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The importance of the theory of vector measures in many aspects of
modern analysis is by now well established; see, for example, [4, 6, 7] and
the references therein. Curiously though, a knowledge of the L1-spaces of
vector measures is somewhat incomplete. Although certain aspects of such
spaces (e.g. completeness [7] and lattice properties [1, 7]) are well known
there are other aspects (e.g. the dual space, separability) which are not
so well understood. For some recent work on the nature of these spaces
we refer to [1, 9]. Not surprisingly, these spaces are often very different in
nature from the classical L1-spaces of scalar measures.

A natural operator associated with an X-valued vector measure µ is its
integration map Iµ : L1(µ) → X given by Iµf =

∫
f dµ, for every f ∈ L1(µ).

The properties of this operator (which is always linear and continuous) are
closely related to the nature of L1(µ). Our aim is to investigate compactness
properties of such operators. We remark that many classical operators (e.g.
the Fourier transform, Volterra integral operators, compact scalar-type op-
erators) are integration maps Iµ, for suitable µ, or restrictions of such maps
Iµ; see [10], for example.

To be more precise, let X be a Banach space. If X is reflexive, then
Iµ is necessarily weakly compact. However, if X is non-reflexive, then to
produce examples of (non-trivial) weakly compact integration maps Iµ is not
so immediate. One of the problems is the difficulty of identifying the space
L1(µ) and, in those cases when an identification is actually possible, it often
turns out that Iµ is not weakly compact (see [10]). The first simplification
of the problem is that attention may be restricted to non-reflexive spaces X
that are weakly compactly generated (which includes all separable spaces).
This is because the image of Iµ is contained in the closed subspace Xµ, of
X, generated by the range of µ (which is always a relatively weakly compact
set). The second point is the characterization of weakly compact maps Iµ

1991 Mathematics Subject Classification: 28B05, 46G10, 47B07, 47B38.



176 S. OKADA AND W. J. RICKER

as precisely those arising from measures µ which factor through a reflexive
Banach space; see Proposition 2.1.

Combining these two observations provides a method of constructing
weakly compact maps Iµ for a certain class of `1-valued measures µ; see
Section 3. Of course, because of the special properties of `1 such maps Iµ

are also compact. It is even possible, via this construction, to determine
the subclass of such measures µ which correspond to nuclear integration
maps Iµ (cf. Proposition 3.6). Moreover, using the fact that every nuclear
map between Banach spaces factors through `1, it is possible to characterize
those nuclear integration maps Iµ : L1(µ) → X with values in an arbitrary
Banach space X (cf. Proposition 3.12).

Using the class of `1-valued measures constructed in Section 3 it is possi-
ble to exhibit non-reflexive spaces X and X-valued measures whose associ-
ated integration map is weakly compact but not compact; see Example 3.13.
To produce such examples in reflexive spaces is easier: it suffices to note that
separable, cyclic Banach spaces X (which include many reflexive spaces) are
always isomorphic to L1(µ), via the integration map Iµ : L1(µ) → X, for
some suitable vector measure µ (see [5; Corollary 1.5]). Finally, it is straight-
forward to exhibit non-trivial (i.e. Xµ is not finite-dimensional) measures µ
in a reflexive space X such that Iµ is both compact and weakly compact.
Indeed, it suffices to take any `1-valued measure ν (of the type constructed
in Section 3) for which Iν is weakly compact (and so, also compact) and
consider the measure µ = Jp ◦ ν with values in X = `p, for any 1 < p < ∞,
where Jp : `1 → `p is the natural inclusion.

Acknowledgment. Both authors wish to thank Ben de Pagter for some
informative discussions on this topic. The first author acknowledges the
support of the Australian Research Council and a University of New South
Wales Research Grant.

1. Preliminaries. All vector spaces to be considered are over the
scalar field, either real or complex. Let X be a Banach space with norm ‖ ·‖
and continuous dual space X ′. The dual of a continuous linear map T from
X into a Banach space Y is the linear map T ′ : Y ′ → X ′ defined by

〈T ′y′, x〉 = 〈y′, Tx〉, y′ ∈ Y ′, x ∈ X ,

where 〈·, ·〉 denotes the duality between a Banach space and its dual space.
A sequence {xn}∞n=1 in X is said to be summable if there exists x ∈

X, called the sum of the sequence, such that limN→∞ ‖x−
∑N

n=1 xn‖=0.
A sequence {xn}∞n=1 is called unconditionally summable if each of its subse-
quences is summable in X. Finally, a sequence {xn}∞n=1 in X is said to be
absolutely summable if

∑∞
n=1 ‖xn‖ < ∞.
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Lemma 1.1. Let X be a Banach space and j be an X-valued continuous
linear injection with domain a Banach space Y not containing an isomorphic
copy of `∞. Then a sequence {yn}∞n=1 in Y is unconditionally summable
if and only if every subsequence of {j(yn)}∞n=1 is summable, in X, to an
element of j(Y ).

P r o o f. Let {yn(k)}∞k=1 be a subsequence of {yn}∞n=1. Then there exists
y ∈ Y such that j(y) is the sum, in X, of the sequence {j(yn(k))}∞k=1. In
particular,

lim
N→∞

〈
j′(x′), y −

N∑
k=1

j(yn(k))
〉

= 0, x′ ∈ X ′ .

Since j is injective, the set j′(X ′) separates points of Y . Now apply [4;
Corollary I.4.7] to conclude that {yn}∞n=1 is unconditionally summable in Y .

The converse implication is clear.

Let S be a σ-algebra of subsets of a non-empty set Ω. Let µ : S → X be
a vector measure, meaning that {µ(En)}∞n=1 is unconditionally summable in
X (with

∑∞
n=1 µ(En) = µ(

⋃∞
n=1 En)) for any sequence of pairwise disjoint

sets En ∈ S, n = 1, 2, . . . For every x′ ∈ X ′, let 〈x′, µ〉 denote the scalar
measure defined by

〈x′, µ〉(E) = 〈x′, µ(E)〉, E ∈ S ,

and let |〈x′, µ〉| denote its total variation measure. A scalar-valued, S-mea-
surable function f on Ω is called µ-integrable if it is 〈x′, µ〉-integrable, for
every x′ ∈ X ′, and if there is a unique set function fµ : S → X such that

〈x′, (fµ)(E)〉 =
∫
E

f d〈x′, µ〉, x′ ∈ X ′, E ∈ S .

By the Orlicz–Pettis theorem (see [4; Corollary I.4.4]), fµ is also a vector
measure. The element (fµ)(E) is also denoted by

∫
E

f dµ, E ∈ S.
Let E ∈ S. Then E ∩ S denotes the σ-algebra of sets {E ∩ F : F ∈ S}.

The characteristic function of a set F ⊆ Ω is denoted by χF .

Lemma 1.2 ([8; Proposition 8]). A scalar-valued function f on Ω is
µ-integrable if and only if there exist scalars cn and sets E(n) ∈ S, n =
1, 2, . . . , such that

(i) the sequence {cnµ(Fn)}∞n=1 is unconditionally summable in X, for
every choice of Fn ∈ E(n) ∩ S, n = 1, 2, . . . , and

(ii) the identity f(ω) =
∑∞

n=1 cnχE(n)(ω) holds, for every ω ∈ Ω for
which

∑∞
n=1 |cn|χE(n)(ω) < ∞. In this case

(fµ)(E) =
∫
E

fdµ =
∞∑

n=1

cnµ(E(n) ∩ E), E ∈ S .
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The space of all scalar-valued, µ-integrable functions on Ω will be de-
noted by L1(µ). It is equipped with the mean convergence topology which
is given by the seminorm

|||f |||µ = sup{|〈x′, fµ〉|(Ω) : x′ ∈ X ′, ‖x′‖ ≤ 1}, f ∈ L1(µ) .

The seminormed space L1(µ) is complete and the S-simple functions are
dense in it (see [7; Chapter II]). A function f ∈ L1(µ) is called µ-null if
(fµ)(E) = 0, for every E ∈ S. The space of all µ-null functions is denoted
by N (µ). The seminormed space L1(µ) is identified with its quotient space
L1(µ)/N (µ) so that L1(µ) will be regarded as a Banach space. It follows
that the integration map Iµ : L1(µ) → X defined by

Iµf = (fµ)(Ω) =
∫
Ω

f dµ, f ∈ L1(µ) ,

is linear and continuous.
A vector measure µ : S → X is said to factor through a Banach space

Y if there exist a vector measure ν : S → Y and a continuous linear map
j : Y → X such that

(F1) L1(µ) = L1(ν) as vector spaces,
(F2) N (µ) = N (ν), and
(F3) Iµ = j ◦ Iν .

We will also say that µ factors through Y via ν and j. In this case, the
continuity of j implies that the identity map Φ from L1(ν) onto L1(µ) is
continuous. Accordingly, L1(ν) and L1(µ) are isomorphic Banach spaces
(by the open mapping theorem and the injectivity of Φ; see (F2)). If the
map j happens to be injective, then (F3) implies (F2).

2. Weakly compact integration maps. Throughout this section,
let X be a Banach space and µ an X-valued vector measure on a σ-algebra
S of subsets of a non-empty set Ω.

According to the Bartle–Dunford–Schwartz theorem (see [4; Corollary
I.2.7]), µ has relatively weakly compact range. Accordingly, the range of
Iµ : L1(µ) → X is contained in a weakly compactly generated, closed sub-
space Xµ, of X, namely that generated by µ(S). However, as shown in
Example 3.8, Iµ may not be weakly compact; for further non-trivial exam-
ples, see [10]. The following result characterizes those vector measures µ for
which Iµ is weakly compact.

Proposition 2.1. A vector measure µ : S → X factors through a reflex-
ive Banach space if and only if the associated integration map Iµ : L1(µ) →
X is weakly compact.

We will require the following
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Lemma 2.2. Suppose that there exist a Banach space Y containing no
copy of `∞, a vector measure ν : S → Y , and a continuous linear injection
j : Y → X such that µ = j ◦ ν and Iµ(L1(µ)) ⊆ j(Y ). Then the conditions
(F1)–(F3) hold.

P r o o f. To establish (F1), let f ∈ L1(µ). Let cn be scalars and En ∈ S,
n = 1, 2, . . . , be sets satisfying the conditions (i) and (ii) in Lemma 1.2. Let
F (n) ∈ En∩S, n = 1, 2, . . . We claim that, if {n(k)}∞k=1 is a strictly increas-
ing sequence of positive integers, then the sum of the summable sequence
{cn(k)(j ◦ ν)(F (n(k)))}∞k=1 belongs to j(Y ). Indeed, let g be a scalar-valued
function on Ω such that g(ω) =

∑∞
k=1 cn(k)χF (n(k))(ω) for every ω ∈ Ω

for which
∑∞

k=1 |cn(k)|χF (n(k))(ω) < ∞. By Lemma 1.2, the function g is
µ-integrable and

∞∑
k=1

cn(k)(j ◦ ν)(F (n(k))) =
∞∑

k=1

cn(k)µ(F (n(k))) = Iµg ,

which is clearly an element of Iµ(L1(µ)) ⊆ j(Y ). It now follows from
Lemma 1.1 that the sequence {cnν(F (n))}∞n=1 is unconditionally summable
in Y . Hence, f ∈ L1(ν) by Lemma 1.2. Thus L1(µ) ⊆ L1(ν). Since the
continuity of j implies that L1(ν) ⊆ L1(µ) we obtain (F1). Now (F3) is
clear. The property (F2) is a consequence of (F3) and the injectivity of j.

P r o o f o f P r o p o s i t i o n 2.1. If µ factors through a reflexive Banach
space, then clearly Iµ is weakly compact.

Suppose that Iµ is weakly compact. By [2; Corollary 1, p. 314], there
exists a reflexive Banach space Y such that

(i) Y is a linear subspace of X and the natural injection j : Y → X is
continuous, and

(ii) Iµ(L1(µ)) ⊆ Y .

It follows from (ii) that there is a unique set function ν : S → Y satisfying
µ = j◦ν. The σ-additivity of ν is again a consequence of Lemma 1.1 because
Y is reflexive. Lemma 2.2 now implies that µ factors through the reflexive
space Y .

We remark that there may be more than one reflexive Banach space
through which a vector measure factors (see Examples 3.10 and 3.11).

3. Measures with values in `1. The main aim of this section is to
give a systematic way of constructing `1-valued measures whose associated
integration map is compact or nuclear. Throughout, let S be a σ-algebra
of subsets of a non-empty set Ω and λ : S → [0,∞) be a finite, non-trivial
measure. This means that there exist infinitely many pairwise disjoint,
non-λ-null sets in S.
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Let `1 denote the usual Banach space of scalar-valued functions φ on
N = {1, 2, . . .} such that ‖φ‖1 =

∑∞
n=1 |φ(n)| < ∞. The standard unit

vectors in `1 are denoted by en, n ∈ N. The same notation will be used if
we wish to regard them as elements of `p, 1 < p ≤ ∞.

The following result is known (see [3; Exercise VII 3]); it is a consequence
of the uniform boundedness principle.

Lemma 3.1. A linear map T : L1(λ) → l1 is continuous if and only if
there exist functions gn ∈ L∞(λ), n ∈ N, satisfying

(1)
∞∑

n=1

|〈gn, f〉| < ∞, f ∈ L1(λ) ,

such that

(2) Tf =
∞∑

n=1

〈gn, f〉en, f ∈ L1(λ) .

R e m a r k 3.2. A sequence {gn}∞n=1 in L∞(λ) satisfies (1) if and only if
it is conditionally summable in L∞(λ) with respect to the weak-∗ topology.

Lemma 3.3. Let gn ∈ L∞(λ), n ∈ N, be functions satisfying (1). Define
a set function µ : S → `1 by

(3) µ(E) =
∞∑

n=1

( ∫
E

gn dλ
)
en, E ∈ S .

Then µ is a vector measure, L1(λ) ⊆ L1(µ) and N (λ) ⊆ N (µ).

P r o o f. The σ-additivity of µ follows from the continuity of the map T
specified by (2). Let ξ ∈ `∞ (which is identified with the dual space of `1 in
the usual way). Then

∞∑
n=1

|〈ξ(n)gn, f〉| < ∞, f ∈ L1(λ) .

Hence, the sequence {ξ(n)gn}∞n=1 is unconditionally summable to an element∑∞
n=1 ξ(n)gn in L∞(λ) with respect to the weak-∗ topology (cf. Remark

3.2). In other words,

lim
N→∞

〈 ∞∑
n=1

ξ(n)gn −
N∑

n=1

ξ(n)gn, f
〉

= 0, f ∈ L1(λ) .

Therefore we obtain

(4) 〈ξ, µ〉 =
( ∞∑

n=1

ξ(n)gn

)
λ ,
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that is, 〈ξ, µ〉 is absolutely continuous with respect to λ and has
∑∞

n=1 ξ(n)gn

as its Radon–Nikodym derivative.
To prove the inclusion L1(λ) ⊆ L1(µ), let f ∈ L1(λ). Then, because of

(4), f is 〈ξ, µ〉-integrable, for every ξ ∈ l∞. Furthermore〈
ξ,

∞∑
n=1

( ∫
E

gnf dλ
)
en

〉
=
∫
E

f d〈ξ, µ〉 ,

for every ξ ∈ `∞ and E ∈ S. Accordingly, f ∈ L1(µ) and

(5) (fµ)(E) =
∫
E

f dµ =
∞∑

n=1

( ∫
E

gnf dλ
)
en, E ∈ S .

So, L1(λ) ⊆ L1(µ). The containment N (λ) ⊆ N (µ) is clear.

R e m a r k 3.4. Let µ be the vector measure specified in Lemma 3.3.
Then L1(µ) consists of those scalar-valued, S-measurable functions f on Ω
such that gnf ∈ L1(λ), n ∈ N, and

∑∞
n=1 |

∫
Ω

gnf dλ| < ∞. Hence, (5)
holds. Accordingly, it is always possible to choose functions gn ∈ L∞(λ),
n ∈ N, such that L1(λ) 6= L1(µ).

Proposition 3.5. Let g1 be the constant function 1 and gn ∈ L∞(λ),
n = 2, 3, . . . , be functions such that (1) holds. Let µ be the vector measure
defined by (3). Then

(6) L1(µ) = L1(λ) and N (µ) = N (λ) .

In particular , L1(µ) and L1(λ) are isomorphic Banach spaces. Moreover ,
the measure fµ is given by (5) and

Iµf =
∞∑

n=1

〈gn, f〉en, f ∈ L1(µ) .

P r o o f. We have

(7) 〈e1, µ〉 = 1λ = λ ,

from which the inclusions L1(µ) ⊆ L1(〈e1, µ〉) = L1(λ) and N (µ) ⊆
N (〈e1, µ〉) = N (λ) follow. By Lemma 3.3 we now have (6). The condi-
tions (6) and (7) jointly imply that the identity map from L1(µ) onto L1(λ)
is continuous and injective; hence that map is an isomorphism by the open
mapping theorem.

The rest of the statement of Proposition 3.5 is now clear from the proof
of Lemma 3.3.

By the Schur theorem, a sequence in `1 is weakly convergent if and only
if it is norm convergent (see [3; p. 85]). It follows that every weakly compact
operator from a Banach space into `1 is also compact.



182 S. OKADA AND W. J. RICKER

Proposition 3.6. Let gn ∈ L∞(λ), n ∈ N, be functions such that g1 = 1
and (1) holds. Let µ : S → `1 be the vector measure defined by (3) and
Iµ : L1(µ) → l1 be its associated integration map.

(i) The operator Iµ is compact if and only if the sequence {gn}∞n=1 is
unconditionally norm summable in the Banach space L∞(λ).

(ii) The operator Iµ is nuclear if and only if {gn}∞n=1 is absolutely
summable in L∞(λ).

P r o o f. Statement (i) is a particular case of [3; Exercise VII 3(ii)], and
(ii) follows from the definition of a nuclear map (see [4; Definition VI 4.1]).

Example 3.7. Let g1 = 1. Let gn = χE(n), n = 2, 3, . . . , where
{E(n)}∞n=2 is a sequence of pairwise disjoint, non-λ-null sets in S. Then
(1) holds and the set function µ defined by (3) is a vector measure; see
Lemma 3.3. By Proposition 3.6(i) the integration map Iµ : L1(µ) → `1

is not compact because {gn}∞n=1 is not unconditionally (norm) summable
in L∞(λ). Alternatively, Iµ is surjective, which also implies that Iµ is not
compact by Proposition 2.1. Clearly Iµ is not injective.

Example 3.8. Let g1 = 1. Take a sequence of sets E(n) ∈ S, n =
2, 3, . . . , which are pairwise disjoint and non-λ-null. Let gn = n−1χE(n),
n = 2, 3, . . . , in which case {gn}∞n=1 is unconditionally but not absolutely
summable in L∞(λ). Define a vector measure µ : S → `1 by (3). Then the
integration map Iµ : L1(µ) → `1 is compact but not nuclear (cf. Proposition
3.6).

Example 3.9. Let g1 = 1 and {E(n)}∞n=2 be a sequence of sets in S as
in Example 3.8. Let gn = 2−nχE(n), n = 2, 3, . . . For the vector measure µ
defined by (3), Proposition 3.6(ii) implies that Iµ : L1(µ) → `1 is nuclear.

The following example provides an `1-valued measure which factors
through more than one reflexive Banach space.

Example 3.10. Let µ : S → `1 be the vector measure defined in Exam-
ple 3.7. Let ξ belong to

⋂
1<p<∞ `p and satisfy ξ(n) 6= 0, for every n ∈ N.

Then the linear map Λ : `1 → `1 defined by Λ(κ) = η, for every κ ∈ `1,
where η(n) = ξ(n)κ(n), n ∈ N, is injective and compact. Moreover, the set
function % = Λ ◦ µ is again an `1-valued measure on S.

Now fix p ∈ (1,∞). Then % factors through the reflexive space `p.
Indeed, let Vp : `1 → `p denote the natural injection and jp : `p → `1 be
the linear map given by jp(κ) = η, for every κ ∈ `p, where η(n) = ξ(n)κ(n),
n ∈ N. Then both Vp and jp are continuous injections and Λ = jp ◦ Vp. The
set function νp = Vp ◦ µ : S → `p is σ-additive. Furthermore,

L1(λ) ⊆ L1(µ) ⊆ L1(νp) ⊆ L1(%) ⊆ L1(〈e1, %〉) ⊆ L1(λ)
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because 〈e1, %〉 = ξ(1)−1〈e1, µ〉 = ξ(1)−1λ. Hence, L1(νp) = L1(%). Since
% = jp ◦ νp and since the S-simple functions are dense in both L1(νp) and
L1(%), for their respective topologies, the Lebesgue dominated convergence
theorem (see [7; Theorem II 4.2]) implies that I% = jp ◦ Iνp

. Accordingly, %
factors through `p via νp and jp (as jp is injective).

Example 3.10 gives a vector measure % which factors through every
`p, 1 < p < ∞. However, the associated integration map I% is not injec-
tive. It is possible to modify that example so that the integration map is
injective. Instead of doing so we present a further example, of a different
nature, which exhibits the same phenomenon.

Example 3.11. Let η be normalized Haar measure on the Borel σ-
algebra B of the circle group. Let Z be the set of all integers. For each
E ∈ B, let µ(E) denote the Fourier transform of χE . The so defined set
function µ : B → c0(Z) is a vector measure such that L1(µ) = L1(η) and
N (µ) = N (η). It turns out that the integration map Iµ coincides with the
Fourier transform operator on L1(η) and that Iµ is injective but not weakly
compact; for the details see [10]. Let γ ∈ `1(Z) satisfy γ(n) 6= 0, n ∈ Z.
Define W : c0(Z) → `1(Z) by Wκ = ξ, for every κ ∈ c0(Z), where ξ(n) =
γ(n)κ(n), n ∈ Z. Then W is a continuous linear injection. By arguments
similar to those in Example 3.10, the vector measure % = W ◦µ : B → `1(Z)
factors through every space `p(Z), 1 < p < ∞, and the integration map I%

is injective.

Each vector measure for which the associated integration map is nuclear
factors through the quotient space of `1 with respect to some closed sub-
space. Hence, the statement of Proposition 3.6(ii) has some generality. This
is made precise in the following result whose proof is based on the fact that
every nuclear map from one Banach space into another factors through `1

(see [4; Proposition VI 4.2]).

Proposition 3.12. Let µ be a vector measure on S with values in a
Banach space X. Then the integration map Iµ : L1(µ) → X is nuclear if
and only if there exist a closed subspace M of `1, a vector measure ν : S →
`1/M , and a continuous linear injection j : `1/M → X such that µ factors
through the quotient space `1/M via ν and j and such that the integration
map Iν : L1(ν) → `1/M is nuclear.

P r o o f. Suppose that Iµ is nuclear. Then there exist unit vectors θn,
n ∈ N, in L1(µ)′ and an absolutely summable sequence {xn}∞n=1 of non-zero
vectors in X such that

Iµf =
∞∑

n=1

〈θn, f〉xn, f ∈ L1(µ) .
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The linear map S : L1(µ) → `1 defined by

Sf =
∞∑

n=1

〈θn, f〉‖xn‖en, f ∈ L1(µ) ,

is nuclear. Define J : `1 → X by

Jξ =
∞∑

n=1

ξ(n)‖xn‖−1xn, ξ ∈ l1 .

Then J is a continuous linear map such that Iµ = J ◦ S. Let M = {ξ ∈ `1 :
J(ξ) = 0} and π : `1 → `1/M be the quotient map. Then there is a unique
continuous linear injection j : `1/M → X such that J = j ◦ π. Accordingly,
there exists a vector measure ν : S → `1/M satisfying µ = j ◦ ν. Since
Iµ(L1(µ)) = j ◦ π ◦S(L1(µ)) ⊆ j(`1/M) and since the separable space `1/M
does not contain a copy of `∞, it follows from Lemma 2.2 that µ factors
through `1/M via ν and j. Since j ◦ Iν = Iµ = j ◦ (π ◦ S), the injectivity of
j implies that Iν = π ◦ S and so Iν is nuclear.

The converse implication is clear.

We conclude with an example of a non-reflexive Banach space-valued
measure for which the associated integration map is weakly compact
but not compact. By the Schur theorem there are no such `1-valued
measures.

Example 3.13. Let E(1) = Ω and {E(n)}∞n=2 be a sequence in S of
pairwise disjoint, non-λ-null sets. The `1-valued set functions µ and ν0

defined by

µ(E) =
∞∑

n=1

n−2λ(E(n) ∩ E)en and ν0(E) =
∞∑

n=1

λ(E(n) ∩ E)en ,

for every E ∈ S, satisfy

(8) L1(λ) = L1(µ) = L1(ν0) and N (λ) = N (µ) = N (ν0);

see Lemma 3.3 and Proposition 3.5.
Let j : `1 → `2 be the natural injection. Then the measure ν = j ◦ ν0 :

S → `2 factors through `1 via ν0 and j. Moreover,

(9) L1(ν) = L1(ν0) .

Indeed, this follows from (8) by continuity of j, because L1(ν0) ⊆ L1(ν),
and because L1(ν) ⊆ L1(λ), as 〈e1, ν〉 = λ.

The set function η : S → `1 × `2 defined by η(E) = (µ(E), ν(E)), for
every E ∈ S, is σ-additive. Direct computation shows that L1(η) = L1(λ)
and Iηf = (Iµf, Iνf), for every f ∈ L1(η). Accordingly, the integration
map Iη : L1(η) → `1 × `2 is weakly compact because the component map
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Iµ (respectively, Iν) is weakly compact by Proposition 3.6 (respectively,
by the reflexivity of `2). However, Iη is not compact. To see this, let
fm = m(m + 1)χE(m),m = 2, 3, . . . Then Iνfm = e1 + em while

|||fm|||ν ≤
∫
Ω

fm d|〈e1, ν〉|+
∫
Ω

fm d|〈em, ν〉| = 2 ,

for every m = 2, 3, . . . So, Iν maps the bounded sequence {fm}∞m=2 to the
sequence {e1 + em}∞m=2 which does not contain any convergent subsequence
in `2. Thus Iν is not compact and hence, neither is Iη.
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