With each pair of real numbers (r, s) we associate the linear function

Lr,s(u, v) = L(u, v) = ru + sv .
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The composition

qr,s(z) = q(z) = Lr,s ◦ f(z) = ru(z) + sv(z)

is harmonic in D. To complete the proof, we will prove that for each such
L and each real constant c, the level set

Γ (c, L) = {z : L ◦ f(z) = q(z) = c}

is a Jordan curve in D. This implies that there is no point P in D such that
∂q
∂x (P ) = 0 and ∂q

∂y (P ) = 0. This in turn implies that J(f) 6= 0 in D, which
is sufficient to prove that f is one-to-one.

There are several cases to consider. In each case, if branching occurs
in the level set Γ (c, L) we will conclude that q(z) is identically a constant,
which is an obvious contradiction.

C a s e 1. Assume the function L is given and the straight line L = c
meets ∂K at two points, say (l, 0) and (p,−p) where l and p are not integers
and j0 < l < j0+ 1, k0 − 1 < p < k0, where j0 and k0 are positive integers.
By the results of Section 4 the level set Γ (c, L) can accumulate on Π at the
two points ζk0 and ζj0 . If Γ (c, L) branches at an internal point z0∈Γ (c, L),
then there are at least three components, say γ1, γ2 and γ3, in a small
neighborhood of z0. Further, at least two of them accumulate at one of the
points ζk0 or ζj0 . Assume without loss of generality that γ1 and γ2 end
at ζk0 . The curves γ1 and γ2 cannot meet in D and they bound a simply
connected domain R. But q identically c on ∂R and q harmonic in R implies
that q is identically c in R and hence in D, which is a contradiction. Thus
in this case Γ (c, L) is a Jordan curve with end points ζk0 and ζj0 on Π.

C a s e 2. Assume the line L = c meets ∂K at points (k,−k) and (l, 0)
where k is a positive integer and j0 < l < j0 + 1 where j0 is a positive
integer. In this case Γ (c, L) accumulates at ζj0 and on the closure of the arc
Ik. If Γ (c, L) were to branch at z0 ∈ D ∩ Γ (c, L), there would again be at
least 3 arcs emanating from z0, say γ1, γ2 and γ3. Let us assume that γ1 and
γ2 accumulate on the closure of Ik. Again γ1 and γ2 do not intersect and
together with a suitable subarc of Ik bound a simply connected domain R.
Let φ be the Riemann map of D onto R. The bounded harmonic function
q ◦ φ is constant a.e. on Π and so it is constant on D. Again this leads to
an absurdity. The case of two of the three arcs γ1, γ2 or γ3 ending at ζj0 is
already covered in Case 1.

C a s e 3. Assume the line L = c meets ∂K at one finite point and at
∞. If Γ (c, L) branches at a point z0 ∈ D ∩ Γ (c, L), then again there are at
least three arcs γ1, γ2 and γ3 emanating from z0. The only case we need to
consider is where two of them, say γ1 and γ2, join to 1. Again they cannot
meet and they form a simply connected domain R. Map D onto R, by an
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analytic function φ. Since q(z) = ru(z)+sv(z), the conjugate q̃ of q is given
by q̃(z) = rũ(z) + sṽ(z). Thus, the analytic function M(z) = q(z) + iq̃(z) =
rF (z)+ sG(z) is in H1, and therefore there exists m(z) harmonic in D such
that |M(z)| ≤ m(z) in D. Thus |M(φ(w))| ≤ m(φ(w)) and so M ◦ φ is also
in H1. Since Re(M ◦ φ) = q ◦ φ and the Poisson formula reproduces this
harmonic function from its boundary values, we must have q ◦ φ identically
c in R. Again we reach an absurdity.

The remaining cases are similar. This completes the proof of univalence.

Combining the results of Sections 4 and 5 we have the following theorem.

Theorem 1. The constructed mapping function f is a nonbasic harmonic
mapping of D onto K.

6. The coefficient S. If f = h + g is a harmonic mapping from D into
C, it can be viewed as a solution of the elliptic partial differential equation

fz̄ = S(z)fz

where the function S(z) = g′(z)/h′(z) is analytic in D and satisfies |S(z)|
< 1 for z in D. Recall that with our notation,

S(z) =
g′(z)
h′(z)

=
F ′(z)− iG′(z)
F ′(z) + iG′(z)

.

Theorem 2. For the mapping function f constructed from D onto K,
S is an inner function.

P r o o f. Recall that F (z) = −(G(z) + G(z)), so that

(6.1) S(z) =
1 + i +

G′(z)
G′(z)

1− i +
G′(z)
G′(z)

.

For z in D,

(6.2)
G′(z)
G′(z)

=

−
∞∑

j=1

ζj − 1

z − ζj

∞∑
j=1

ζj − 1
z − ζj

.

We claim that both series in (6.2) converge absolutely for |z| = 1, z 6= ζj

and z 6= ζj , j = 1, 2, . . . To see this, note that

G′(0) = − i

π

∞∑
j=1

(1− ζj) .
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Since |ζj − 1| ≤ |Re ζj − 1|+ |Im ζj | = (1−Re ζj)− Im ζj for all j, it follows
that

∑∞
j=1 |ζj − 1| converges. If |z| = 1, z 6= ζj , j = 1, 2, . . . , there exists

M > 0 so that |z − ζj | > M > 0 for all j. Thus |(ζj − 1)/(z − ζj)| ≤
(1/M)|ζj − 1| and therefore

∑∞
j=1(ζj − 1)/(z − ζj) converges absolutely.

Similarly
∑∞

j=1(ζj − 1)/(z − ζj) converges absolutely if z 6= ζj .
From (6.1), we see that in order to prove that S is an inner function, it

is sufficient to prove that G′(z)/G′(z) is real for |z| = 1, z 6= ζj and z 6= ζj ,
j = 1, 2, . . . First, consider one term of the series in the denominator of (6.2).
If z = eiθ then
ζj − 1
z − ζj

=
[cos(βj − θ)− cos θ − 1 + cos βj ] + i[sin(βj − θ) + sin θ − sinβj ]

|z − ζj |2

=
cos βj cos θ + sinβj sin θ − cos θ − 1 + cos βj

|z − ζj |2

+ i
sinβj cos θ − sin θ cos βj + sin θ − sinβj

|z − ζj |2

=
[

sin θ

1− cos θ
− i

]
sin θ (cos βj − 1) + (1− cos θ) sinβj

|z − ζj |2
.

Now we compute one term in the numerator of (6.2):

ζj − 1

z − ζj

=
(cos(θ + βj)− cos θ − 1 + cos βj) + i(− sin(θ + βj) + sin θ + sinβj)

|z − ζj |2

=
[

sin θ

1− cos θ
− i

]
(1 + cos θ)(cos βj − 1)− sinβj sin θ

|z − ζj |2
.

Thus the common factors sin θ/(1− cos θ)− i cancel and we have the ratio
of two real numbers in (6.2).

7. S as a limit of Blaschke products. In this section we will prove
that the inner function S(z) is the limit of a sequence of finite Blaschke
products. Let

Fn(z) =
i

π

n+1∑
j=1

Log
(

ζj

z − ζj

z − ζj

)
and

Gn(z) = − i

π

n+1∑
j=1

Log
(

ηj

z − ζj

z − ζj

)
.
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Then Fn converges to F and Gn converges to G uniformly on compact
subsets of D. It can be verified that Re (1 − z2)F ′n(z) > 0 and that
Im (1− z)2G′n(z) < 0 in D. According to results of Hengartner and Schober
[5], Fn and Gn are univalent in D and map D onto domains which are con-
vex in the direction of the imaginary axis. An examination of boundary
values indicates that Fn maps D onto the strip {w : 0 < Re w < n + 1}
with slits of the form {w = j + iy : |y| ≥ n(j)}, j = 1, . . . , n, removed
and Gn maps D onto the strip {w : −(n + 1) < Re w < 0} with slits
of the form {w = −j − iy : y ≥ m(j)}, j = 1, . . . , n, removed. Us-
ing the techniques of Sections 4 and 5 it can be shown that the function
fn = Re Fn + iRe Gn is a harmonic map of D onto the triangular region
{w = u − iv : 0 < u < n + 1, 0 < v < u}. It follows then that the
function

Sn(z) =
F ′n(z)− iG′n(z)
F ′n(z) + iG′n(z)

is analytic in D and satisfies |Sn(z)| < 1 for z in D. Also Sn converges to S
uniformly on compact subsets of D. We claim that Sn is a finite Blaschke
product.

With αj = Im ζj we have

Sn(z) =

− 2
π

n+1∑
j=1

αj(1− z)2

(z − ζj)(z − ζj)
+

1
π

n+1∑
j=1

(ζj − 1)(1− z)
z − ζj

− 2
π

n+1∑
j=1

αj(1− z)2

(z − ζj)(z − ζj)
− 1

π

n+1∑
j=1

(ζj − 1)(1− z)
z − ζj

=
P (z)
Q(z)

where P (z) and Q(z) are polynomials given by

P (z) = − 2
n+1∑
j=1

αj(1− z)
n+1∏
k=1
k 6=j

(z − ζk)(z − ζk)

+
n+1∑
j=1

(ζj − 1)
n+1∏
k=1
k 6=j

(z − ζk)
n+1∏
t=1

(z − ζt) ,

Q(z) = − 2
n+1∑
j=1

αj(1− z)
n+1∏
k=1
k 6=j

(z − ζk)(z − ζk)

−
n+1∑
j=1

(ζj − 1)
n+1∏
k=1
k 6=j

(z − ζk)
n+1∏
t=1

(z − ζt) .
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Straightforward computations give

P (z) = −z2n+1Q

(
1
z

)
,

and therefore for z 6= 0, P (z) = 0 if and only if Q(1/z) = 0. At this stage we
assume that the common factors of P (z) and Q(z) have been removed. After
removing common factors we still have P (z) = 0 if and only if Q(1/z) = 0.
Since Sn(z) is analytic in D, Q has no zeros in D and thus the zeros of P
must be in the closure of D. The zeros of P (z) and Q(z) which lie on |z| = 1
cancel in the quotient P (z)/Q(z), and therefore P (z)/Q(z) is analytic for
|z| ≤ 1. Also from (7.1), if |z| = 1, then |P (z)| = |Q(z)|. Thus |Sn(z)| = 1
on |z| = 1. It follows then that Sn(z) is a finite Blaschke product for each n.

8. Another example. The example below was shown to us by Don
Marshall. Let R be the infinite strip

R = {z = x + iy : 0 < x, 0 < y < 1} .

The function g(z) = x + iyx is a harmonic map of R onto Q = {(x, y) :
x > 0, 0 < y < x}. Now let φ be a Riemann map of D onto R, say
φ(w) = x(w) + iy(w). The function

φ(w) = g(φ(w)) = x(w) + iy(w)x(w)

is a harmonic map of D onto Q. In this case

F = φ and G = −i
φ2

2
.

Thus

S =
1− φ

1 + φ
.

If Γ is the arc mapped by φ onto {z = iy : 0 < y < 1}, then |S| = 1 on Γ ,
but S is not an inner function.
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