MYCIELSKI IDEALS GENERATED BY UNCOUNTABLE SYSTEMS

BY

A. ROSŁANOWSKI (WROCŁAW)

1. Introduction. In the theory of infinite games one can treat sets for which the second player has a winning strategy as small sets. Usually we want small sets to be closed under some operations, e.g. to form an ideal. To obtain a good notion of smallness we have to consider either a lot of games or special kinds of games. Mycielski ideals introduced in [Myc] are based on the first idea.

Let \mathcal{X} be a countable set with at least two elements.
For $A \subseteq \mathcal{X}^{\omega}$ and $X \in[\omega]^{\omega}$ let $\Gamma_{\mathcal{X}}(A, X)$ denote the infinite game between two players, I and II, in which both players choose the values of a sequence $c \in \mathcal{X}^{\omega}$. Player I chooses $c(n)$ for $n \notin X$, Player II chooses $c(n)$ if $n \in X$. Player I wins if and only if $c \in A$.

Denote by $\operatorname{STR}(\mathcal{X})$ the family of all functions $\sigma: \mathcal{X}^{<\omega} \rightarrow \mathcal{X}$. Elements of $\operatorname{STR}(\mathcal{X})$ are strategies in games $\Gamma_{\mathcal{X}}(A, X)$. Note that $\operatorname{STR}(\mathcal{X})$ can be equipped with the product topology and then, since $\mathcal{X}<\omega$ is countable, it is homeomorphic to the space \mathcal{X}^{ω}. For $\sigma, \tau \in \operatorname{STR}(\mathcal{X})$ and $X \in[\omega]^{\omega}$ let $\sigma *_{X} \tau \in \mathcal{X}^{\omega}$ be the result of the game $\Gamma_{\mathcal{X}}(A, X)$ when Player I follows the strategy σ and II follows τ, i.e.

$$
\sigma *_{X} \tau(n)= \begin{cases}\sigma\left(\left(\sigma *_{X} \tau\right) \mid n\right) & \text { if } n \notin X \\ \tau\left(\left(\sigma *_{X} \tau\right) \mid n\right) & \text { if } n \in X\end{cases}
$$

If we put $d(s)=d(\operatorname{lh}(s))$ for $d \in \mathcal{X}^{\omega}$ and $s \in \mathcal{X}^{<\omega}$ then the space \mathcal{X}^{ω} becomes a closed subset of $\operatorname{STR}(\mathcal{X})$. Hence the operation $*_{X}$ is also defined for elements of \mathcal{X}^{ω}. Note that the function $*_{X}$ is continuous. By $\sigma *_{X} \mathcal{X}^{\omega}$ and $\mathcal{X}^{\omega} *_{X} \tau$ we will denote the images of \mathcal{X}^{ω} under the respective restrictions of the function $*_{X}$. These are the sets of all results of the game determined by X, in which the first (second) player uses the strategy σ (τ respectively).

A family $\mathcal{K} \subseteq[\omega]^{\omega}$ is said to be a normal system if for every $X \in \mathcal{K}$ there exist $X_{1}, X_{2} \in \mathcal{K}$ such that $X_{1}, X_{2} \subseteq X$ and $X_{1} \cap X_{2}=\emptyset$.

The Mycielski ideal $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ generated by a normal system \mathcal{K} is the family of all sets $A \subseteq \mathcal{X}^{\omega}$ such that the second player has a winning strategy in
every game $\Gamma_{\mathcal{X}}(A, X), X \in \mathcal{K}$. In other words,

$$
\mathfrak{M}_{\mathcal{X}, \mathcal{K}}=\left\{A \subseteq \mathcal{X}^{\omega}:(\forall X \in \mathcal{K})(\exists \tau \in \operatorname{STR}(\mathcal{X}))\left(\left(\mathcal{X}^{\omega} *_{X} \tau\right) \cap A=\emptyset\right)\right\}
$$

Theorem 1.1 [Mycielski, [Myc]]. If \mathcal{K} is a countable normal system then $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ is a σ-ideal such that:
(a) there exists a set $A \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ such that $\mathcal{X}^{\omega} \backslash A$ is meager and has Lebesgue measure zero,
(b) if $A \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ then there exists $B \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}} \cap \Pi_{2}^{0}\left(\mathcal{X}^{\omega}\right)$ such that $A \subseteq B$,
(c) there exist \mathfrak{c} disjoint, closed subsets of \mathcal{X}^{ω} that do not belong to $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$,
(d) if \mathcal{X} is equipped with a group structure then $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ is invariant under translations in the product group \mathcal{X}^{ω}.

The proof of Theorem 1.1 suggested the following simplified versions of Mycielski ideals. Let

$$
\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}=\left\{A \subseteq \mathcal{X}^{\omega}:(\forall X \in \mathcal{K})\left(\exists d \in \mathcal{X}^{\omega}\right)\left(\left(\mathcal{X}^{\omega} *_{X} d\right) \cap A=\emptyset\right)\right\}
$$

Obviously $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*} \subseteq \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and the inclusion is proper. Also Theorem 1.1 holds for the ideal $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$. For every normal system $\mathcal{K}, \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ are σ-ideals on \mathcal{X}^{ω} satisfying condition (d) of 1.1.

So far the ideals $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ have been studied mainly either for countable \mathcal{K} (cf. [Myc], [Men] and [BRo]) or for $\mathcal{K}=[\omega]^{\omega}$ (cf. [Ros] and [CRSW]). This paper concentrates on uncountable \mathcal{K}.

The ideals $\mathfrak{M}_{\mathcal{X},[\omega]^{\omega}}$ and $\mathfrak{M}_{\mathcal{X},[\omega]^{\omega}}^{*}$ are denoted by $\mathfrak{C}_{\mathcal{X}}$ and $\mathfrak{P}_{\mathcal{X}}$, respectively.
From now on, unless stated otherwise, \mathcal{X} is assumed to be finite. \mathcal{K} and \mathcal{K}^{\prime} stand for normal systems. $\mathbb{K}\left(\mathcal{X}^{\omega}\right)$ and $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$ are the σ-ideals of meager and Lebesgue null subsets of \mathcal{X}^{ω} (the topology and the Lebesgue measure in \mathcal{X}^{ω} are the product topology and the product measure in \mathcal{X}^{ω} arising from the discrete topology and the measure weighting every point in \mathcal{X} with $1 /|\mathcal{X}|)$. For the cardinal characteristics of the continuum used in this paper such as the unbounded number \mathfrak{b}, the dominating number \mathfrak{d}, the refinement number \mathfrak{r} and others, see [Fre] and [Vau].
2. Relations between $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$. Here, and in the next section, we continue the study from [BRo] of the dependence of $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ on the generating system \mathcal{K}. We begin with the following easy observation.

Proposition 2.1. If $\left\{\mathcal{K}_{\alpha}: \alpha<\kappa\right\}$ is a family of normal systems then $\mathcal{K}=\bigcup\left\{\mathcal{K}_{\alpha}: \alpha<\kappa\right\}$ is a normal system and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}=\bigcap\left\{\mathfrak{M}_{\mathcal{X}, \mathcal{K}_{\alpha}}: \alpha<\kappa\right\}$.

Two ideals of subsets of \mathcal{X}^{ω} are orthogonal if \mathcal{X}^{ω} can be covered by two sets, each from one ideal.

Proposition 2.2. The ideals $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ are orthogonal if and only if $X \cap X^{\prime} \neq \emptyset$ for every $X \in \mathcal{K}, X^{\prime} \in \mathcal{K}^{\prime}$.

Proof. Assume that $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ are orthogonal but $X \cap X^{\prime}=\emptyset$ for some $X \in \mathcal{K}, X^{\prime} \in \mathcal{K}^{\prime}$. We find sets $A \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $B \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ such that $A \cup B=\mathcal{X}^{\omega}$. Let $\tau, \tau^{\prime} \in \operatorname{STR}(\mathcal{X})$ be winning strategies for Player II in the games $\Gamma_{\mathcal{X}}(A, X)$ and $\Gamma_{\mathcal{X}}\left(B, X^{\prime}\right)$ respectively. Let $c=\tau^{\prime} *_{X} \tau$. Then $c \notin A \cup B$, because c is a result of the games $\Gamma_{\mathcal{X}}(A, X)$ and $\Gamma_{\mathcal{X}}\left(B, X^{\prime}\right)$ in which Player II uses strategies τ and τ^{\prime} respectively. This contradicts our choice of A and B. The converse implication was actually shown in the proof of Lemma 1.1 of [BRo]. It was proved there that if $X \cap X^{\prime} \neq \emptyset$ for every $X \in \mathcal{K}, X^{\prime} \in \mathcal{K}^{\prime}$ then for every $x \in \mathcal{X}$ the sets

$$
A=\left\{c \in \mathcal{X}^{\omega}:(\forall X \in \mathcal{K})(\exists n \in X)(c(n)=x)\right\}, \quad B=\mathcal{X}^{\omega} \backslash A
$$

witness the orthogonality of $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$.
For systems \mathcal{K} and \mathcal{K}^{\prime} we write $\mathcal{K}^{\prime}<\mathcal{K}$ whenever each element of \mathcal{K} contains an element of \mathcal{K}^{\prime}.

Proposition 2.3. $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}} \subseteq \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ if and only if $\mathcal{K}^{\prime}<\mathcal{K}$.
Proof. First note that Player II has a winning strategy in $\Gamma_{\mathcal{X}}(A, X)$ provided $X^{\prime} \subseteq X$ and he can win $\Gamma_{\mathcal{X}}\left(A, X^{\prime}\right)$. Hence $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}} \subseteq \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ if $\mathcal{K}^{\prime}<\mathcal{K}$. On the other hand, if there is an $X \in \mathcal{K}$ such that X contains no element of \mathcal{K}^{\prime} then the set

$$
A=\left\{c \in \mathcal{X}^{\omega}:\left(\forall X^{\prime} \in \mathcal{K}^{\prime}\right)\left(\exists n \in X^{\prime}\right)(c(n)=x)\right\}
$$

from the previous proof belongs to $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}} \backslash \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ (here x is a fixed element of \mathcal{X}).

Corollary 2.4. (a) For any cardinal $\kappa \leq \mathfrak{c}$, the intersection of $\kappa M y$ cielski ideals generated by systems of size κ is a Mycielski ideal generated by a system of size κ.
(b) For each normal system \mathcal{K} with $|\mathcal{K}|<\mathfrak{r}$ there exists a countable normal system \mathcal{K}^{\prime} such that the ideals $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ are orthogonal.
(c) There exists a normal system \mathcal{K} of size \mathfrak{r} such that no Mycielski ideal is orthogonal to $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$.

Proof. (a) This is an immediate consequence of 2.1.
(b) This is a slight generalization of Lemma 1.1 from [BRo]. If \mathcal{K} is of size less than \mathfrak{r} and $L \subseteq \omega$ has the property that $(\forall X \in \mathcal{K})(L \cap X \neq \emptyset)$ then there exist $L_{0}, L_{1} \in[L]^{\omega}$ such that $(\forall X \in \mathcal{K})\left(L_{0} \cap X \neq \emptyset \neq L_{1} \cap X\right)$ and $L_{0} \cap L_{1}=\emptyset$. Hence we can construct a countable normal system \mathcal{K}^{\prime} such that $X \cap X^{\prime} \neq \emptyset$ for all $X^{\prime} \in \mathcal{K}^{\prime}$ and $X \in \mathcal{K}$. Applying Proposition 2.2 we see that $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ are orthogonal.
(c) Let $\mathcal{K} \subseteq[\omega]^{\omega}$ be a family realizing the minimum in the definition of \mathfrak{r}. Let \mathcal{K} be a normal system containing \mathcal{K} such that $|\mathcal{K}|=\mathfrak{r}$. Let \mathcal{K}^{\prime} be another normal system on ω. Choose disjoint X_{0}, X_{1} from \mathcal{K}^{\prime}. The properties of \mathcal{K} provide a set $X \in \mathcal{K} \subseteq \mathcal{K}$ such that either $X \subseteq^{*} X_{0}$ or $X \subseteq^{*} \omega \backslash X_{0}$. In the
first case find $X^{\prime} \subseteq X_{1}, X^{\prime} \in \mathcal{K}^{\prime}$ with $X \cap X^{\prime}=\emptyset$. In the second case there is an $X^{\prime} \subseteq X_{0}, X^{\prime} \in \mathcal{K}^{\prime}$ with the same property. Hence, by Proposition 2.2, $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ cannot be orthogonal.

Remark. In the results above one can put $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ in place of $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$.
It is interesting to know whether Mycielski ideals are similar to one another. Ideals generated by countable systems seem to be almost identical from the point of view of their structure.

Let $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right)$ be the family of all Borel subsets of \mathcal{X}^{ω}.
Theorem 2.5. For every countable system \mathcal{K} the completion of the Boolean algebra $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ is isomorphic to the collapsing algebra $\operatorname{Col}(\omega, \mathfrak{c})$.

Proof. Recall that if a notion of forcing \mathbb{P} of cardinality \mathfrak{c} satisfies $\mathbb{P} \Vdash$ " $\check{\mathfrak{c}}$ is countable" then $\mathrm{RO}(\mathbb{P})=\operatorname{Col}(\omega, \mathfrak{c})$ (Theorem 25.11 of [Jec]). Since $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ has size continuum it suffices to show that it collapses $\check{\mathfrak{c}}$ on ω. For $X \in \mathcal{K}$ and $\alpha<\mathfrak{c}$ choose $c_{\alpha, X} \in \mathcal{X}^{\omega}$ such that $c_{\alpha, X}\left|X \neq c_{\beta, X}\right| X$ provided $\alpha \neq \beta$. Put $\mathcal{D}_{\alpha}=\left\{\left[\mathcal{X}^{\omega} *_{X} c_{\alpha, X}\right]: X \in \mathcal{K}\right\}$. Note that the families \mathcal{D}_{α} are predense subsets of $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$. Indeed, assume that $B \notin \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ is a Borel subset of \mathcal{X}^{ω}. By Borel Determinacy we find $X \in \mathcal{K}$ and $\sigma \in \operatorname{STR}(\mathcal{X})$ such that $\sigma *_{X} \mathcal{X}^{\omega} \subseteq B$. Choose disjoint subsets of X, say $X_{0}, X_{1} \in \mathcal{K}$. Let $\sigma^{\prime} \in \operatorname{STR}(\mathcal{X})$ be defined by

$$
\sigma^{\prime}(s)= \begin{cases}\sigma(s), & \operatorname{lh}(s) \notin X_{0} \\ c_{\alpha, X_{0}}(\operatorname{lh}(s)), & \operatorname{lh}(s) \in X_{0}\end{cases}
$$

Then $\sigma^{\prime} *_{X_{1}} \mathcal{X}^{\omega} \subseteq B \cap\left(\mathcal{X}^{\omega} *_{X_{0}} c_{\alpha, X_{0}}\right)$ and $B \cap\left(\mathcal{X}^{\omega} *_{X_{0}} c_{\alpha, X_{0}}\right) \notin \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$. It is easy to find a $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$-name $\dot{\tau}$ such that $\Vdash " \dot{\tau}: \check{\mathfrak{c}} \rightarrow \mathcal{K}$ and $\dot{\tau}(\alpha)=X$ implies $\left[\mathcal{X}^{\omega} *_{X} c_{\alpha, X}\right] \in \dot{\Gamma} "$, where $\dot{\Gamma}$ is a name for the generic set. Since the sets $\mathcal{X}^{\omega} *_{X} c_{\alpha, X}$ (with fixed X) are disjoint, \Vdash " $\dot{\tau}$ is one-to-one". The proof is complete.

Problem 2.6. Can there exist countable normal systems \mathcal{K} and \mathcal{K}^{\prime} such that the Boolean algebras $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ are not isomorphic, or the algebras $\mathcal{P}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathcal{P}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ are not isomorphic?

In the presence of the continuum hypothesis we have the following theorem.

Theorem 2.7 [Mendez [Men], Balcerzak [Bal]]. Assume CH. Suppose that \mathcal{K} and \mathcal{K}^{\prime} are countable. Then
(a) there exists a bijection $f: \mathcal{X}^{\omega} \rightarrow \mathcal{X}^{\omega}$ such that $f=f^{-1}$ and for every set $A \subseteq \mathcal{X}^{\omega}, f[A] \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ if and only if $A \in \mathbb{K}$,
(b) there exists a bijection $g: \mathcal{X}^{\omega} \rightarrow \mathcal{X}^{\omega}$ such that for every set $A \subseteq \mathcal{X}^{\omega}$, $g[A] \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}^{\prime}}$ if and only if $A \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$.
3. Relation of $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ to $\mathbb{K}\left(\mathcal{X}^{\omega}\right)$ and $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$. In Theorem 1.1 we mentioned the result of Mycielski that for countable \mathcal{K} the ideal $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ is orthogonal to the ideal $\mathbb{K}\left(\mathcal{X}^{\omega}\right) \cap \mathbb{L}\left(\mathcal{X}^{\omega}\right)$. Actually Mycielski's argument shows that every set in $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ can be covered by a comeager set from $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ if $|\mathcal{K}|<$ $\operatorname{add}(\mathbb{K})$ and by a conull set from $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ if $|\mathcal{K}|<\operatorname{add}(\mathbb{L})$, and that the same is true for the ideal $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$. Hence, for small uncountable generating systems, the ideals $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ are orthogonal to the ideal $\mathbb{K}\left(\mathcal{X}^{\omega}\right)$ (respectively $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$). Below we describe the systems \mathcal{K} for which the ideals $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathbb{K}\left(\mathcal{X}^{\omega}\right)$ are orthogonal and we give some information on the orthogonality of $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$. Recall first that if \mathcal{X} is infinite then each ideal $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ is orthogonal to $\mathbb{K}\left(\mathcal{X}^{\omega}\right) \cap \mathbb{L}\left(\mathcal{X}^{\omega}\right)(c f .[\operatorname{Ros}])$. For finite \mathcal{X} the situation is more complicated.

For $X \in[\omega]^{\omega}$ let $\mu_{X} \in \omega^{\omega}$ be an increasing enumeration of X.
We will say that a family $\mathcal{F} \subseteq[\omega]^{\omega}$ is unbounded if

$$
\left(\forall Y \in[\omega]^{\omega}\right)(\exists X \in \mathcal{F})\left(\exists^{\infty} n\right)\left(\left[\mu_{Y}(n), \mu_{Y}(n+1)\right) \cap X=\emptyset\right) .
$$

A family $\mathcal{F} \subseteq[\omega]^{\omega}$ will be called dominating whenever

$$
\left(\forall Y \in[\omega]^{\omega}\right)(\exists X \in \mathcal{F})\left(\forall^{\infty} n\right)\left(\left|\left[\mu_{Y}(n), \mu_{Y}(n+1)\right) \cap X\right| \leq 1\right) .
$$

Note that \mathcal{F} is unbounded if and only if $\left\{\mu_{X}: X \in \mathcal{F}\right\}$ is an unbounded family in $\left(\omega^{\omega}, \leq^{*}\right)$. The notion of a dominating family in $[\omega]^{\omega}$ is close to that of a dominating family in ($\left.\omega^{\omega}, \leq^{*}\right)$. Namely, $\left\{\mu_{X}: X \in \mathcal{F}\right\}$ is a dominating family in ω^{ω} provided \mathcal{F} is dominating. Moreover, every dominating family in ω^{ω} naturally produces a dominating family in $[\omega]^{\omega}$ (of the same cardinality).

Theorem 3.1. Suppose that \mathcal{X} is a finite set. Then the ideal $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ $\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)$ is not orthogonal to $\mathbb{K}\left(\mathcal{X}^{\omega}\right)$ if and only if the system \mathcal{K} is unbounded.

Proof. (\Rightarrow) Suppose \mathcal{K} is not an unbounded family and $Y \in[\omega]^{\omega}$ is a witness for it. Fix $x_{0} \in \mathcal{X}$. Define

$$
G=\left\{c \in \mathcal{X}^{\omega}:\left(\exists^{\infty} n\right)\left(c \mid\left[\mu_{Y}(n), \mu_{Y}(n+1)\right) \equiv x_{0}\right)\right\} \in \Pi_{2}^{0}\left(\mathcal{X}^{\omega}\right) .
$$

Clearly, G is dense in \mathcal{X}^{ω} and hence it is comeager in \mathcal{X}^{ω}. We show that G belongs to $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$. Let $X \in \mathcal{K}$ and let $d \in \mathcal{X}^{\omega}$ be such that $d(n) \neq x_{0}$ for $n \in X$. Suppose $c \in \mathcal{X}^{\omega} *_{X} d$. Then $X \cap\left[\mu_{Y}(n), \mu_{Y}(n+1)\right) \neq \emptyset$ implies $c \mid\left[\mu_{Y}(n), \mu_{Y}(n+1)\right) \not \equiv x_{0}$. Hence $c \notin G$ and $\left(\mathcal{X}^{\omega} *_{X} d\right) \cap G=\emptyset$.
(\Leftarrow) Suppose \mathcal{K} is unbounded and $G \in \Pi_{2}^{0}\left(\mathcal{X}^{\omega}\right)$ is dense in \mathcal{X}^{ω}. We prove that $G \notin \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$. Due to finiteness of \mathcal{X} we find a set $Y \in[\omega]^{\omega}$ and sequences $s_{n}:\left[\mu_{Y}(n), \mu_{Y}(n+1)\right) \rightarrow \mathcal{X}, n \in \omega$, such that $\left\{c \in \mathcal{X}^{\omega}:\left(\exists{ }^{\infty} n\right)\left(s_{n} \subseteq c\right)\right\}$ $\subseteq G$. We find $X \in \mathcal{K}$ for which infinitely often $\left[\mu_{Y}(n), \mu_{Y}(n+1)\right) \cap X=\emptyset$. For this X the first player can win the game $\Gamma_{\mathcal{X}}(G, X)$: the winning strategy
for him may be described by "play according to s_{n} whenever $\left[\mu_{Y}(n)\right.$, $\left.\mu_{Y}(n+1)\right) \cap X=\emptyset "$.

Let $\operatorname{BAIRE}\left(\mathcal{X}^{\omega}\right)$ be the family of all subsets of \mathcal{X}^{ω} with the property of Baire.

Corollary 3.2. Suppose that \mathcal{X} is a finite set.
(a) If $|\mathcal{K}|<\mathfrak{b}$ then $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ is orthogonal to $\mathbb{K}\left(\mathcal{X}^{\omega}\right)$.
(b) If \mathcal{K} is unbounded then $\mathfrak{M}_{\mathcal{X}, \mathcal{K}} \cap \operatorname{BAIRE}\left(\mathcal{X}^{\omega}\right) \subseteq \mathbb{K}\left(\mathcal{X}^{\omega}\right)$.

Proof. (a) This is an immediate consequence of 3.1.
(b) Suppose that $A \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}} \cap \operatorname{BAIRE}\left(\mathcal{X}^{\omega}\right)$ is nonmeager in \mathcal{X}^{ω}. Equip \mathcal{X} with a group structure (with a neutral element x_{0}) and put $\mathbb{Q}=\{c \in$ $\left.\mathcal{X}^{\omega}:\left(\forall^{\infty} n\right)\left(c(n)=x_{0}\right)\right\}$. Then $A+\mathbb{Q} \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $A+\mathbb{Q}$ is comeager in \mathcal{X}^{ω} (due to the 0-1 law for category). Applying 3.1 we conclude that \mathcal{K} cannot be unbounded.

In Proposition 1.4 of [BRo] another observation illustrating the dependence of $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ on \mathcal{K} was formulated. Here is a slight modification of it.

Proposition 3.3. For each $A \in \mathbb{K}\left(\mathcal{X}^{\omega}\right)$, there exists an unbounded normal system \mathcal{K} on ω such that $A \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$.

Since the ideals $\mathbb{K}\left(\mathcal{X}^{\omega}\right)$ and $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$ are orthogonal it follows from Proposition 3.3 that

Corollary 3.4. There exists an unbounded normal system \mathcal{K} on ω (of power $\mathfrak{c})$ such that $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ is orthogonal to $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$.

For our next result we need Bartoszyński's description of sets of measure zero.

A set $H \subseteq \mathcal{X}^{\omega}$ is called small if there exist a partition $\left\{I_{n}: n \in \omega\right\}$ of ω and a sequence $\left\langle J_{n}: n \in \omega\right\rangle$ such that
(i) I_{n} 's are intervals, $J_{n} \subseteq \mathcal{X}^{I_{n}}$,
(ii) $\sum_{n \in \omega}\left|J_{n}\right| \cdot|\mathcal{X}|^{-\left|I_{n}\right|}<\infty$ and
(iii) $H \subseteq\left\{c \in \mathcal{X}^{\omega}:\left(\exists^{\infty} n\right)\left(c \mid I_{n} \in J_{n}\right)\right\} \stackrel{\text { def }}{=}\left(I_{n}, J_{n}\right)_{n=0}^{\infty}$.

Note that small sets are of measure zero.
Bartoszyński's theorem says that every set from $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$ can be covered by the union of two small sets (cf. [Bar]).

Proposition 3.5. Suppose \mathcal{K} is a dominating normal system on ω. Then $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ is not orthogonal to $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$.

Proof. We have to show that $\mathfrak{M}_{\mathcal{X}, \mathcal{K}} \cap \mathbb{L}^{c}\left(\mathcal{X}^{\omega}\right)=\emptyset$. Suppose $H \in \mathbb{L}\left(\mathcal{X}^{\omega}\right)$ and $\left(I_{n}, J_{n}\right)_{n=0}^{\infty},\left(I_{n}^{*}, J_{n}^{*}\right)_{n=0}^{\infty}$ are two small sets which cover H. Let $Y \in[\omega]^{\omega}$
be such that each segment $\left[\mu_{Y}(n), \mu_{Y}(n+1)\right)$ contains some interval I_{k} as well as some interval I_{l}^{*}. Next find $X \in \mathcal{K}$ such that

$$
\left(\forall^{\infty} n\right)\left(\left|\left[\mu_{Y}(n), \mu_{Y}(n+1)\right) \cap X\right| \leq 1\right) .
$$

Note that then $\left|I_{n} \cap X\right| \leq 2$ and $\left|I_{n}^{*} \cap X\right| \leq 2$ for all but finitely many n. Let \underline{J}_{n} (respectively \underline{J}_{n}^{*}) be a family of all functions from $I_{n}\left(I_{n}^{*}\right)$ into \mathcal{X} which agree with some element of $J_{n}\left(J_{n}^{*}\right)$ on the set $I_{n} \backslash X\left(I_{n}^{*} \backslash X\right)$. The sets $\left(I_{n}, \underline{J}_{n}\right)_{n=0}^{\infty}$ and $\left(I_{n}^{*}, \underline{J}_{n}^{*}\right)_{n=0}^{\infty}$ are small because $\left|\underline{J}_{n}\right| \leq\left|J_{n}\right| \cdot|\mathcal{X}|^{\left|X \cap I_{n}\right|}$ and $\left|\underline{J}_{n}^{*}\right| \leq\left|J_{n}^{*}\right| \cdot|\mathcal{X}|^{\left|X \cap I_{n}^{*}\right|}$. Take $c \in \mathcal{X}^{\omega} \backslash\left(\left(I_{n}, \underline{J}_{n}\right)_{n=0}^{\infty} \cup\left(I_{n}^{*}, \underline{J}_{n}^{*}\right)_{n=0}^{\infty}\right)$. Clearly, $c *_{X} \mathcal{X}^{\omega}$ is disjoint from $\left(I_{n}, \underline{J}_{n}\right)_{n=0}^{\infty} \cup\left(I_{n}^{*}, \underline{J}_{n}^{*}\right)_{n=0}^{\infty}$, and consequently from H. Hence $\mathcal{X}^{\omega} \backslash H \notin \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$.

Corollary 3.6. If \mathcal{K} is a dominating normal system on ω then

$$
\mathfrak{M}_{\mathcal{X}, \mathcal{K}} \cap \operatorname{MEASURE}\left(\mathcal{X}^{\omega}\right) \subseteq \mathbb{L}\left(\mathcal{X}^{\omega}\right)
$$

Problem 3.7. (a) Is $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ orthogonal to $\mathbb{L}\left(\mathcal{X}^{\omega}\right)$, provided \mathcal{K} is not dominating? What if $|\mathcal{K}|<\mathfrak{d}$?
(b) Suppose $A \in \mathbb{L}\left(\mathcal{X}^{\omega}\right)$. Does there exist a countable normal system \mathcal{K} such that $A \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$? Note that the full measure analogue of Proposition 3.3 is impossible because of Corollary 3.2.
4. Notions of forcing connected with $\mathfrak{C}_{\mathcal{X}}$ and $\mathfrak{P}_{\mathcal{X}}$. In 2.5 we showed that for countable \mathcal{K} the Boolean algebra $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ as a notion of forcing is equivalent to the collapsing algebra $\operatorname{Col}(\omega, \mathfrak{c})$. Easy arguments prove that the forcing $\operatorname{BOREL}\left(\omega^{\omega}\right) / \mathfrak{C}_{\omega}$ also collapses $\check{\mathfrak{c}}$ onto ω. If \mathcal{X} is finite, however, $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{C}_{\mathcal{X}}$ becomes a nontrivial notion of forcing. Due to the Borel Determinacy we can describe this order more precisely. Every Borel set that does not belong to $\mathfrak{C}_{\mathcal{X}}$ contains a set of the form $\sigma *_{X} \mathcal{X}^{\omega}$ for some $\sigma \in \operatorname{STR}(\mathcal{X}), X \in[\omega]^{\omega}$. Such a set is actually the body of a perfect tree T on \mathcal{X} with the property that, for some $X \in[\omega]^{\omega},(\forall s \in T, \operatorname{lh}(s) \in X)\left(\operatorname{succ}_{T}(s)=\mathcal{X}\right)$. Let $\mathbb{Q} \mathcal{X}=\left\{T \subseteq \mathcal{X}^{<\omega}:\right.$ T is a perfect tree $\left.\&\left(\exists X \in[\omega]^{\omega}\right)(\forall s \in T, \operatorname{lh}(s) \in X)\left(\operatorname{succ}_{T}(s)=\mathcal{X}\right)\right\}$ be ordered by inclusion. By the above remarks we see that $\mathbb{Q} \mathcal{X}$ can be densely embedded in $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{C}_{\mathcal{X}}$. Note that $\mathbb{Q}_{\mathcal{X}}$ as an ordered set contains the Silver forcing $\mathbb{S}_{\mathcal{X}}=\{p: p$ is a function $\& \operatorname{dom}(p) \subseteq \omega \& \operatorname{rng}(p) \subseteq \mathcal{X}$ $\& \omega \backslash \operatorname{dom}(p)$ is infinite $\}$ and is contained in the Sacks perfect set forcing for \mathcal{X}^{ω}. As in those forcings, we can define orders \leq_{n} in $\mathbb{Q} \mathcal{X}$ by $T_{1} \leq_{n} T_{2}$ if and only if $T_{1} \leq T_{2}$ and the first n elements of the sets $\{m \in \omega:(\forall s \in$ $\left.\left.\mathcal{X}^{m} \cap T_{2}\right)\left(\operatorname{succ}_{T_{2}}(s)=\mathcal{X}\right)\right\}$ and $\left\{m \in \omega:\left(\forall s \in \mathcal{X}^{m} \cap T_{1}\right)\left(\operatorname{succ}_{T_{1}}(s)=\mathcal{X}\right)\right\}$ are the same. Standard arguments show the following:

Proposition 4.1. (a) If $T_{n+1} \leq_{n+1} T_{n}$ and $T_{n} \in \mathbb{Q} \mathcal{X}$ then there exists T from $\mathbb{Q} \mathcal{X}$ such that $T \leq_{n} T_{n}$ for all n.
(b) If $T \Vdash$ " $\dot{\tau} \in V$ " and $n \in \omega$ then there are $T^{\prime} \leq_{n} T$ and $A \in[V]^{|\mathcal{X}|^{n}}$ such that $T^{\prime} \Vdash$ " $\dot{\tau} \in A$ ".

Corollary 4.2. (a) $\mathbb{Q} \mathcal{X}$ satisfies Axiom A of Baumgartner $[\mathrm{Bau}]$.
(b) $\mathbb{Q} \mathcal{X} \Vdash "(\forall A \in \mathbb{L})(\exists B \in \mathbb{L} \cap V)(A \subseteq B) "$.

Remark. With every set from $\mathfrak{C}_{\mathcal{X}}$ we can associate a dense subset of $\mathbb{Q}_{\mathcal{X}}$. Namely, for $A \subseteq \mathcal{X}^{\omega}$ we put $D_{A}=\left\{T \in \mathbb{Q}_{\mathcal{X}}:[T] \cap A=\emptyset\right\}$. It is obvious that D_{A} is open dense in $\mathbb{Q} \mathcal{X}^{\text {provided }} A \in \mathfrak{C}_{\mathcal{X}}$. Moreover, one can consider the following ideal on \mathcal{X}^{ω} connected with $\mathbb{Q} \mathcal{X}$:

$$
\mathbb{I} \mathbb{Q}_{\mathcal{X}}=\left\{A \subseteq \mathcal{X}^{\omega}:(\forall T \in \mathbb{Q} \mathcal{X})\left(\exists T^{\prime} \in \mathbb{Q} \mathcal{X}, T^{\prime} \leq T\right)\left(\left[T^{\prime}\right] \cap A=\emptyset\right)\right\}
$$

An easy application of the fusion property proves that $\mathbb{I} \mathbb{Q}_{\mathcal{X}}$ is a σ-ideal of subsets of \mathcal{X}^{ω}. Clearly $\mathfrak{C}_{\mathcal{X}} \subseteq \mathbb{I} \mathbb{Q}_{\mathcal{X}}$.

We do not have any reasonable description of the algebra $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{P}_{\mathcal{X}}$. Since $\operatorname{BOREL}\left(\omega^{\omega}\right) / \mathfrak{P}_{\omega}$ collapses $\check{\mathfrak{c}}$ onto ω, the only nontrivial case here is \mathcal{X} finite. It was noted in [CRSW] that the Silver forcing $\mathbb{S}_{\mathcal{X}}$ is connected with $\mathfrak{P}_{\mathcal{X}}$ in the following way. Consider the σ-ideal determined by $\mathbb{S}_{\mathcal{X}}: \mathbb{S}_{\mathcal{X}}=\left\{A \subseteq \mathcal{X}^{\omega}:\left(\forall p \in \mathbb{S}_{\mathcal{X}}\right)\left(\exists q \in \mathbb{S}_{\mathcal{X}}, q \leq p\right)([q] \cap A=\emptyset)\right\}$ (here $[q]=\left\{c \in \mathcal{X}^{\omega}: q \subseteq c\right\}$ for $q \in \mathbb{S}_{\mathcal{X}}$. Then $\mathfrak{P}_{\mathcal{X}} \subseteq \mathbb{S}_{\mathcal{X}}$. Unfortunately, we do not know whether $\mathbb{S}_{\mathcal{X}}$ can be densely embedded in $\operatorname{BOREL}\left(\mathcal{X}^{\omega}\right) / \mathfrak{P}_{\mathcal{X}}$.
5. Cardinal coefficients. In this section we study the cardinal coefficients of the ideals $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$, especially their covering numbers. Recall first that the cardinal coefficients of $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}$ if \mathcal{K} is countable or if \mathcal{X} is infinite are as follows (cf. [Ros]).

Theorem 5.1. (a) Suppose \mathcal{K} is countable. Then

$$
\operatorname{non}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}\right)=\operatorname{non}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=\operatorname{cof}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}\right)=\operatorname{cof}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=\mathfrak{c}
$$

and

$$
\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}\right)=\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=\operatorname{add}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}\right)=\operatorname{add}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=\omega_{1}
$$

(b) $\operatorname{add}\left(\mathfrak{P}_{\omega}\right)=\operatorname{cov}\left(\mathfrak{P}_{\omega}\right)=\operatorname{add}\left(\mathfrak{C}_{\omega}\right)=\operatorname{cov}\left(\mathfrak{C}_{\omega}\right)=\omega_{1}, \operatorname{non}\left(\mathfrak{C}_{\omega}\right)=$ $\operatorname{non}\left(\mathfrak{P}_{\omega}\right)=\mathfrak{c}, \operatorname{cof}\left(\mathfrak{P}_{\omega}\right)>\mathfrak{c}$, and if $\operatorname{cov}(\mathbb{K})=\mathfrak{c}$ then $\operatorname{cof}\left(\mathfrak{C}_{\omega}\right)>\mathfrak{c}$.

If we drop the countability assumption we have the following.
Proposition 5.2. $\operatorname{add}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)$ provided for every $X \in \mathcal{K}$, $\mathcal{K} \cap \mathcal{P}(X)$ is isomorphic to \mathcal{K}. In any case, $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \geq \operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}\right)$. In particular, $\operatorname{add}\left(\mathfrak{P}_{\mathcal{X}}\right)=\operatorname{cov}\left(\mathfrak{P}_{\mathcal{X}}\right) \geq \operatorname{cov}\left(\mathfrak{C}_{\mathcal{X}}\right)$.

Remark. The extra assumption above is essential. There may exist a system \mathcal{K} such that $\operatorname{add}\left(\mathfrak{M}_{2, \mathcal{K}}^{*}\right)<\operatorname{cov}\left(\mathfrak{M}_{2, \mathcal{K}}^{*}\right)$. E.g. take a normal system \mathcal{K} such that for some $X_{1}, X_{2} \in \mathcal{K},\left|\mathcal{K} \cap \mathcal{P}\left(X_{1}\right)\right|=\omega$ but $\mathcal{K} \cap \mathcal{P}\left(X_{2}\right)=\mathcal{P}\left(X_{2}\right)$. Then $\operatorname{add}\left(\mathfrak{M}_{2, \mathcal{K}}^{*}\right)=\omega_{1}$ (cf. 5.1(a)) while it is possible that $\operatorname{cov}\left(\mathfrak{M}_{2, \mathcal{K}}^{*}\right)>\omega_{1}$ (cf. 5.11, 5.12).

Applying 3.1 and Rothberger's result saying that if \mathbb{I}, \mathbb{J} are orthogonal, translation invariant ideals on a group \mathbf{X} then $\operatorname{cov}(\mathbb{I}) \leq \operatorname{non}(\mathbb{J})(c f$. [Fre] $)$ we obtain

Proposition 5.3. If \mathcal{K} is not unbounded then $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \leq \operatorname{non}(\mathbb{K})$.
Remark. By Proposition 5.3 we know that $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \leq \operatorname{non}(\mathbb{K})$ provided $|\mathcal{K}|<\mathfrak{b}$. In Proposition 5.7 we improve this to $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \leq \mathfrak{b}$.

A double indexed sequence $\left\{X_{\xi, \nu}: \xi<\eta, \nu<\kappa\right\} \subseteq[\omega]^{\omega}$ is called a κ-support for \mathcal{K} if
(1) $(\forall X \in \mathcal{K})(\forall \nu<\kappa)(\exists \xi<\eta)\left(X_{\xi, \nu} \subseteq X\right)$,
and a special κ-support for \mathcal{K} if additionally
(2) $X_{\xi, \nu} \neq X_{\xi^{\prime}, \nu^{\prime}}$ provided $(\xi, \nu) \neq\left(\xi^{\prime}, \nu^{\prime}\right)$.

Note that if $\kappa \leq \mathfrak{c}$ then there exists a special κ-support for $[\omega]^{\omega}$ which is also a special κ-support for all \mathcal{K}.

A κ-covering system for \mathcal{K} and \mathcal{X} is a sequence of partial functions $\left\{f_{\xi, \nu}: \xi<\eta, \nu<\kappa\right\}$ such that:
(3) $\operatorname{dom}\left(f_{\xi, \nu}\right) \in[\omega]^{\omega}, \operatorname{rng}\left(f_{\xi, \nu}\right) \subseteq \mathcal{X}$,
(4) $\left\{\operatorname{dom}\left(f_{\xi, \nu}\right): \xi<\eta, \nu<\kappa\right\}$ is a κ-support for \mathcal{K},
(5) no function $c \in \mathcal{X}^{\omega}$ is such that for each $\nu<\kappa$ there is a $\xi<\eta$ with $f_{\xi, \nu} \subseteq c$.

The existence of κ-covering systems is connected with the covering number of $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ in the following way:

Lemma 5.4. There exists a κ-covering system for \mathcal{K} and \mathcal{X} if and only if $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \leq \kappa$.

Proof. Assume that $\left\{f_{\xi, \nu}: \xi<\eta, \nu<\kappa\right\}$ is a κ-covering system for \mathcal{K} and \mathcal{X}, and put $A_{\nu}=\left\{c \in \mathcal{X}^{\omega}:(\forall \xi<\eta)\left(\neg f_{\xi, \nu} \subseteq c\right)\right\}$. Then obviously $A_{\nu} \in \mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ and $\bigcup\left\{A_{\nu}: \nu<\kappa\right\}=\mathcal{X}^{\omega}$ (the last is a consequence of (5)). On the other hand, suppose $\left\{A_{\nu}: \nu<\kappa\right\} \subseteq \mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}$ is such that $\bigcup\left\{A_{\nu}: \nu<\kappa\right\}=\mathcal{X}^{\omega}$. We choose functions $c_{X, \nu} \in \mathcal{X}^{\omega}$ such that for every $X \in \mathcal{K}$ and $\nu<\kappa,\left(\mathcal{X}^{\omega} *_{X} c_{X, \nu}\right) \cap A_{\nu}=\emptyset$. Then $\left\{c_{X, \nu} \mid X: X \in \mathcal{K}, \nu<\kappa\right\}$ is a κ-covering system for \mathcal{K} and \mathcal{X}.

The easy lemma below has interesting consequences.
Lemma 5.5. Suppose $\mathcal{K}^{\prime}<\mathcal{K}$ and $\mathcal{X}^{\prime} \subseteq \mathcal{X}$. Every κ-covering system for \mathcal{K}^{\prime} and \mathcal{X}^{\prime} is a covering system for \mathcal{K} and \mathcal{X}.

Proposition 5.6. Assume that $\mathcal{K}^{\prime}<\mathcal{K}$ and $\mathcal{X}^{\prime} \subseteq \mathcal{X}$. Then

$$
\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \leq \operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}^{\prime}, \mathcal{K}^{\prime}}^{*}\right)
$$

The basic estimate of $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)$ is given by the following

Proposition 5.7. There exists a $|\mathcal{K}|^{+}$-covering system for \mathcal{K} and \mathcal{X}. Consequently, $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}\right) \leq \operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \leq|\mathcal{K}|^{+}$.

Proof. For $|\mathcal{K}|=\mathfrak{c}$ this is obvious by $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \leq \mathfrak{c}$ and 5.4. Assume that $|\mathcal{K}|<\mathfrak{c}$. Choose $f_{\alpha, X}: X \rightarrow \mathcal{X}$ for $\alpha<|\mathcal{K}|^{+}, X \in \mathcal{K}$ such that $f_{\alpha, X} \neq f_{\beta, X}$ provided $\alpha<\beta<|\mathcal{K}|^{+}$. Then clearly $\left\{f_{\alpha, X}: \alpha<|\mathcal{K}|^{+}\right.$, $X \in \mathcal{K}\}$ is a $|\mathcal{K}|^{+}$-covering system for \mathcal{K} and \mathcal{X}.

Remark. Note that the above estimate cannot be improved. If $|\mathcal{K}|=$ ω then $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=\omega_{1}$. But even if \mathcal{K} is uncountable we may have $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=|\mathcal{K}|^{+}$(compare 5.11).

Let $\mathcal{B}=\left\{S: S: \omega \rightarrow[\omega]^{<\omega} \&(\forall n \in \omega)\left(|S(n)|=2^{n}\right)\right\}$ and let $\pi:[\omega]^{<\omega}$ $\rightarrow \omega$ be a bijection. For $X \in[\omega]^{\omega}$ we define $\varphi_{X}: \omega \rightarrow[\omega]^{<\omega}$ by $\varphi_{X}(n)=$ "the set of the first 2^{n+2} elements of X ". If $X \in[\omega]^{\omega}$ and $S \in \mathcal{B}$ are such that $(\forall n)\left(\pi\left(\varphi_{X}(n)\right) \in S(n)\right)$ then we write $X \widehat{\in} S$.

The following useful lemma was proved in [CRSW].
Lemma 5.8. There exists a (Borel) function $F: \mathcal{B} \times[\omega]^{\omega} \rightarrow 2^{\omega}$ such that if $X_{1} \widehat{\in} S, X_{2} \widehat{\in} S$ and the partial functions $F\left(S, X_{1}\right)\left|X_{1}, F\left(S, X_{2}\right)\right| X_{2}$ are compatible then $X_{1}=X_{2}$.

Theorem 5.9. Suppose $|\mathcal{K}|<\operatorname{add}(\mathbb{L})$. Then there exists an ω_{1}-covering system for \mathcal{K} and 2. Consequently, for each $\mathcal{X}, \operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=\omega_{1}$.

Proof. By 5.1(a) and 5.4 we may assume that $\operatorname{add}(\mathbb{L})>\omega_{1}$. Let F be the function given by 5.8. Let $\left\{X_{\xi, \nu}: \xi<|\mathcal{K}|, \nu<\omega_{1}\right\}$ be a special ω_{1}-support for \mathcal{K}. Due to Bartoszyński's well known characterization of $\operatorname{add}(\mathbb{L})($ cf. [Fre] $)$ we find $\mathcal{L} \in[\mathcal{B}]^{\omega}$ such that $(\forall \xi<|\mathcal{K}|)\left(\forall \nu<\omega_{1}\right)\left(\exists S_{\xi, \nu} \in\right.$ $\mathcal{L})\left(X_{\xi, \nu} \widehat{\in} S_{\xi, \nu}\right)$. For each ξ and ν put $f_{\xi, \nu}=F\left(S_{\xi, \nu}, X_{\xi, \nu}\right) \mid X_{\xi, \nu}$. To show that $\left\{f_{\xi, \nu}: \xi<|\mathcal{K}|, \nu<\omega_{1}\right\}$ is an ω_{1}-covering system for \mathcal{K} and 2 we should verify the condition (5) only. But assuming that $c \in 2^{\omega}$ is a couterexample for (5), we have $\left(\forall \nu<\omega_{1}\right)(\exists \xi<|\mathcal{K}|)\left(f_{\xi, \nu} \subseteq c\right)$. Since \mathcal{L} is countable, we find different $\nu, \mu<\omega_{1}$ and suitable $\xi, \vartheta<|\mathcal{K}|$ such that $S_{\xi, \nu}=S_{\vartheta, \mu}=S$. Then $F\left(S, X_{\xi, \nu}\right) \mid X_{\xi, \nu}$ and $F\left(S, X_{\vartheta, \mu}\right) \mid X_{\vartheta, \mu}$ are included in c. The properties of F give that $X_{\xi, \nu}=X_{\vartheta, \mu}$, contrary to condition (2) of a special ω_{1}-support. The last part of the theorem follows from 5.4 and 5.5.

Recall that Lemma 5.8 was applied in [CRSW] to show (after a slight reformulation) the following

Theorem 5.10. There exists a $\operatorname{cof}(\mathbb{L})^{+}$-covering system for $[\omega]^{\omega}$ and 2. Consequently, for each \mathcal{X} and $\mathcal{K}, \operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right) \leq \operatorname{cof}(\mathbb{L})^{+}$.

We have no reasonable lower bound for $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)$ but it can be large.
An almost disjoint family $\left\{A_{\alpha}: \alpha<\kappa\right\} \subseteq[\omega]^{\omega}$ has the Uniformization Property (UP) if for every system of functions $f_{\alpha}: A_{\alpha} \rightarrow 2$ there is a function $f: \bigcup\left\{A_{\alpha}: \alpha<\kappa\right\} \rightarrow 2$ such that for every $\alpha<\kappa$ we have $f_{\alpha} \subseteq^{*} f$.

Shelah showed that the existence of uncountable almost disjoint families with UP is consistent with ZFC (cf. [She]).

Proposition 5.11. Assume that there exists an almost disjoint family of cardinality κ with UP. Then for every cardinal $\lambda \leq \kappa$ there exists a normal system \mathcal{K} such that $|\mathcal{K}|=\lambda$ and $\operatorname{cov}\left(\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*}\right)=\lambda^{+}$. In particular, $\operatorname{cov}\left(\mathfrak{P}_{2}\right)>\kappa$.

As we saw in Section $4, \mathfrak{C}_{\mathcal{X}} \subseteq \mathbb{I}_{\mathcal{X}}$. Hence $\operatorname{cov}\left(\mathbb{I}_{\mathcal{X}}\right) \leq \operatorname{cov}\left(\mathfrak{C}_{\mathcal{X}}\right)$. Since $\mathbb{Q}_{\mathcal{X}}$ satisfies Baumgartner's Axiom A we obtain

Proposition 5.12. PFA implies $\operatorname{cov}\left(\mathfrak{C}_{\mathcal{X}}\right)>\omega_{1}$.
Remark. The above result was formulated by Recław for $\mathfrak{P}_{\mathcal{X}}$. Proposition 5.12 strengthens his observation. Let us also recall that MA does not imply $\operatorname{cov}\left(\mathfrak{P}_{\mathcal{X}}\right)>\omega_{1}$. This is a result of Steprāns (cf. [CRSW]).

Finally, we show that the covering numbers of the ideals $\mathfrak{C}_{\mathcal{X}}$ can be different for different finite \mathcal{X}.

Theorem 5.13. Suppose $k \geq 2$. Then

$$
\operatorname{CON}\left(\mathrm{ZFC}+\operatorname{cov}\left(\mathfrak{P}_{k}\right)=\operatorname{cov}\left(\mathfrak{C}_{k}\right)=\omega_{2}=\mathfrak{c}+(\forall j>k)\left(\operatorname{cov}\left(\mathfrak{C}_{j}\right)=\omega_{1}\right)\right) .
$$

Proof. Suppose that $V \vDash \mathrm{CH}$. Let $\left\langle\mathbb{P}_{\alpha}: \alpha<\omega_{2}\right\rangle$ be a countable support iteration of forcings \mathbb{Q}_{k}. Then $\mathbb{P}_{\omega_{2}}$ preserves cardinal numbers and $\Vdash_{\omega_{2}}$ " $\mathfrak{c}=\omega_{2}$ ". Suppose that for $\alpha<\omega_{1}$ we have a $\mathbb{P}_{\omega_{2}}$-name \dot{A}_{α} such that $\Vdash_{\omega_{2}} " \dot{A}_{\alpha} \in \mathfrak{C}_{k}$ ". Note that each set from \mathfrak{C}_{k} is determined by a function from $[\omega]^{\omega}$ into $\operatorname{STR}(k)$. Thus we have $\mathbb{P}_{\omega_{2}}$-names $\dot{\tau}_{\alpha}$ such that for each $\alpha<\omega_{1}$,

$$
\Vdash_{\omega_{2}} " \dot{\tau}_{\alpha}:[\omega]^{\omega} \rightarrow \operatorname{STR}(k) \&\left(\forall X \in[\omega]^{\omega}\right)\left(k^{\omega} *_{X} \dot{\tau}_{\alpha}(X) \cap \dot{A}_{\alpha}=\emptyset\right) " .
$$

By standard arguments we find $\beta<\omega_{2}$ such that the sequence $\left\langle\dot{\tau}_{\alpha}\right|\left([\omega]^{\omega} \cap\right.$ $\left.\left.V^{\mathbb{P}_{\beta}}\right): \alpha<\omega_{1}\right\rangle$ belongs to $V^{\mathbb{P}_{\beta}}$. Let \dot{c}_{β} be a \mathbb{P}_{β}-name such that \Vdash_{β} " \dot{c}_{β} is a name for the \mathbb{Q}_{k}-generic real". Then obviously

$$
\Vdash_{\beta} " \mathbb{Q}_{k} \Vdash\left(\forall \alpha<\omega_{1}\right)\left(\exists X \in[\omega]^{\omega} \cap V^{\mathbb{P}_{\beta}}\right)\left(\dot{c}_{\beta} \in k^{\omega} *_{X} \dot{\tau}_{\alpha}(X)\right) "
$$

and consequently $\Vdash_{\omega_{2}} " \dot{c}_{\beta} \notin \bigcup_{\alpha<\omega_{1}} \dot{A}_{\alpha}$ ". We have thus proved $\Vdash_{\omega_{2}} " \operatorname{cov}\left(\mathfrak{C}_{k}\right)$ $=\omega_{2}$ ". To show that $\Vdash_{\omega_{2}} "(\forall i>k)\left(\operatorname{cov}\left(\mathfrak{C}_{i}\right)=\omega_{1}\right)$ " we have to strengthen 4.1(b).

A tree $T \subseteq \omega^{<\omega}$ is a k-tree if $(\forall s \in T)\left(\left|\operatorname{succ}_{T}(s)\right| \leq k\right)$. A notion of forcing \mathbb{P} has the k-localization property if

$$
\mathbb{P} \Vdash\left(\forall f \in \omega^{\omega}\right)(\exists T \in V)(" T \text { is a } k \text {-tree on } \omega " \& f \in[T]) .
$$

A slight modification of Theorem 2.3 of [NRo] shows that every countable support iteration of forcings \mathbb{Q}_{k} has the k-localization property. Hence, in $V^{\mathbb{P}_{\omega_{2}}}$, if $i>k$ then i^{ω} can be covered by $\omega_{1} k$-trees. Note that if $T \subseteq i^{<\omega}$ is a k-tree then $[T] \in \mathfrak{C}_{i}$. Consequently, $\Vdash_{\omega_{2}} " \operatorname{cov}\left(\mathfrak{C}_{i}\right)=\omega_{1} "$ for every $i>k$.

Remark. Similarly to the above theorem one can build a model for $(\forall i \leq k)\left(\operatorname{cov}\left(\mathfrak{C}_{i}\right)=\omega_{2}\right) \&(\forall i>k)\left(\operatorname{cov}\left(\mathfrak{C}_{i}\right)=\omega_{1}\right)$. But we do not know whether in these models $\operatorname{cov}\left(\mathfrak{P}_{k+1}\right)=\omega_{1}$ holds true. The problem "Can the covering numbers of the ideals $\mathfrak{P} \mathcal{X}$ be different for distinct \mathcal{X} " remains open.
6. Compact sets from ideals. Let $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$ denote the space of all compact subsets of \mathcal{X}^{ω} equipped with the Vietoris topology. The subbase of this topology consists of all sets $U(G)=\left\{F \in \mathcal{K}\left(\mathcal{X}^{\omega}\right): F \subseteq G\right\}, V(G)=$ $\left\{F \in \mathcal{K}\left(\mathcal{X}^{\omega}\right): F \cap G \neq \emptyset\right\}$ for open $G \subseteq \mathcal{X}^{\omega}$ (cf. [Kur]).

A recent result of Kechris, Louveau and Woodin (cf. [KLW]) shows that if \mathbb{I} is a σ-ideal on a Polish space \mathbf{X} then its trace on compact sets is either very simple (Π_{2}^{0}) or very complicated (at least Π_{1}^{1}). The compact sets of uniqueness form a Π_{1}^{1}-complete set (cf. [KLW]). The strongly porous compact sets (cf. [Lar]), the nowhere dense compact sets and Lebesgue null sets (cf. [KLW]) are Π_{2}^{0} in $\mathcal{K}(\mathbb{R})$. For Mycielski ideals generated by countable systems a similar result was proved by Balcerzak.

Theorem 6.1 [Balcerzak, [BRo]]. Suppose \mathcal{K} is countable. Then $\mathfrak{M}_{\mathcal{X}, \mathcal{K}} \cap$ $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$ and $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ are Π_{2}^{0}, hence comeager subsets of $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$.

Since each system \mathcal{K} is the union of $|\mathcal{K}|$ countable systems, putting 2.1 and 6.1 together we get

Corollary 6.2. (a) If $|\mathcal{K}|<\operatorname{add}(\mathbb{K})$ then $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ (and hence $\left.\mathfrak{M}_{\mathcal{X}, \mathcal{K}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)\right)$ is comeager in $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$.
(b) If $|\mathcal{K}|<\operatorname{cov}(\mathbb{K})$ then $\mathfrak{M}_{\mathcal{X}, \mathcal{K}}^{*} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ (and hence $\left.\mathfrak{M}_{\mathcal{X}, \mathcal{K}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)\right)$ is nonmeager in $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$.

We now describe the traces of $\mathfrak{C}_{\mathcal{X}}$ and of $\mathfrak{P}_{\mathcal{X}}$ on compact sets. The following easy technical lemma was mentioned in [BRo].

Lemma 6.3. If $A \in \mathcal{K}\left(\mathcal{X}^{\omega}\right), X \in[\omega]^{\omega}$ and τ is a winning strategy for the second player in the game $\Gamma_{\mathcal{X}}(A, X)$, then there is an integer $N>0$ such that for each $c \in \mathcal{X}^{\omega}$ with $(\forall n<N, n \in X)(c(n)=\tau(c \mid n))$ we have $c \notin A$.

THEOREM 6.4. $\mathfrak{C}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right), \mathfrak{P}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right) \in \Pi_{1}^{1} \backslash \Sigma_{1}^{1}$ and both are meager subsets of $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$.

Proof. First we show that $\mathfrak{C}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ and $\mathfrak{P}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ are coanalytic. For $A \in \mathcal{K}\left(\mathcal{X}^{\omega}\right)$, applying 6.3, we have

$$
A \in \mathfrak{C}_{\mathcal{X}}
$$

$$
\begin{aligned}
& \equiv\left(\forall X \in[\omega]^{\omega}\right)(\exists \sigma \in \mathrm{STR})(\forall \tau \in \mathrm{STR})\left(\tau *_{X} \sigma \notin A\right) \\
& \equiv\left(\forall X \in[\omega]^{\omega}\right)(\exists N \in \omega)\left(\exists \sigma: \mathcal{X}^{<N} \rightarrow \mathcal{X}\right)(\forall \tau \in \mathrm{STR})\left(\tau *_{X \cap N} \sigma \notin A\right),
\end{aligned}
$$

and similarly for $\mathfrak{P}_{\mathcal{X}}$:

$$
A \in \mathfrak{P} \mathcal{X} \equiv\left(\forall X \in[\omega]^{\omega}\right)(\exists N \in \omega)\left(\exists d \in \mathcal{X}^{N}\right)\left(\forall c \in \mathcal{X}^{\omega}\right)\left(c *_{X \cap N} d \notin A\right) .
$$

The last formulas represent Π_{1}^{1} subsets of $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$.
To prove $\mathfrak{C}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right) \in \mathbb{K}\left(\mathcal{K}\left(\mathcal{X}^{\omega}\right)\right)$, note that $\mathfrak{C}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ has the Baire property (since Π_{1}^{1} implies the Baire property). So, it is enough to show

Claim. If $G \in \Pi_{2}^{0}\left(\mathcal{K}\left(\mathcal{X}^{\omega}\right)\right)$ is nonmeager then $G \backslash \mathfrak{C}_{\mathcal{X}} \neq \emptyset$.
Suppose that $G=\bigcap_{n \in \omega} G_{n}$ is dense in $W=V\left(\left[s_{0}\right]\right) \cap \ldots \cap V\left(\left[s_{k-1}\right]\right) \cap$ $U\left(\bigcup_{i<k}\left[s_{i}\right]\right), s_{0}, \ldots, s_{k-1} \in \mathcal{X}^{n_{0}}$, and G_{n} are open. Construct inductively a perfect tree $T \subseteq \mathcal{X}^{<\omega}$ and a set $X=\left\{n_{0}, n_{1}, \ldots\right\}$ as follows: $T \cap \mathcal{X}^{n_{0}}=$ $\left\{s_{0}, \ldots, s_{k-1}\right\}$. Having defined $n_{i} \in \omega$ and $T \cap \mathcal{X}^{n_{i}}$ consider $U(\bigcup\{[s]: s \in$ $\left.\left.T \cap \mathcal{X}^{n_{i}}\right\}\right) \cap \bigcap\left\{V\left(\left[s^{\wedge} x\right]\right): s \in T \cap \mathcal{X}^{n_{i}}, x \in \mathcal{X}\right\}$. It is an open subset of W, G_{i} is dense in W, hence, for $s \in T \cap \mathcal{X}^{n_{i}}$ and $x \in \mathcal{X}$ there are nonempty $t(s, x) \subseteq \mathcal{X}^{<\omega}$ such that $s^{\wedge} x \subseteq \bigcap t(s, x)$ and $U(\bigcup\{[t]: t \in t(s, x), s \in T \cap$ $\left.\left.\mathcal{X}^{n_{i}}, x \in \mathcal{X}\right\}\right) \cap \bigcap\left\{V([t]): t \in t(s, x), s \in T \cap \mathcal{X}^{n_{i}}, x \in \mathcal{X}\right\}$ is contained in G_{i}. Clearly, we may assume that $\operatorname{lh}(t)=n_{i+1}$ for all $t \in t(s, x), s \in T \cap \mathcal{X}^{n_{i}}$, $x \in \mathcal{X}$. Put $T \cap \mathcal{X}^{n_{i+1}}=\left\{t: t \in t(s, x), s \in T \cap \mathcal{X}^{n_{i}}, x \in \mathcal{X}\right\}$. Our construction provides $[T] \in G$. Moreover, for each $n \in X$ and $s \in T \cap \mathcal{X}^{n}$ we have $\operatorname{succ}_{T}(s)=\mathcal{X}$. Hence $[T] \notin \mathfrak{C}_{\mathcal{X}}$.

It follows from the above that also $\mathfrak{P}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right) \in \mathbb{K}\left(\mathcal{K}\left(\mathcal{X}^{\omega}\right)\right)$.
Now, if $\mathfrak{C}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ or $\mathfrak{P}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ were analytic then it would be of type Π_{2}^{0} (due to the result of Kechris, Louveau and Woodin mentioned earlier). But $\mathfrak{C}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ and $\mathfrak{P} \mathcal{X} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ are dense in $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$ (they contain all finite sets) and therefore they would be comeager in $\mathcal{K}\left(\mathcal{X}^{\omega}\right)$, contrary to what we have proved.

As an application of 6.4 consider a mapping $\Phi: \mathcal{P}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right) \rightarrow \mathcal{P}\left(\mathcal{X}^{\omega}\right)$ given by the formula $\Phi(A)=\left\{c \in \mathcal{X}^{\omega}: A_{c} \notin \mathfrak{C}_{\mathcal{X}}\right\}$, where A_{c} is the vertical section of A at c.

Proposition 6.5. (a) $\Phi\left[\Sigma_{1}^{0}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right)\right]=\Sigma_{1}^{0}\left(\mathcal{X}^{\omega}\right)$.
(b) $\Phi\left[\Pi_{1}^{0}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right)\right]=\Phi\left[\Sigma_{3}^{0}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right)\right]=\Sigma_{1}^{1}\left(\mathcal{X}^{\omega}\right)$.
(c) $\Phi\left[\operatorname{BOREL}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right)\right] \subseteq \Sigma_{2}^{1}\left(\mathcal{X}^{\omega}\right)$.

Proof. (a) and (c) are obvious.
(b) Suppose $A \in \Pi_{2}^{0}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right)$. Then

$$
A_{c} \notin \mathfrak{C}_{\mathcal{X}} \equiv\left(\exists K \in \mathcal{K}\left(\mathcal{X}^{\omega}\right)\right)\left(K \notin \mathfrak{C}_{\mathcal{X}} \& K \subseteq A_{c}\right)
$$

The formula $K \subseteq A_{c}$ represents Π_{2}^{0}-subsets of $\mathcal{K}\left(\mathcal{X}^{\omega}\right) \times \mathcal{X}^{\omega}$. Apply 6.4 to obtain $\Phi(A) \in \Sigma_{1}^{1}\left(\mathcal{X}^{\omega}\right)$. Since $\Phi\left(\bigcup_{n \in \omega} A_{n}\right)=\bigcup_{n \in \omega} \Phi\left(A_{n}\right)$ we have shown $\Phi\left[\Sigma_{3}^{0}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right)\right] \subseteq \Sigma_{1}^{1}\left(\mathcal{X}^{\omega}\right)$. Suppose now that $B \in \Sigma_{1}^{1}\left(\mathcal{X}^{\omega}\right)$. 6.4 implies that $\mathfrak{C}_{\mathcal{X}} \cap \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ is Π_{1}^{1}-complete (cf. [KLW]) and therefore we can find a continuous function $f: \mathcal{X}^{\omega} \rightarrow \mathcal{K}\left(\mathcal{X}^{\omega}\right)$ such that $f^{-1}\left[\mathfrak{C}_{\mathcal{X}}\right]=\mathcal{X}^{\omega} \backslash B$. Put $A=\left\{(c, d) \in \mathcal{X}^{\omega} \times \mathcal{X}^{\omega}: d \in f(c)\right\} \in \Pi_{1}^{0}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right)$. Clearly $\Phi(A)=B$.

Problem 6.6. Describe $\Phi\left[\operatorname{BOREL}\left(\mathcal{X}^{\omega} \times \mathcal{X}^{\omega}\right)\right]$.

Note that an analogous mapping may be defined for every σ-ideal. The ideals \mathbb{L} and \mathbb{K} are regular from that standpoint since for them $\Phi\left[\Sigma_{\alpha}^{0}\left(\mathcal{X}^{\omega} \times\right.\right.$ $\left.\left.\mathcal{X}^{\omega}\right)\right]=\Sigma_{\alpha}^{0}\left(\mathcal{X}^{\omega}\right)$ for $\alpha<\omega_{1}$.

Acknowledgements. My thanks are due to Janusz Pawlikowski for his help in the preparation of this paper.

REFERENCES

[Bal] M. Balcerzak, On σ-ideals having perfect members in all perfect sets, preprint.
[BRo] M. Balcerzak and A. Rosłanowski, On Mycielski ideals, Proc. Amer. Math. Soc. 110 (1990), 243-250.
[Bar] T. Bartoszyński, On covering properties of the real numbers by null sets, Pacific J. Math. 131 (1988), 1-12.
[Bau] J. E. Baumgartner, Iterated forcing, in: Surveys in Set Theory, A. R. D. Mathias (ed.), London Math. Soc. Lecture Note Ser. 87, Cambridge Univ. Press, 1983, 1-59
[CRSW] J. Cichoń, A. Rosłanowski, J. Steprāns and B. Wȩglorz, Combinatorial properties of the ideal \mathfrak{P}_{2}, J. Symbolic Logic 58 (1993), 42-54.
[Fre] D. Fremlin, Cichoń's diagram, Séminaire Initiation à l'Analyse, G. Choquet, M. Rogalski, J. Saint Raymond, 23e année, n ${ }^{0} 5,13$ pp.
[Jec] T. Jech, Set Theory, Academic Press, New York, 1978.
[KLW] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288.
[Kur] K. Kuratowski, Topology, Vols. I, II, Academic Press, New York, 1966, 1968.
[Lar] L. Larson, Typical compact sets in the Hausdorff metric are porous, Real Anal. Exchange 13 (1987-88), 116-118.
[Men] C. G. Mendez, On the Sierpiński-Erdős and the Oxtoby-Ulam theorems for some new sigma-ideals of sets, Proc. Amer. Math. Soc. 72 (1978), 182-188.
[Myc] J. Mycielski, Some new ideals of sets on the real line, Colloq. Math. 20 (1969), 71-76.
[NRo] L. Newelski and A. Rosłanowski, The ideal determined by the unsymmetric game, Proc. Amer. Math. Soc. 117 (1993), 823-831.
[Ros] A. Rosłanowski, On game ideals, Colloq. Math. 59 (1990), 159-168.
[She] S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982, 57-67.
[Vau] J. E. Vaughan, Small uncountable cardinals and topology (with an appendix by S. Shelah), in: Open Problems in Topology, G. M. Reed and J. van Mill (eds.), North-Holland, Amsterdam, 1990, 195-218.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROCEAW
PL. GRUNWALDZKI 2/4
50-384 WROCEAW, POLAND

