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MYCIELSKI IDEALS GENERATED BY UNCOUNTABLE SYSTEMS

BY

A. R O S  L A N O W S K I (WROC LAW)

1. Introduction. In the theory of infinite games one can treat sets for
which the second player has a winning strategy as small sets. Usually we
want small sets to be closed under some operations, e.g. to form an ideal.
To obtain a good notion of smallness we have to consider either a lot of
games or special kinds of games. Mycielski ideals introduced in [Myc] are
based on the first idea.

Let X be a countable set with at least two elements.
For A ⊆ Xω and X ∈ [ω]ω let ΓX (A,X) denote the infinite game between

two players, I and II, in which both players choose the values of a sequence
c ∈ Xω. Player I chooses c(n) for n 6∈ X, Player II chooses c(n) if n ∈ X.
Player I wins if and only if c ∈ A.

Denote by STR(X ) the family of all functions σ : X<ω → X . Elements
of STR(X ) are strategies in games ΓX (A,X). Note that STR(X ) can be
equipped with the product topology and then, since X<ω is countable, it
is homeomorphic to the space Xω. For σ, τ ∈ STR(X ) and X ∈ [ω]ω let
σ ∗X τ ∈ Xω be the result of the game ΓX (A,X) when Player I follows the
strategy σ and II follows τ , i.e.

σ ∗X τ(n) =
{

σ((σ ∗X τ)|n) if n 6∈ X,
τ((σ ∗X τ)|n) if n ∈ X.

If we put d(s) = d(lh(s)) for d ∈ Xω and s ∈ X<ω then the space Xω

becomes a closed subset of STR(X ). Hence the operation ∗X is also defined
for elements of Xω. Note that the function ∗X is continuous. By σ∗XXω and
Xω ∗X τ we will denote the images of Xω under the respective restrictions
of the function ∗X . These are the sets of all results of the game determined
by X, in which the first (second) player uses the strategy σ (τ respectively).

A family K ⊆ [ω]ω is said to be a normal system if for every X ∈ K
there exist X1, X2 ∈ K such that X1, X2 ⊆ X and X1 ∩X2 = ∅.

The Mycielski ideal MX ,K generated by a normal system K is the family
of all sets A ⊆ Xω such that the second player has a winning strategy in
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every game ΓX (A,X), X ∈ K. In other words,

MX ,K = {A ⊆ Xω : (∀X ∈ K)(∃τ ∈ STR(X ))((Xω ∗X τ) ∩A = ∅)} .

Theorem 1.1 [Mycielski, [Myc]]. If K is a countable normal system then
MX ,K is a σ-ideal such that :

(a) there exists a set A ∈ MX ,K such that Xω \ A is meager and has
Lebesgue measure zero,

(b) if A ∈ MX ,K then there exists B ∈ MX ,K∩Π0
2 (Xω) such that A ⊆ B,

(c) there exist c disjoint , closed subsets of Xω that do not belong to MX ,K,
(d) if X is equipped with a group structure then MX ,K is invariant under

translations in the product group Xω.

The proof of Theorem 1.1 suggested the following simplified versions of
Mycielski ideals. Let

M∗
X ,K = {A ⊆ Xω : (∀X ∈ K)(∃d ∈ Xω)((Xω ∗X d) ∩A = ∅)} .

Obviously M∗
X ,K ⊆ MX ,K and the inclusion is proper. Also Theorem 1.1

holds for the ideal M∗
X ,K. For every normal system K, MX ,K and M∗

X ,K are
σ-ideals on Xω satisfying condition (d) of 1.1.

So far the ideals MX ,K and M∗
X ,K have been studied mainly either for

countable K (cf. [Myc], [Men] and [BRo]) or for K = [ω]ω (cf. [Ros] and
[CRSW]). This paper concentrates on uncountable K.

The ideals MX ,[ω]ω and M∗
X ,[ω]ω are denoted by CX and PX , respectively.

From now on, unless stated otherwise, X is assumed to be finite. K and
K′ stand for normal systems. K(Xω) and L(Xω) are the σ-ideals of meager
and Lebesgue null subsets of Xω (the topology and the Lebesgue measure
in Xω are the product topology and the product measure in Xω arising
from the discrete topology and the measure weighting every point in X with
1/|X |). For the cardinal characteristics of the continuum used in this paper
such as the unbounded number b, the dominating number d, the refinement
number r and others, see [Fre] and [Vau].

2. Relations between MX ,K and MX ,K′ . Here, and in the next sec-
tion, we continue the study from [BRo] of the dependence of MX ,K on the
generating system K. We begin with the following easy observation.

Proposition 2.1. If {Kα : α < κ} is a family of normal systems then
K =

⋃
{Kα : α < κ} is a normal system and MX ,K =

⋂
{MX ,Kα : α < κ}.

Two ideals of subsets of Xω are orthogonal if Xω can be covered by two
sets, each from one ideal.

Proposition 2.2. The ideals MX ,K and MX ,K′ are orthogonal if and
only if X ∩X ′ 6= ∅ for every X ∈ K, X ′ ∈ K′.
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P r o o f. Assume that MX ,K and MX ,K′ are orthogonal but X ∩X ′ = ∅
for some X ∈ K, X ′ ∈ K′. We find sets A ∈ MX ,K and B ∈ MX ,K′ such
that A ∪ B = Xω. Let τ, τ ′ ∈ STR(X ) be winning strategies for Player II
in the games ΓX (A,X) and ΓX (B,X ′) respectively. Let c = τ ′ ∗X τ . Then
c 6∈ A ∪ B, because c is a result of the games ΓX (A,X) and ΓX (B,X ′) in
which Player II uses strategies τ and τ ′ respectively. This contradicts our
choice of A and B. The converse implication was actually shown in the
proof of Lemma 1.1 of [BRo]. It was proved there that if X ∩ X ′ 6= ∅ for
every X ∈ K, X ′ ∈ K′ then for every x ∈ X the sets

A = {c ∈ Xω : (∀X ∈ K)(∃n ∈ X)(c(n) = x)} , B = Xω \A

witness the orthogonality of MX ,K and MX ,K′ .

For systems K and K′ we write K′ < K whenever each element of K
contains an element of K′.
Proposition 2.3. MX ,K′ ⊆ MX ,K if and only if K′ < K.

P r o o f. First note that Player II has a winning strategy in ΓX (A,X)
provided X ′ ⊆ X and he can win ΓX (A,X ′). Hence MX ,K′ ⊆ MX ,K if
K′ < K. On the other hand, if there is an X ∈ K such that X contains no
element of K′ then the set

A = {c ∈ Xω : (∀X ′ ∈ K′)(∃n ∈ X ′)(c(n) = x)}
from the previous proof belongs to MX ,K′ \MX ,K (here x is a fixed element
of X ).

Corollary 2.4. (a) For any cardinal κ ≤ c, the intersection of κ My-
cielski ideals generated by systems of size κ is a Mycielski ideal generated by
a system of size κ.

(b) For each normal system K with |K| < r there exists a countable
normal system K′ such that the ideals MX ,K and MX ,K′ are orthogonal.

(c) There exists a normal system K of size r such that no Mycielski ideal
is orthogonal to MX ,K.

P r o o f. (a) This is an immediate consequence of 2.1.
(b) This is a slight generalization of Lemma 1.1 from [BRo]. If K is of

size less than r and L ⊆ ω has the property that (∀X ∈ K)(L∩X 6= ∅) then
there exist L0, L1 ∈ [L]ω such that (∀X ∈ K)(L0 ∩ X 6= ∅ 6= L1 ∩ X) and
L0 ∩ L1 = ∅. Hence we can construct a countable normal system K′ such
that X ∩X ′ 6= ∅ for all X ′ ∈ K′ and X ∈ K. Applying Proposition 2.2 we
see that MX ,K and MX ,K′ are orthogonal.

(c) Let K ⊆ [ω]ω be a family realizing the minimum in the definition of r.
Let K be a normal system containing K such that |K| = r. Let K′ be another
normal system on ω. Choose disjoint X0, X1 from K′. The properties of K

provide a set X ∈ K ⊆ K such that either X ⊆∗ X0 or X ⊆∗ ω \X0. In the
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first case find X ′ ⊆ X1, X ′ ∈ K′ with X ∩X ′ = ∅. In the second case there
is an X ′ ⊆ X0, X ′ ∈ K′ with the same property. Hence, by Proposition 2.2,
MX ,K and MX ,K′ cannot be orthogonal.

R e m a r k. In the results above one can put M∗
X ,K in place of MX ,K.

It is interesting to know whether Mycielski ideals are similar to one
another. Ideals generated by countable systems seem to be almost identical
from the point of view of their structure.

Let BOREL(Xω) be the family of all Borel subsets of Xω.

Theorem 2.5. For every countable system K the completion of the Bool-
ean algebra BOREL(Xω)/MX ,K is isomorphic to the collapsing algebra
Col(ω, c).

P r o o f. Recall that if a notion of forcing P of cardinality c satisfies P 

“č is countable” then RO(P) = Col(ω, c) (Theorem 25.11 of [Jec]). Since
BOREL(Xω)/MX ,K has size continuum it suffices to show that it collapses
č on ω. For X ∈ K and α < c choose cα,X ∈ Xω such that cα,X |X 6= cβ,X |X
provided α 6= β. Put Dα = {[Xω ∗X cα,X ] : X ∈ K}. Note that the
families Dα are predense subsets of BOREL(Xω)/MX ,K. Indeed, assume
that B 6∈ MX ,K is a Borel subset of Xω. By Borel Determinacy we find
X ∈ K and σ ∈ STR(X ) such that σ ∗X Xω ⊆ B. Choose disjoint subsets
of X, say X0, X1 ∈ K. Let σ′ ∈ STR(X ) be defined by

σ′(s) =
{

σ(s), lh(s) 6∈ X0,
cα,X0(lh(s)), lh(s) ∈ X0.

Then σ′ ∗X1 Xω ⊆ B ∩ (Xω ∗X0 cα,X0) and B ∩ (Xω ∗X0 cα,X0) 6∈ MX ,K. It
is easy to find a BOREL(Xω)/MX ,K-name τ̇ such that 
 “τ̇ : č → K and
τ̇(α) = X implies [Xω ∗X cα,X ] ∈ Γ̇”, where Γ̇ is a name for the generic set.
Since the sets Xω ∗X cα,X (with fixed X) are disjoint, 
 “τ̇ is one-to-one”.
The proof is complete.

Problem 2.6. Can there exist countable normal systems K and K′ such
that the Boolean algebras BOREL(Xω)/MX ,K and BOREL(Xω)/MX ,K′

are not isomorphic, or the algebras P(Xω)/MX ,K and P(Xω)/MX ,K′ are
not isomorphic?

In the presence of the continuum hypothesis we have the following the-
orem.

Theorem 2.7 [Mendez [Men], Balcerzak [Bal]]. Assume CH. Suppose
that K and K′ are countable. Then

(a) there exists a bijection f : Xω → Xω such that f = f−1 and for
every set A ⊆ Xω, f [A] ∈ MX ,K if and only if A ∈ K,
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(b) there exists a bijection g : Xω → Xω such that for every set A ⊆ Xω,
g[A] ∈ MX ,K′ if and only if A ∈ MX ,K.

3. Relation of MX ,K to K(Xω) and L(Xω). In Theorem 1.1 we men-
tioned the result of Mycielski that for countable K the ideal MX ,K is orthog-
onal to the ideal K(Xω)∩L(Xω). Actually Mycielski’s argument shows that
every set in MX ,K can be covered by a comeager set from MX ,K if |K| <
add(K) and by a conull set from MX ,K if |K| < add(L), and that the same is
true for the ideal M∗

X ,K. Hence, for small uncountable generating systems,
the ideals M∗

X ,K are orthogonal to the ideal K(Xω) (respectively L(Xω)).
Below we describe the systems K for which the ideals MX ,K and K(Xω) are
orthogonal and we give some information on the orthogonality of MX ,K and
L(Xω). Recall first that if X is infinite then each ideal M∗

X ,K is orthogonal
to K(Xω)∩L(Xω) (cf. [Ros]). For finite X the situation is more complicated.

For X ∈ [ω]ω let µX ∈ ωω be an increasing enumeration of X.
We will say that a family F ⊆ [ω]ω is unbounded if

(∀Y ∈ [ω]ω)(∃X ∈ F)(∃∞n)([µY (n), µY (n + 1)) ∩X = ∅) .

A family F ⊆ [ω]ω will be called dominating whenever

(∀Y ∈ [ω]ω)(∃X ∈ F)(∀∞n)(|[µY (n), µY (n + 1)) ∩X| ≤ 1) .

Note that F is unbounded if and only if {µX : X ∈ F} is an unbounded
family in (ωω,≤∗). The notion of a dominating family in [ω]ω is close to
that of a dominating family in (ωω,≤∗). Namely, {µX : X ∈ F} is a domi-
nating family in ωω provided F is dominating. Moreover, every dominating
family in ωω naturally produces a dominating family in [ω]ω (of the same
cardinality).

Theorem 3.1. Suppose that X is a finite set. Then the ideal MX ,K
(M∗

X ,K) is not orthogonal to K(Xω) if and only if the system K is unbounded.

P r o o f. (⇒) Suppose K is not an unbounded family and Y ∈ [ω]ω is a
witness for it. Fix x0 ∈ X . Define

G = {c ∈ Xω : (∃∞n)(c|[µY (n), µY (n + 1)) ≡ x0)} ∈ Π0
2 (Xω) .

Clearly, G is dense in Xω and hence it is comeager in Xω. We show that G
belongs to M∗

X ,K. Let X ∈ K and let d ∈ Xω be such that d(n) 6= x0 for
n ∈ X. Suppose c ∈ Xω ∗X d. Then X ∩ [µY (n), µY (n + 1)) 6= ∅ implies
c|[µY (n), µY (n + 1)) 6≡ x0. Hence c 6∈ G and (Xω ∗X d) ∩G = ∅.

(⇐) Suppose K is unbounded and G ∈ Π0
2 (Xω) is dense in Xω. We prove

that G 6∈ MX ,K. Due to finiteness of X we find a set Y ∈ [ω]ω and sequences
sn : [µY (n), µY (n + 1)) → X , n ∈ ω, such that {c ∈ Xω : (∃∞n)(sn ⊆ c)}
⊆ G. We find X ∈ K for which infinitely often [µY (n), µY (n + 1)) ∩X = ∅.
For this X the first player can win the game ΓX (G, X): the winning strategy
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for him may be described by “play according to sn whenever [µY (n),
µY (n + 1)) ∩X = ∅”.

Let BAIRE(Xω) be the family of all subsets of Xω with the property of
Baire.

Corollary 3.2. Suppose that X is a finite set.

(a) If |K| < b then M∗
X ,K is orthogonal to K(Xω).

(b) If K is unbounded then MX ,K ∩ BAIRE(Xω) ⊆ K(Xω).

P r o o f. (a) This is an immediate consequence of 3.1.
(b) Suppose that A ∈ MX ,K ∩ BAIRE(Xω) is nonmeager in Xω. Equip

X with a group structure (with a neutral element x0) and put Q = {c ∈
Xω : (∀∞n)(c(n) = x0)}. Then A+Q ∈ MX ,K and A+Q is comeager in Xω

(due to the 0-1 law for category). Applying 3.1 we conclude that K cannot
be unbounded.

In Proposition 1.4 of [BRo] another observation illustrating the depen-
dence of MX ,K on K was formulated. Here is a slight modification of it.

Proposition 3.3. For each A ∈ K(Xω), there exists an unbounded nor-
mal system K on ω such that A ∈ M∗

X ,K.

Since the ideals K(Xω) and L(Xω) are orthogonal it follows from Propo-
sition 3.3 that

Corollary 3.4. There exists an unbounded normal system K on ω (of
power c) such that M∗

X ,K is orthogonal to L(Xω).

For our next result we need Bartoszyński’s description of sets of measure
zero.

A set H ⊆ Xω is called small if there exist a partition {In : n ∈ ω} of ω
and a sequence 〈Jn : n ∈ ω〉 such that

(i) In’s are intervals, Jn ⊆ X In ,
(ii)

∑
n∈ω |Jn| · |X |−|In| < ∞ and

(iii) H ⊆ {c ∈ Xω : (∃∞n)(c|In ∈ Jn)} def= (In, Jn)∞n=0.

Note that small sets are of measure zero.
Bartoszyński’s theorem says that every set from L(Xω) can be covered

by the union of two small sets (cf. [Bar]).

Proposition 3.5. Suppose K is a dominating normal system on ω.
Then MX ,K is not orthogonal to L(Xω).

P r o o f. We have to show that MX ,K∩Lc(Xω) = ∅. Suppose H ∈ L(Xω)
and (In, Jn)∞n=0, (I∗n, J∗n)∞n=0 are two small sets which cover H. Let Y ∈ [ω]ω
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be such that each segment [µY (n), µY (n + 1)) contains some interval Ik as
well as some interval I∗l . Next find X ∈ K such that

(∀∞n)(|[µY (n), µY (n + 1)) ∩X| ≤ 1) .

Note that then |In∩X| ≤ 2 and |I∗n∩X| ≤ 2 for all but finitely many n. Let
Jn (respectively J∗n) be a family of all functions from In (I∗n) into X which
agree with some element of Jn (J∗n) on the set In \ X (I∗n \ X). The sets
(In, Jn)∞n=0 and (I∗n, J∗n)∞n=0 are small because |Jn| ≤ |Jn| · |X ||X∩In| and
|J∗n| ≤ |J∗n| · |X ||X∩I∗n|. Take c ∈ Xω \ ((In, Jn)∞n=0 ∪ (I∗n, J∗n)∞n=0). Clearly,
c∗X Xω is disjoint from (In, Jn)∞n=0∪(I∗n, J∗n)∞n=0, and consequently from H.
Hence Xω \H 6∈ MX ,K.

Corollary 3.6. If K is a dominating normal system on ω then

MX ,K ∩MEASURE (Xω) ⊆ L(Xω) .

Problem 3.7. (a) Is MX ,K orthogonal to L(Xω), provided K is not
dominating? What if |K| < d?

(b) Suppose A ∈ L(Xω). Does there exist a countable normal system K
such that A ∈ MX ,K? Note that the full measure analogue of Proposition 3.3
is impossible because of Corollary 3.2.

4. Notions of forcing connected with CX and PX . In 2.5 we
showed that for countable K the Boolean algebra BOREL(Xω)/MX ,K as
a notion of forcing is equivalent to the collapsing algebra Col(ω, c). Easy
arguments prove that the forcing BOREL(ωω)/Cω also collapses č onto ω.
If X is finite, however, BOREL(Xω)/CX becomes a nontrivial notion of
forcing. Due to the Borel Determinacy we can describe this order more
precisely. Every Borel set that does not belong to CX contains a set of
the form σ ∗X Xω for some σ ∈ STR(X ), X ∈ [ω]ω. Such a set is actu-
ally the body of a perfect tree T on X with the property that, for some
X ∈ [ω]ω, (∀s ∈ T, lh(s) ∈ X)(succT (s) = X ). Let QX = {T ⊆ X<ω :
T is a perfect tree & (∃X ∈ [ω]ω)(∀s ∈ T, lh(s) ∈ X)(succT (s) = X )} be
ordered by inclusion. By the above remarks we see that QX can be densely
embedded in BOREL(Xω)/CX . Note that QX as an ordered set contains
the Silver forcing SX = {p : p is a function & dom(p) ⊆ ω & rng(p) ⊆ X
& ω \ dom(p) is infinite} and is contained in the Sacks perfect set forcing
for Xω. As in those forcings, we can define orders ≤n in QX by T1 ≤n T2

if and only if T1 ≤ T2 and the first n elements of the sets {m ∈ ω : (∀s ∈
Xm ∩ T2)(succT2(s) = X )} and {m ∈ ω : (∀s ∈ Xm ∩ T1)(succT1(s) = X )}
are the same. Standard arguments show the following:

Proposition 4.1. (a) If Tn+1 ≤n+1 Tn and Tn ∈ QX then there exists
T from QX such that T ≤n Tn for all n.
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(b) If T 
 “ τ̇ ∈ V ” and n ∈ ω then there are T ′ ≤n T and A ∈ [V ]|X |
n

such that T ′ 
 “ τ̇ ∈ A”.

Corollary 4.2. (a) QX satisfies Axiom A of Baumgartner [Bau].
(b) QX 
 “(∀A ∈ L)(∃B ∈ L ∩ V )(A ⊆ B)”.

R e m a r k. With every set from CX we can associate a dense subset
of QX . Namely, for A ⊆ Xω we put DA = {T ∈ QX : [T ] ∩ A = ∅}. It is
obvious that DA is open dense in QX provided A ∈ CX . Moreover, one can
consider the following ideal on Xω connected with QX :

IQX = {A ⊆ Xω : (∀T ∈ QX )(∃T ′ ∈ QX , T ′ ≤ T )([T ′] ∩A = ∅)} .

An easy application of the fusion property proves that IQX is a σ-ideal of
subsets of Xω. Clearly CX ⊆ IQX .

We do not have any reasonable description of the algebra
BOREL(Xω)/PX . Since BOREL(ωω)/Pω collapses č onto ω, the only non-
trivial case here is X finite. It was noted in [CRSW] that the Silver forcing
SX is connected with PX in the following way. Consider the σ-ideal deter-
mined by SX : ISX = {A ⊆ Xω : (∀p ∈ SX )(∃q ∈ SX , q ≤ p)([q] ∩ A = ∅)}
(here [q] = {c ∈ Xω : q ⊆ c} for q ∈ SX . Then PX ⊆ ISX . Unfortunately,
we do not know whether SX can be densely embedded in BOREL(Xω)/PX .

5. Cardinal coefficients. In this section we study the cardinal coef-
ficients of the ideals MX ,K and M∗

X ,K, especially their covering numbers.
Recall first that the cardinal coefficients of MX ,K if K is countable or if X
is infinite are as follows (cf. [Ros]).

Theorem 5.1. (a) Suppose K is countable. Then

non(MX ,K) = non(M∗
X ,K) = cof(MX ,K) = cof(M∗

X ,K) = c

and
cov(MX ,K) = cov(M∗

X ,K) = add(MX ,K) = add(M∗
X ,K) = ω1 .

(b) add(Pω) = cov(Pω) = add(Cω) = cov(Cω) = ω1, non(Cω) =
non(Pω) = c, cof(Pω) > c, and if cov(K) = c then cof(Cω) > c.

If we drop the countability assumption we have the following.

Proposition 5.2. add(M∗
X ,K) = cov(M∗

X ,K) provided for every X ∈ K,
K ∩ P(X) is isomorphic to K. In any case, cov(M∗

X ,K) ≥ cov(MX ,K). In
particular , add(PX ) = cov(PX ) ≥ cov(CX ).

R e m a r k. The extra assumption above is essential. There may exist a
system K such that add(M∗

2,K) < cov(M∗
2,K). E.g. take a normal system K

such that for some X1, X2 ∈ K, |K ∩ P(X1)| = ω but K ∩ P(X2) = P(X2).
Then add(M∗

2,K) = ω1 (cf. 5.1(a)) while it is possible that cov(M∗
2,K) > ω1

(cf. 5.11, 5.12).
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Applying 3.1 and Rothberger’s result saying that if I, J are orthogonal,
translation invariant ideals on a group X then cov(I) ≤ non(J) (cf. [Fre])
we obtain

Proposition 5.3. If K is not unbounded then cov(M∗
X ,K) ≤ non(K).

R e m a r k. By Proposition 5.3 we know that cov(M∗
X ,K) ≤ non(K) pro-

vided |K| < b. In Proposition 5.7 we improve this to cov(M∗
X ,K) ≤ b.

A double indexed sequence {Xξ,ν : ξ < η, ν < κ} ⊆ [ω]ω is called a
κ-support for K if

(1) (∀X ∈ K)(∀ν < κ)(∃ξ < η)(Xξ,ν ⊆ X),

and a special κ-support for K if additionally

(2) Xξ,ν 6= Xξ′,ν′ provided (ξ, ν) 6= (ξ′, ν′).

Note that if κ ≤ c then there exists a special κ-support for [ω]ω which is
also a special κ-support for all K.

A κ-covering system for K and X is a sequence of partial functions
{fξ,ν : ξ < η, ν < κ} such that:

(3) dom(fξ,ν) ∈ [ω]ω, rng(fξ,ν) ⊆ X ,
(4) {dom(fξ,ν) : ξ < η, ν < κ} is a κ-support for K,
(5) no function c ∈ Xω is such that for each ν < κ there is a ξ < η with

fξ,ν ⊆ c.

The existence of κ-covering systems is connected with the covering num-
ber of M∗

X ,K in the following way:

Lemma 5.4. There exists a κ-covering system for K and X if and only
if cov(M∗

X ,K) ≤ κ.

P r o o f. Assume that {fξ,ν : ξ < η, ν < κ} is a κ-covering system
for K and X , and put Aν = {c ∈ Xω : (∀ξ < η)(¬fξ,ν ⊆ c)}. Then
obviously Aν ∈ M∗

X ,K and
⋃
{Aν : ν < κ} = Xω (the last is a consequence

of (5)). On the other hand, suppose {Aν : ν < κ} ⊆ M∗
X ,K is such that⋃

{Aν : ν < κ} = Xω. We choose functions cX,ν ∈ Xω such that for every
X ∈ K and ν < κ, (Xω ∗X cX,ν) ∩ Aν = ∅. Then {cX,ν |X : X ∈ K, ν < κ}
is a κ-covering system for K and X .

The easy lemma below has interesting consequences.

Lemma 5.5. Suppose K′ < K and X ′ ⊆ X . Every κ-covering system
for K′ and X ′ is a covering system for K and X .

Proposition 5.6. Assume that K′ < K and X ′ ⊆ X . Then

cov(M∗
X ,K) ≤ cov(M∗

X ′,K′) .

The basic estimate of cov(M∗
X ,K) is given by the following
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Proposition 5.7. There exists a |K|+-covering system for K and X .
Consequently , cov(MX ,K) ≤ cov(M∗

X ,K) ≤ |K|+.

P r o o f. For |K| = c this is obvious by cov(M∗
X ,K) ≤ c and 5.4. Assume

that |K| < c. Choose fα,X : X → X for α < |K|+, X ∈ K such that
fα,X 6= fβ,X provided α < β < |K|+. Then clearly {fα,X : α < |K|+,
X ∈ K} is a |K|+-covering system for K and X .

R e m a r k. Note that the above estimate cannot be improved. If |K| =
ω then cov(M∗

X ,K) = ω1. But even if K is uncountable we may have
cov(M∗

X ,K) = |K|+ (compare 5.11).

Let B = {S : S : ω → [ω]<ω & (∀n ∈ ω)(|S(n)| = 2n)} and let π : [ω]<ω

→ ω be a bijection. For X ∈ [ω]ω we define ϕX : ω → [ω]<ω by ϕX(n) =
“the set of the first 2n+2 elements of X”. If X ∈ [ω]ω and S ∈ B are such
that (∀n)(π(ϕX(n)) ∈ S(n)) then we write X ∈̂ S.

The following useful lemma was proved in [CRSW].

Lemma 5.8. There exists a (Borel) function F : B× [ω]ω → 2ω such that
if X1 ∈̂ S, X2 ∈̂ S and the partial functions F (S, X1)|X1, F (S, X2)|X2 are
compatible then X1 = X2.

Theorem 5.9. Suppose |K| < add(L). Then there exists an ω1-covering
system for K and 2. Consequently , for each X , cov(M∗

X ,K) = ω1.

P r o o f. By 5.1(a) and 5.4 we may assume that add(L) > ω1. Let F
be the function given by 5.8. Let {Xξ,ν : ξ < |K|, ν < ω1} be a special
ω1-support for K. Due to Bartoszyński’s well known characterization of
add(L) (cf. [Fre]) we find L ∈ [B]ω such that (∀ξ < |K|)(∀ν < ω1)(∃Sξ,ν ∈
L)(Xξ,ν∈̂Sξ,ν). For each ξ and ν put fξ,ν = F (Sξ,ν , Xξ,ν)|Xξ,ν . To show
that {fξ,ν : ξ < |K|, ν < ω1} is an ω1-covering system for K and 2 we should
verify the condition (5) only. But assuming that c ∈ 2ω is a couterexample
for (5), we have (∀ν < ω1)(∃ξ < |K|)(fξ,ν ⊆ c). Since L is countable, we find
different ν, µ < ω1 and suitable ξ, ϑ < |K| such that Sξ,ν = Sϑ,µ = S. Then
F (S, Xξ,ν)|Xξ,ν and F (S, Xϑ,µ)|Xϑ,µ are included in c. The properties of F
give that Xξ,ν = Xϑ,µ, contrary to condition (2) of a special ω1-support.
The last part of the theorem follows from 5.4 and 5.5.

Recall that Lemma 5.8 was applied in [CRSW] to show (after a slight
reformulation) the following

Theorem 5.10. There exists a cof(L)+-covering system for [ω]ω and 2.
Consequently , for each X and K, cov(M∗

X ,K) ≤ cof(L)+.

We have no reasonable lower bound for cov(M∗
X ,K) but it can be large.

An almost disjoint family {Aα : α < κ} ⊆ [ω]ω has the Uniformization
Property (UP) if for every system of functions fα : Aα → 2 there is a
function f :

⋃
{Aα : α < κ} → 2 such that for every α < κ we have fα ⊆∗ f .
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Shelah showed that the existence of uncountable almost disjoint families
with UP is consistent with ZFC (cf. [She]).

Proposition 5.11. Assume that there exists an almost disjoint family
of cardinality κ with UP. Then for every cardinal λ ≤ κ there exists a
normal system K such that |K| = λ and cov(M∗

X ,K) = λ+. In particular ,
cov(P2) > κ.

As we saw in Section 4, CX ⊆ IQX . Hence cov(IQX ) ≤ cov(CX ). Since
QX satisfies Baumgartner’s Axiom A we obtain

Proposition 5.12. PFA implies cov(CX ) > ω1.

R e m a r k. The above result was formulated by Rec law for PX . Propo-
sition 5.12 strengthens his observation. Let us also recall that MA does not
imply cov(PX ) > ω1. This is a result of Steprāns (cf. [CRSW]).

Finally, we show that the covering numbers of the ideals CX can be
different for different finite X .

Theorem 5.13. Suppose k ≥ 2. Then

CON(ZFC + cov(Pk) = cov(Ck) = ω2 = c + (∀j > k)(cov(Cj) = ω1)) .

P r o o f. Suppose that V � CH. Let 〈Pα : α < ω2〉 be a countable
support iteration of forcings Qk. Then Pω2 preserves cardinal numbers and

ω2 “c = ω2”. Suppose that for α < ω1 we have a Pω2-name Ȧα such that

ω2 “Ȧα ∈ Ck”. Note that each set from Ck is determined by a function from
[ω]ω into STR(k). Thus we have Pω2-names τ̇α such that for each α < ω1,


ω2 “τ̇α : [ω]ω → STR(k) & (∀X ∈ [ω]ω)(kω ∗X τ̇α(X) ∩ Ȧα = ∅)” .

By standard arguments we find β < ω2 such that the sequence 〈τ̇α|([ω]ω ∩
V Pβ ) : α < ω1〉 belongs to V Pβ . Let ċβ be a Pβ-name such that 
β “ċβ is a
name for the Qk-generic real”. Then obviously


β “Qk 
 (∀α < ω1)(∃X ∈ [ω]ω ∩ V Pβ )(ċβ ∈ kω ∗X τ̇α(X))”

and consequently 
ω2 “ċβ 6∈
⋃

α<ω1
Ȧα”. We have thus proved 
ω2 “cov(Ck)

= ω2”. To show that 
ω2 “(∀i > k)(cov(Ci) = ω1)” we have to strengthen
4.1(b).

A tree T ⊆ ω<ω is a k-tree if (∀s ∈ T )(|succT (s)| ≤ k). A notion of
forcing P has the k-localization property if

P 
 (∀f ∈ ωω)(∃T ∈ V )(“T is a k-tree on ω” & f ∈ [T ]) .

A slight modification of Theorem 2.3 of [NRo] shows that every countable
support iteration of forcings Qk has the k-localization property. Hence, in
V Pω2 , if i > k then iω can be covered by ω1 k-trees. Note that if T ⊆ i<ω is
a k-tree then [T ] ∈ Ci. Consequently, 
ω2 “cov(Ci) = ω1” for every i > k.
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R e m a r k. Similarly to the above theorem one can build a model for
(∀i ≤ k)(cov(Ci) = ω2) & (∀i > k)(cov(Ci) = ω1). But we do not know
whether in these models cov(Pk+1) = ω1 holds true. The problem “Can the
covering numbers of the ideals PX be different for distinct X” remains open.

6. Compact sets from ideals. Let K(Xω) denote the space of all
compact subsets of Xω equipped with the Vietoris topology. The subbase
of this topology consists of all sets U(G) = {F ∈ K(Xω) : F ⊆ G}, V (G) =
{F ∈ K(Xω) : F ∩G 6= ∅} for open G ⊆ Xω (cf. [Kur]).

A recent result of Kechris, Louveau and Woodin (cf. [KLW]) shows that
if I is a σ-ideal on a Polish space X then its trace on compact sets is either
very simple (Π0

2 ) or very complicated (at least Π1
1 ). The compact sets

of uniqueness form a Π1
1 -complete set (cf. [KLW]). The strongly porous

compact sets (cf. [Lar]), the nowhere dense compact sets and Lebesgue null
sets (cf. [KLW]) are Π0

2 in K(R). For Mycielski ideals generated by countable
systems a similar result was proved by Balcerzak.

Theorem 6.1 [Balcerzak, [BRo]]. Suppose K is countable. Then MX ,K∩
K(Xω) and M∗

X ,K ∩K(Xω) are Π0
2 , hence comeager subsets of K(Xω).

Since each system K is the union of |K| countable systems, putting 2.1
and 6.1 together we get

Corollary 6.2. (a) If |K| < add(K) then M∗
X ,K ∩ K(Xω) (and hence

MX ,K ∩K(Xω)) is comeager in K(Xω).
(b) If |K| < cov(K) then M∗

X ,K ∩K(Xω) (and hence MX ,K ∩K(Xω)) is
nonmeager in K(Xω).

We now describe the traces of CX and of PX on compact sets. The
following easy technical lemma was mentioned in [BRo].

Lemma 6.3. If A ∈ K(Xω), X ∈ [ω]ω and τ is a winning strategy for the
second player in the game ΓX (A,X), then there is an integer N > 0 such
that for each c ∈ Xω with (∀n < N,n ∈ X)(c(n) = τ(c|n)) we have c 6∈ A.

Theorem 6.4. CX ∩K(Xω), PX ∩K(Xω) ∈ Π1
1 \Σ1

1 and both are meager
subsets of K(Xω).

P r o o f. First we show that CX ∩K(Xω) and PX ∩K(Xω) are coanalytic.
For A ∈ K(Xω), applying 6.3, we have

A ∈ CX

≡ (∀X ∈ [ω]ω)(∃σ ∈ STR)(∀τ ∈ STR)(τ ∗X σ 6∈ A)

≡ (∀X ∈ [ω]ω)(∃N ∈ ω)(∃σ : X<N → X )(∀τ ∈ STR)(τ ∗X∩N σ 6∈ A) ,

and similarly for PX :

A ∈ PX ≡ (∀X ∈ [ω]ω)(∃N ∈ ω)(∃d ∈ XN )(∀c ∈ Xω)(c ∗X∩N d 6∈ A) .
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The last formulas represent Π1
1 subsets of K(Xω).

To prove CX ∩K(Xω) ∈ K(K(Xω)), note that CX ∩K(Xω) has the Baire
property (since Π1

1 implies the Baire property). So, it is enough to show

Claim. If G ∈ Π0
2 (K(Xω)) is nonmeager then G \ CX 6= ∅.

Suppose that G =
⋂

n∈ω Gn is dense in W = V ([s0]) ∩ . . . ∩ V ([sk−1]) ∩
U(

⋃
i<k[si]), s0, . . . , sk−1 ∈ Xn0 , and Gn are open. Construct inductively

a perfect tree T ⊆ X<ω and a set X = {n0, n1, . . .} as follows: T ∩ Xn0 =
{s0, . . . , sk−1}. Having defined ni ∈ ω and T ∩ Xni consider U(

⋃
{[s] : s ∈

T ∩ Xni}) ∩
⋂
{V ([s∧x]) : s ∈ T ∩ Xni , x ∈ X}. It is an open subset of W ,

Gi is dense in W , hence, for s ∈ T ∩ Xni and x ∈ X there are nonempty
t(s, x) ⊆ X<ω such that s∧x ⊆

⋂
t(s, x) and U(

⋃
{[t] : t ∈ t(s, x), s ∈ T ∩

Xni , x ∈ X})∩
⋂
{V ([t]) : t ∈ t(s, x), s ∈ T ∩Xni , x ∈ X} is contained in Gi.

Clearly, we may assume that lh(t) = ni+1 for all t ∈ t(s, x), s ∈ T ∩ Xni ,
x ∈ X . Put T ∩ Xni+1 = {t : t ∈ t(s, x), s ∈ T ∩ Xni , x ∈ X}. Our
construction provides [T ] ∈ G. Moreover, for each n ∈ X and s ∈ T ∩ Xn

we have succT (s) = X . Hence [T ] 6∈ CX .
It follows from the above that also PX ∩K(Xω) ∈ K(K(Xω)).
Now, if CX ∩ K(Xω) or PX ∩ K(Xω) were analytic then it would be

of type Π0
2 (due to the result of Kechris, Louveau and Woodin mentioned

earlier). But CX∩K(Xω) and PX∩K(Xω) are dense in K(Xω) (they contain
all finite sets) and therefore they would be comeager in K(Xω), contrary to
what we have proved.

As an application of 6.4 consider a mapping Φ : P(Xω ×Xω) → P(Xω)
given by the formula Φ(A) = {c ∈ Xω : Ac 6∈ CX }, where Ac is the vertical
section of A at c.

Proposition 6.5. (a) Φ[Σ0
1(Xω ×Xω)] = Σ0

1(Xω).
(b) Φ[Π0

1 (Xω ×Xω)] = Φ[Σ0
3(Xω ×Xω)] = Σ1

1(Xω).
(c) Φ[BOREL(Xω ×Xω)] ⊆ Σ1

2(Xω).

P r o o f. (a) and (c) are obvious.
(b) Suppose A ∈ Π0

2 (Xω ×Xω). Then

Ac 6∈ CX ≡ (∃K ∈ K(Xω))(K 6∈ CX & K ⊆ Ac) .

The formula K ⊆ Ac represents Π0
2 -subsets of K(Xω) × Xω. Apply 6.4 to

obtain Φ(A) ∈ Σ1
1(Xω). Since Φ(

⋃
n∈ω An) =

⋃
n∈ω Φ(An) we have shown

Φ[Σ0
3(Xω × Xω)] ⊆ Σ1

1(Xω). Suppose now that B ∈ Σ1
1(Xω). 6.4 implies

that CX ∩ K(Xω) is Π1
1 -complete (cf. [KLW]) and therefore we can find a

continuous function f : Xω → K(Xω) such that f−1[CX ] = Xω \ B. Put
A = {(c, d) ∈ Xω ×Xω : d ∈ f(c)} ∈ Π0

1 (Xω ×Xω). Clearly Φ(A) = B.

Problem 6.6. Describe Φ[BOREL(Xω ×Xω)].
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Note that an analogous mapping may be defined for every σ-ideal. The
ideals L and K are regular from that standpoint since for them Φ[Σ0

α(Xω ×
Xω)] = Σ0

α(Xω) for α < ω1.

Acknowledgements. My thanks are due to Janusz Pawlikowski for his
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some new sigma-ideals of sets, Proc. Amer. Math. Soc. 72 (1978), 182–188.
[Myc] J. Mycie l sk i, Some new ideals of sets on the real line, Colloq. Math. 20 (1969),

71–76.
[NRo] L. Newelsk i and A. Ros  lanowsk i, The ideal determined by the unsymmetric

game, Proc. Amer. Math. Soc. 117 (1993), 823–831.
[Ros] A. Ros  lanowsk i, On game ideals, Colloq. Math. 59 (1990), 159–168.
[She] S. She lah, Proper Forcing , Lecture Notes in Math. 940, Springer, 1982, 57–67.
[Vau] J. E. Vaughan, Small uncountable cardinals and topology (with an appendix

by S. Shelah), in: Open Problems in Topology, G. M. Reed and J. van Mill
(eds.), North-Holland, Amsterdam, 1990, 195–218.

INSTITUTE OF MATHEMATICS

UNIVERSITY OF WROC LAW

PL. GRUNWALDZKI 2/4

50-384 WROC LAW, POLAND
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