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SMOOTHNESS OF DENSITIES OF SEMIGROUPS OF MEASURES
ON HOMOGENEOUS GROUPS

BY
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0. Introduction. Smoothness of densities of semigroups of measures
on nilpotent Lie groups was investigated by many authors (cf. e.g. [G], [GH],
[BG]). In [G] P. Glowacki proved that the densities of a stable semigroup
of symmetric measures {p}¢~o with smooth Lévy measure are C*° and
belong with all their derivatives to L?(G); for a semigroup with singular
Lévy measure, this is not true in general (cf. [GH]). Recently T. Byczkowski
and P. Graczyk [BG] have shown that if the Lévy measure of a semigroup
of symmetric measures {j}¢~o is of class C', compactly supported and
coincides on a neighborhood of 0 with a nonzero stable Lévy measure, then
the p; have smooth densities. Their proof is based on the Malliavin Calculus
for jump processes.

The purpose of the present paper is to generalize the result of Byczkowski
and Graczyk. We prove, by analytic methods, that an estimate from below
for the Lévy measure of a semigroup {p:}i>o (cf. (1.4)) already implies
smoothness of the densities of .
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1. Statement of the result. Let {u:}:+~¢ be a semigroup of posi-
tive symmetric measures on a homogeneous group G with compactly sup-
ported Lévy measure v. We shall assume that the generating functional A
of {pt}+>0 has the form

(L1) (A ) Zzai,inXjf(O)Jrsli_I{g] [ (f(@) = £(0) dv(@) + ¢ (0),

lzll>e
= Af(0) + (L, ) +cf(0),
where (a; ;) is a symmetric positive semi-definite matrix, and Xi,..., X, is
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a basis of the Lie algebra of G. There is no loss of generality in assuming
that the constant ¢ in (1.1) vanishes.
Theorem 5.1 of Hunt [Hu| asserts that

(12) Sl dufz) < oo,
G

where || - || denotes an Euclidean norm on G.
Assume that there exist constants a € (0,2), ¢ > 0 and a nonnegative
symmetric function £2 € L: _(G) homogeneous of degree 0 such that

loc

(1.3) 0< f Qzx)dx
llzll<1
and
2(x)
(1.4) @ dx <dv(x) onaball B(0,0) ={ze€G:|z| <o},

where () is the homogeneous dimension of G and |- | is a homogeneous norm
on G (cf. Section 2).
Our aim is to prove the following

THEOREM (1.5). The measures ji; have smooth densities p; such that for
any natural numbers n, k, and every left-invariant differential operator D
on G there exist constants C and N = N(D, k,n) > 0 such that

(1.6) |0F Dpy(x)| < Ct—Ne =l fort < 1.

Moreover, for any natural numbers s, k, 1, and every left-invariant
differential operator D there are constants r and C' such that

(1.7) 0F Dpy ()| < Ce™ =5 for t <1 and |z| > 7.

2. Preliminaries. A family of dilations on a nilpotent Lie algebra G is
a one-parameter group {0;}~o of automorphisms of G determined by

5tej = tdjej R

where eq,...,e, is a linear basis for G, and d4,...,d, are positive real
numbers called the exponents of homogeneity. The smallest d; is assumed
to be 1.

If we regard G as a Lie group with multiplication given by the Campbell—-
Hausdorff formula, then the dilations §; are also automorphisms of the group
structure of GG, and the nilpotent Lie group G equipped with these dilations
is called a homogeneous group.

The homogeneous dimension of G is the number @ defined by d(d;z) =
tQ dx, where dz is a right-invariant Haar measure on G.
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Let

X;f(x)= pn t_of(aztej), Yif(z) = 7 t_of(tejm).

If I = (i1,...,in) is a multi-index, i, € NU {0}, we set

Xlf=X0t  Xinf, YIif=Y". . Yinf, |I|=irdi+...+ind,,

[T =14 .o din, I'=idyl..ip!, 2l =2 ol

where x = r1€1 + ...+ zhe,.
Recall (cf. [FS, p. 26]) that for every multi-index I there exist families
of polynomials {UJ}||JH<HI||, {U)J}||J||<”I” such that

(21) Z'UJ YJf ij XJf

For a distribution 7" on G and a multi-index I, we define a distribution
T7 by the formula

(22) <T1a f> = <T7 M(—a:)lf>a where M(—x)lf(m) = (7x)lf($) :
We choose and fix a homogeneous subadditive norm on G, that is, a
continuous positive symmetric function  — |x| which is, moreover, smooth

on G\ {0} and satisfies
|6;z| = tlx|, |x|=0if and only if z =0, |zy| < |z|+ |y|.

The existence of such a norm was proved e.g. in [HS]. Note that if | - | is
another homogeneous norm on G, not necessarily subadditive, then there is
a constant C' such that C~1|z| < |z|o < Clz|.

Denote by ||z|| a fixed Euclidean norm on G. Proposition (1.5) of [FS]
asserts that there are constants C; > 0 and C5 > 0 such that

(2.3) Cillz]| < |a| < Col|V/9 for [a] < 1.
For a nonnegative constant 7 let us denote by 7(-) the weight
(2.4) i(z) = e,

and by L?(7) the Hilbert space of functions on G with the norm

IF12="[ 1f(2)Pi(z) do
G
Let S®(G) = {f € C(G) : [(XTf)()7(-)||L= < oo for every I and n}.
Note that if T' is a compactly supported distribution, then the operator T
defined by

(2.5) Tf(x)=f*T(x)
preserves S (G).

For r > 0 let 7 be the smallest number such that 7 > r and 7 = |I| for
some multi-index 1.
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For f € CX(G), r > 0 and x € G, define

(2.6) FOW) = fey) — Y 5 X @', yed.

[I]<r
THEOREM (2.7) (cf. [FS], Theorem 1.37). Forr,a > 0, there are constants
C and K such that for every f € C*(Q),
[FD@ < @)Nyl™ forlyl < a,
where f7)(x) = 3 ey supp < | X f(22), W= {1 2 < I, 1] <[] +1}.

A distribution 7" on G is said to be a kernel of order rif T € L] (G\{0})
and satisfies

(2.8) (T, fod,)=t"(T,f) for feC>®G), t>0.

A kernel T of order r is said to be regular if T € C*°(G \ {0}).

A distribution T" smooth away from 0 which is supported in a compact
set and coincides with a kernel of order r in a neighborhood of 0 will be
called a truncated kernel of order r.

Note that if T is a truncated kernel of order r, then 77 is a truncated
kernel of order r — |I|.

We shall denote by R the kernel of order « defined by

Fo) =ty [ TSI o) ds

|z|>e

where 2 is the function from the first section.
For 3 € (0,2) denote by Pg the truncated kernel of order § defined by

o f(x) = £(0)
<P,8,f>—;l_f}}) f de'
e<|z|<1
The following theorem due to P. Glowacki [G1] plays a crucial role in all
what follows.

THEOREM (2.9). For every reqular kernel P of order 8, 0 < 8 < «, there
exists a constant C' such that

(2.10) II?EfI\Lz < C(|Rfllzz + Ifllzz)  for f € S™(G),
(2.11) [1Pfllee < C([Pafllez + [ fllz2) — for fe ST(G).

Using the theory of subordination and (2.9) one can prove that for a
kernel P as above,

(2.12) (Pff) < C(—(Rf f) + |Ifllz2)  for f e 8=(G),
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and, consequently,
(2.13) (Pf, ) < C(—(Rf, [) + |[fll2) for f e SF(G),

where P, R are compactly supported distributions which coincide with P
and R in a neighborhood of the origin and belong to L{, (G \ {0}).
A subset I' of G is said to be uniformly discrete if for every function
¢ € C(Q) the function
PR

zell
is bounded, where A, ¢(z) = p(z2x).
The following lemma is due to B. Helffer and J. Nourrigat (cf. [HN]).

LEMMA (2.14). For every homogeneous group G there is a uniformly
discrete subset I' of G and a function p € C°(G) such that

S Papl@)? =1

acl’
LEMMA (2.15). For a uniformly discrete subset I' of G and every e > 0

the sum
> (1412797

zel
s finite.

COROLLARY (2.16). If n > 0, then [n(z)"'dz < oo, where 7(x) is
defined by (2.4). Moreover, if I' is a uniformly discrete subset of G, then

Z n(z)"!' < o0.

zell

3. Holomorphic semigroups on weighted Hilbert spaces. The
purpose of the present section is to prove the following

THEOREM (3.1). Let {ut} be a convolution semigroup of nonnegative
subprobabilistic symmetric measures on G whose generating functional has
compact support. Then for every function 1 of the form (2.4) the family
Tif = f * us of operators forms a Cy semigroup on L?(7)) which has an
extension to a holomorphic semigroup in some sector Ag = {z : |Argz|
< 0}.

First we prove

PROPOSITION (3.2). Let {T.}, Rez > 0, be a holomorphic semigroup of
operators on L?(G) which is a Cy semigroup on L?(7) for a fived function 7).
Assume that C°(QG) is contained in the domain of the infinitesimal genera-
tor A of {T;} considered on L?(7)). Then for every 6 € [0,1) the semigroup
{T.} is holomorphic on L*('~Y%) in the sector Ag = {2z : |Arg z| < 0}.
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Proof. The idea of our proof comes from [S]. Without restriction of
generality we can assume that there are constants My and M; such that

(3-3) ITefll7 < Mollflls  and T2 fl[L2c) < Ml fllz2c) -
Step 1: The family {T.}.cn, is uniformly bounded on L*(*~?).

Proof. For f,g € C(G) such that ||f||zz2 = |lg|lrz = 1 define a
holomorphic function FY 4 in the strip 0 < Rez < 1 by

(84)  Fry= [ Tue(f -5 022 @)(g- 7~ ) @) *(2) da
G

Since f,g € C*(G) the function Fy 4 is bounded. Obviously, by (3.3) and

the fact that [|f - 7~ (172)/2||z1-re= = [|g - 7~ 72)/2||j1-re= = 1, we get
(3.5) |F,q(it)] < Mo, |Fq(1+it)] < M.

In view of the Phragmén—Lindel6f theorem, we have

(3.6) |Fr.g(2)| < max(Mo, My) =M.

The definition of Fy, and (3.6) imply that for ¢ € R and § € [0,1] the
operator T,io—: is bounded on L?(7*~%) and

(3.7) I Toio— fllgr—o0 < M| fllg-o
By the same argument, we get
(3.5) 1T fllgis < M fllg—o

Fix 2 € R with 0 < |z| < 6. By (3.7), (3.8), and (3.3), we have

[Teio—t || L2 (- 12y = L2121y < M, || Teso—t||L2(@)—r2() < M.
An interpolation argument gives
I Toiee flmo < M| fllgi—o-
Step 2: The function Ag 3 2z +— T, € L(L*(*~?)) is holomorphic.

Proof. This follows from Step 1 and from the fact that for f, g € C°(G)
the function

K93z [ (T)(@)g(@)if~"(2) da
G
is holomorphic.

Step 3: If f € L2(3'~7), then
(3.9) lim | Tof — fllgi—e = 0.

z2—0,2EA9_¢

Proof. This follows from Steps 1 and 2 and from the fact that
U0 Ran(Ty) is dense in L2(7' %) (cf. [Da, p. 63, Problem 2.35]). m
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Proof of Theorem (3.1). Since Tyf = f * ps form a semigroup
of selfadjoint contractions on L?(G), by the spectral theorem, we conclude
that {T}} has an extension to a holomorphic semigroup {7, }re »>0 on L?(G).
Now fix n sufficiently large. Theorem (4.1) of Hulanicki [H] asserts that for
every s > 0 there is a constant C such that

(3.10) (g, my < Cs < oo forte(0,s).

It follows from [H, Proposition (4.2)] that {T} } is a Cjy semigroup of operators
on L'(7), and C2° is contained in the domain of the infinitesimal generator
A of {T;} considered on L'(7). Hence by (3.10) for f € C°(G),

(3.11) I1f 5 mells < Clflla (e, 772) < Coll fllz - for t € (0,s),
and

(3.12) T [t"N(Tof — f) — AfII3
<l [tHTf = f) = Af = It7HTf = ) = Afllzr iy = 0.

Now, (3.11) and (3.12) imply that the family {73} is a Cy semigroup on
L?(7), and C°(G) is contained in the domain of the infinitesimal generator
of {T;} considered on L?(7). Our proof is finished by applying Proposi-
tion (3.2). m

4. Weighted subelliptic estimates. In this section we prove some
subelliptic estimates associated with the operator A. Our aim is the following

THEOREM (4.1). For any weights 1, 77’ of the form (2.4) such thatn > n'
and for every multi-index I there are constants N and C such that

N
(4.2) IXTFIZ < CY A FIZ+CIfIE  for f e 85%(G).
j=1

First we prove some lemmas.

LEMMA (4.3). For every multi-index I with ||I|| = 1 there is a constant
C such that

(4.4) AL fll72 < —C{AS f) - for f e S%(G).
Moreover, if |[I|| > 1 then A is bounded on L*(G), and
(4.5) ILefl7: < ClFIZ2 NALFIP < Ol fII7 -

Proof. Note that if ||I|| > 1, then the estimate ||L;f||2. < C| f||3-
follows from (1.2) and the definition of L. It is obvious that A; is bounded
in this case. So (4.5) is proved.

Let ||I]] = 1. Since v is symmetric,

[ fe = £II32 dv(z) = —2(Lf, f),



234 J. DZIUBANSKI AND J. ZIENKIEWICZ

where f.(y) = f(yx). Applying the Schwarz inequality and (1.2), we have
147y = [ | [ (o) = f))a” dvia)|” dy
I (S 1) — 1P dv@)) ([ @ dv()) dy

Change the coordinates in such a way that A = ) ; ij, where the Z;
are left-invariant vector fields (not necessarily homogeneous). Then A;f =

(>, ZJZ)If =>,0;1Z;f, and
AL fI2: < OS2 112 f 122 < ~C S (Z2. f) < ~C{Af,f).
J

J

IA

COROLLARY (4.6). For every € > 0 there exists a constant C. such that
A7 < ellAfIIZ2 + CellfII7=,  f € S%(G), 1] =1.
LEMMA (4.7). Assume that ¢ € C(G). Then
1
(Mo, Alf@W) = Y X WAL (W) + Ko f(y)
o<|11<Q "

where K, f(y) = [ oW (z)f(yz)dv(z) (cf. (2.6)). Moreover, the operator
K, is bounded on L*(G).

Proof. Using the Taylor expansion (cf. (2.6)) to the function ¢ at the
point y, we get the required equalities. m

The following lemma is a weighted version of Corollary (4.6).

LEMMA (4.8). For every function 1 of the form (2.4) and every ¢ > 0
there exists a constant C. such that if ||| = 1, then

(4.9) IAzfIG < el AfIG + Cellf113 -
Moreover, if |I|| > 1, then
(4.10) IALfNIE < Cryllflf - for f € S%(G).

Proof. (4.10) is obvious since A; is bounded on L?(G) and has compact
support (cf. [Dz, Lemma (4.6)]).

Fix Iy with ||[Iy|| = 1. Let ¢ and I' be as in Lemma (2.14). Let ¢ €
C(G) with ¢ = 1 on supp ¢ - suppv. Since I" is uniformly discrete, by
Corollary (4.6), we get

(4.11) (AL fI2 = f | A (ue) )| 1w dy

acl’

<cf D AR (Aa@) HW)I*7(y) dy

acl’
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<O Y 10w fI2:7(@) + C 3 el A(a) ) 227(a)

acl’ a€l’
< O S ) fl2271(a) + O S [ (ha) (AS)|227(a)
acl’ acl’
+Ce Y [(Aa®)[M, . AlfI327(a) = Iy + Iy + I3
acl’

Obviously Iy + I < Cc||f|Z + €[ Af]|7. Similarly, using Lemmas (4.3)
and (4.7), we obtain

Is<Ce > |ALfIZ + Cell 113 -
[1]]=1
Finally, we have
(4.12) IR fIZ < CIIFIIZ + el AfIE +Ce > ILAfIIE -
I71=1

Now taking ¢ sufficiently small and summing (4.12) over all Iy with || Ip|| = 1,
we get (4.9). m

LEMMA (4.13). For a fized function 1 of the form (2.4) there is a constant
C' such that

(4.14) 1Pas2fll7 < CUAFIZ +IFIZ)  for f € S%(G).
Proof. By (2.9), we get

1Paj2fli7e < C(—(RS 1)+ If1172) < CUAFIZ= + [1£172) -
The last inequality holds because

(4.15) —2(Rf, f) = f 1fz — fHL?’ cg+)ad

< S M= fBadvla) [ fe = 517 do

|x\<g |z|>0
< =2(Lf, ) + ClIfllze < =2(Af, ) + ClIf 122
Analogously to the proof of the previous lemma, we have

1Paj2fllz < C Y N Paya((Ma) )12 270(a)

acI’

< O Y (M(Aap) NIIZ27(a) + [|(Aaw) flIF271(a))

acl’
<C(IAfIZ+ D2 IAIE+IF12).
l1l=1
Using Lemma (4.8) we obtain (4.14). =
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LEMMA (4.16). For every a € (0,1) there is > 0 such that for any
functions 1 > n' of the form (2.4) there is a constant C such that

(4.17) 1P+ 1% < CUPfIG +IFIR),  f€S™(G).

Proof. Assume that ¢ € C°(G), 0< ¢, [ =1, ¢(z) = ¢p(x'). Let
¢i(x) = t7%P(6;-1).

Step 1: There is a constant C' such that
(4.18) 1f % de = fllFe < —Cat®(Paf, f)  for f € CZ(B(0,1)).

Proof. By the definition of P,, we have

1
lim i f<1 [ 1fyz) = @) dy e 40 = 2Pl f).

Hence, for j > 0,
[ o= fIEado < —277@r 1P £ )
2797 <|z|<27d

and, consequently,

If de = fll72 < [ Ifo = FlF200(2) do
G

<Ct™? [ |fo— [z da

|z <ct

<Ct9 ) 27 @tNR )

j>0,2"9<ct

<Ci Y 27%Puf,f) < Cat™(Paf, f).

§>0,2-7 <ct
Step 2: There are constants C' and d > 0 such that for |z| < 1,

(4.19)  [IXa(f * &) — f* &7 < Ol £]17,
FeC=(B(0,1)), t<1.

Proof. Indeed, let z = ||z||Y, ||Y|| = 1. By (2.1) we get

J

G

[zl 2
J1F = outey) — Foi)Pdy= [ | [ (7 w00y -y)ds| dy
G 0
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llzll

= | [ Yoy vyas| ay
G 0

llzll

> wI(SY'y)(f*XI@)(sY-y)ds‘Qdy
G

0 =t

<o 3 J/gi“( J1fe X1y -y)ay) " as)’,
=1 o &
which combined with the Schwarz inequality and (2.3) implies (4.19).
Step 3: There are v > 0 and C > 0 such that for f € C*(B(0,1)),
(4.20) Aaf = fII < Cla" ([ Pafll 2 + (1 f]]2) -
Proof. It suffices to consider |z| < 1. By (4.17) and (4.19), we have
Dot = Flliz < CUNF = X (F * $0)172

+ A (f % de) = f* dellT2 + ||f * & — fI|Z2)
< = 20,t*(Puf, f) + Clzlt | f]13- .

Putting ¢t = |x|? with sufficiently small o > 0, we get (4.20).
Step 4: There are m and v > 0 such that for f € C(B(0,7)),
(4.21) Aaf = fllz < Cla[Y(1+7)" (| Pafllz> + 1 £l22) -

Proof. This follows by applying dilations to the function f and using
Step 3.

Step 5: There is v > 0 such that for every n > n' there is a constant
C' such that

(422)  [of = fIIE < Clal"(1PafI3 + IF115)  for f € S%(G), Ja| <1.
Proof. Let I" and ¢ be as in Lemma (2.14). Then
et = FI2 =D [ 1f@y) = F@)PCa@) ()7 (v) dy

acl’

<C(X [ 1@ ap)@y) = ) Nar) )27 (a) dy

acl’

+ 30 [ 1Pl Oap) @) — Cup)w) 7 (@) ) dy
= Il j—elg .
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Using Step 4 we conclude that there is a polynomial w such that

Li=CY [Na(fra®) = (FAaw)lIZ2n (a)ii(a) ' 7i(a)

acl’

< Cla[" Y wla)y/()ii(a) ™ (1Pa(Aaw) )72 + (M) fl72)ii(a)

acl’

Since n > 1’ we obtain

L < CoCla” Y ([(ha) (Paf)ll72 + | Aa@) 172 + | [Mr,g, Pal fl172)i0(a),
acl’

where Cy = supaep{w(a)ﬁ’(a)ﬁ(a)*l}. One can easily check using the Tay-
lor expansion of ¢ that

> 1My, PalfI3:71(a) < CIFIIZ.

a€l
Hence,
I < Cla[ (1P fIIF +11F113) -

Let us remark that there is a polynomial v and positive w, § such that
(4.23) Aa@(xy) — Aap(y)| < Claza™t* < Cv(a)|z]® for |z| < 1.
Moreover, there is 7 > 0 such that
(4.24) App(zy) —Aap(y) =0 foryg{ze€G:la|—r <|z| <la| +7}.

We are now in a position to estimate Ip. By (4.24) we get

L <CY [f@y)lP|(ha@)(@y)® = (Naw) (v)* 7' (a) dy

acl’
<Cy > [ 1f@y)lPo(a)z]’ v () dy.,
k=0a€ly k—r<|y|<k-+r
where I, = {a € I' : k —1r < |a|] < k+ r}. Since card I} increases
polynomially with respect to k and |z| < 1, we get I < C\x|‘5||f||%.
Step 6: [|[Ps+ fI% < C(IP.fIE + I1£13).
Proof. By the Schwarz inequality

J (o) = £ iy de| o)y

|z|<1

2 _
1Po=fI% = [

G
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< Gf (( fmclggdm)( flf(xy)—f(y)IZWﬁm»n'(y)dy

|z|<1 |z|<1

dx

2

<C f [Azf — f“,;/W
|z]<1

Taking € and 3 sufficiently small and using (4.22), we obtain the required
estimate. m

Note that the operator f — Pg* f commutes with the operator f —
Af = fxAon S®(G). Hence by Lemmas (4.16) and (4.13), we get

COROLLARY (4.25). For every natural k there exist constants N and
C = Ck,N,p,ny such that

N
IPg + fll <CY A fllz for f € 5(G).
=0

LEMMA (4.26). For every multi-index I there are constants N and C
such that

Y fllz < CUF Ny + 125+ fll7) -
Proof. This lemma is a consequence of [Dz, Theorem (4.3)]. m

Proof of Theorem (4.1). Since ||X1f||77~, < CXyai<i Y7 fll5,
using Lemma (4.26) and Corollary (4.25), we get (4.2). m

5. Smoothness and pointwise estimates. In the present section we
give the proof of Theorem (1.5).

LEMMA (5.1). For any weights 7 > 77’, every multi-index I and every
relatively compact neighborhood U of the origin there are constants C' and
N such that for every a € G,

N
(5.2) X7 £ (arry < C/ (@)™ D IIAV 12
j=0

Proof. Let V be relatively compact such that U C V. The Sobolev
inequality implies that there is a constant C' such that

(5.3) X i@y <C D IX flEavy s
111<31(1)

which combined with Theorem (4.1) gives

N
IX Iy <O (@)™ D IIX7FIZ < On(a)™' DA f]G .
<M J=0



240 J. DZIUBANSKI AND J. ZIENKIEWICZ

Proof of the first part of Theorem (1.5). Let ¢ €
C(B(0,2)). Theorem (3.1) and (2.1) imply that ¢ * gy € S°°(G). From
Lemma (5.1) and from the fact that our semigroup is holomorphic on weigh-
ted Hilbert spaces we deduce that for every multi-index I and every n > 7/
there are constants N and C' such that for ¢ € (0, 1),

(54) X' (@ * p)(a)l < Cq'(@) V2N olly < C'f (@)™ 2N o 2

Hence, the linear functional Ap = X (¢ * us)(a) on L%(B(0,2)) is bounded
and its norm is estimated by C1/(a)~'/?t~". From the Riesz theorem, we
get

(5.5) 12X pell 22 (B0,2)a) < O (@) "V27N, £ € (0,1).

By the Sobolev inequality, we obtain du;(x) = pi(x) dz with p; € S*°(G)
and for every n and every multi-index I there exist constants C' and N such
that

(5.6) X p(2)] + Y pe(@)] < Ot Vi)Y, te(0,1).

It follows from (5.6) that the p; belong to the domain of the operator
A* for every natural k and

(5.7) |AFpy(z)| < Ct=N®g(z)™t for t € (0,1).

Hence, by (5.6) and (5.7), the function Y po () = Y p, * ps(2) is differen-
tiable with respect to ¢ and

(5.8) OFY pa(x) = (Y pe) * (Afpy) ().
The equality (5.8) combined with (5.6) and (5.7) implies

0FY " py(a)] < Cija) =1 N D
which by (2.1) gives (1.6). m

In order to prove the second part of Theorem (1.5) we need the following
lemma in the spirit of Duflo [Du, Proposition 14].

LEMMA (5.9). For every n and every natural number k there exist a
relatively compact neighborhood U of the origin and a constant C' such that

[ pi(@)ii(z)de < Ct*,  te(0,1).
zgU

Proof. Fix k. Let r be such that suppr C Uy = B(0,r) and let
U =U2. Forp € C=(U) with 0 <+ <1 and ¢ = 1 on UF™ we define a
family of functions 7,, € C°(G) by

(5.10) () = () (1 = $(2))Y(d1/n) -
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Obviously there exists a constant C' independent of n such that

(5.11) (X i (2)] < Cijl), A T(2)| < Ci(z),
(5.12) nlirr;o M(x) =1n(x) forzgU.

Now, define a function h,, by
ha(t) = f T (2)pe(z) dr = Tynn (0) -
G
Obviously h,, € C*°[0,00). Moreover,

(5.13) Nhn(t) = [ (A7) (@)pe(x)d, j=0,1,... k.
G
By (3.10), (5.11) and (5.13), we obtain
\dfhn(t)] <C, j=0,1,...,k t€(0,1), with C independent of n.
Since 6§hn(0) =0 for j =0,1,...,k, we get h,(t) < CtF for t € (0,1),
which by (5.12) and the Lebesgue convergence theorem ends the proof of
the lemma. =

Proof of the second part of Theorem (1.5)

LEMMA (5.14). For every weight 77’, every natural number k and every
multi-index I there exist constants C' and r such that
(5.15) (X pi(z)| < Ctogl(z)~"  for|z| >r t<1.

Proof. Let n > . For a multi-index I let N and C be constants such
that

(5.16) Y (IX7pe(@)| + Y pi(2)]) < Ot Vi)t for t € (0,1).
I7I<II1]
By Lemma (5.9) for a fixed natural number k there are constants [ and C
such that
(5.17) [ pe(@)ii(@) do < CEVFE - for t € (0,1).
|z|>1
Let ¢ € C°(G) with p(z) =1 for || < 2l and 0 < ¢ < 1. Then by (2.1),
we get
17 () X i ()]

<C [ (1= @)pey2) @y X P (w0’ (y) dy

G
+C Y [ ws @)Y (epes2) @y pe )0 (zy ) (y) dy ,
17I<i) G

which combined with (5.16), (5.17) gives (5.15). m



242

J. DZIUBANSKI AND J. ZIENKIEWICZ

COROLLARY (5.18). For every multi-index I, every weight 77’ and any
nonnegative integers s, k there exist C' and r such that

(5.19)

05X T py ()| < CtFPy ()Y fort <1, |z >r.

Proof. Let us remark that 9;,p; = Ap; and 9; and X! commute. Using
the fact that the distribution A has compact support, Lemma (5.4) and
Sobolev inequalities we obtain (5.19). =
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