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A REMARK ON MULTIRESOLUTION ANALYSIS OF Lp(Rd)

BY

QIYU SUN (HANGZHOU)

A condition on a scaling function which generates a multiresolution anal-
ysis of Lp(Rd) is given.

1. Introduction and results. A family of closed subspaces {Vj}j∈Z
of Lp(Rd) is called a multiresolution analysis of Lp(Rd) if

(i) Vj ⊂ Vj+1 and f(x) ∈ Vj if and only if f(2−jx) ∈ V0;
(ii)

⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj = Lp(Rd);

(iii) there exists a scaling function φ with lp stable integer translates such
that

V0 =
{ ∑

k∈Zd

C(k)φ(· − k) :
∑
k∈Zd

|C(k)|p <∞
}
.

We say that a function φ has lp stable integer translates if there exist
0 < A ≤ B <∞ such that

(1) A
( ∑

k∈Zd

|C(k)|p
)1/p

≤
∥∥∥ ∑

k∈Zd

C(k)φ(· − k)
∥∥∥

p
≤ B

( ∑
k∈Zd

|C(k)|p
)1/p

for every sequence {C(k)} ∈ lp. Hereafter we assume 1 < p < ∞ and
write Lp = Lp(Rd) = {f : ‖f‖p = (

∫
Rd |f(x)|p dx)1/p < ∞} and lp =

lp(Zd) = {{C(k)} :
∑

k∈Zd |C(k)|p < ∞}. For simplicity we use
∑

without
index to replace the sum over Zd. We say that a function φ generates a
multiresolution analysis of Lp if φ has lp stable integer translates and the
family of closed subspaces {Vj}j∈Z defined by

Vj =
{∑

C(k)φ(2j · −k) :
∑

|C(k)|p <∞
}

(2)

= Lp closure of
{∑

C(k)φ(2j · −k) : {C(k)} has finite length
}

is a multiresolution analysis of Lp. Hereafter we say that a sequence {C(k)}
has finite length if C(k) 6= 0 except for finitely many k.
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The multiresolution analysis of L2 was introduced by Mallat ([3]) and
Meyer ([4]), and is well examined since we can use the Fourier transform
([2]). It becomes an important and almost unique scheme for construction
of orthonormal bases of wavelets of L2 which are unconditional bases of Lp

(1 < p < ∞) under some conditions. The multiresolution analysis of Lp

(p 6= 2) is still meaningful since the construction of bases of wavelets from
a multiresolution analysis of L2 is still a difficult problem in general, and
a function φ with some decay at infinity which generates a multiresolution
analysis of L2 generates one of Lp also. Define

Lp
∗ =

{
f :
∫

[0,1]d

( ∑
|f(x+ k)|

)p

dx <∞
}
.

Jia and Micchelli ([1]) proved that φ generates a multiresolution analysis
of Lp if φ ∈ Lp

∗ has lp stable integer translates and satisfies the refinement
equation

(3) φ(x) =
∑

a(k)φ(2x− k)

with the mask {a(k)} ∈ l1. Let φ be a distribution having a continuous
Fourier transform. We say that the integer translates of φ are globally lin-
early independent for tempered sequences if φ̂(ξ+2kπ) is not identically zero
on Zd for every ξ ∈ Rd (cf. [6]).

In this paper we will use Fourier analysis to prove

Theorem 1. Suppose the integer translates of φ are lp stable and globally
linearly independent for tempered sequences. If φ satisfies the refinement
equation (3) with

∑
a(k) = 2 and

∑
|a(k)|2(1+ |k|)2l <∞ for some integer

l > d/2, then φ generates a multiresolution analysis of Lp.

In particular, if φ satisfies the refinement equation (3) with {a(k)} ∈ l1,
then the spaces Vj defined by (2) satisfy

(i) Vj ⊂ Vj+1 and f(x) ∈ Vj if and only if f(2−jx) ∈ V0,

since
∑
C(k)φ(x− k) =

∑
(
∑
C(l)a(k − 2l))φ(2x− k) and∑ ∣∣∣ ∑

C(l)a(k − 2l)
∣∣∣p ≤ ( ∑

|a(k)|
)p ∑

|C(l)|p .

Let 1 < q < ∞. We say that a measurable function m is a local Lq

multiplier if for every compact setK there exists a constant CK independent
of f such that

‖(mf̂ )∨‖q ≤ CK‖f‖q

for every f ∈ Lq with supp f̂ ⊂ K, where f̂ and f∨ denote the Fourier
transform and inverse Fourier transform respectively.

Observe that
∑
|a(k)|2(1 + |k|)2l < ∞ for some l > d/2 implies {a(k)}

∈ l1. Therefore the matter reduces to
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Theorem 2. Suppose the integer translates of φ are lp stable and glob-
ally linearly independent for tempered sequences. Assume φ̂ is a continuous
local Lq multiplier for some ∞ > q > max(p, p/(p − 1)). If φ satisfies the
refinement equation (3) with {a(k)} ∈ l1 and φ̂(0) 6= 0, then

⋂
j∈Z Vj = {0}

and
⋃

j∈Z Vj = Lp.

Theorem 3. If φ satisfies the refinement equation (3) with
∑
a(k) = 2

and
∑
|a(k)|2(1+|k|)2l <∞ for some integer l > d/2, then φ̂ is a continuous

local Lq multiplier for 1 < q <∞.

Therefore conditions (i) and (iii) imply (ii) provided φ ∈ L1 and the inte-
ger translates of φ are globally linearly independent for tempered sequences,
since ‖(φ̂f̂ )∨‖q = ‖

∫
φ(·− y)f(y) dy‖q ≤ ‖φ‖1‖f‖q for 1 < q <∞. Observe

that L1 ⊃ Lp
∗ for any 1 ≤ p ≤ ∞ and the integer translates of φ ∈ Lp

∗ which
has lp stable integer translates must be globally linearly independent for
tempered sequences (see also Section 3 below). Hence Theorem 2 improves
the result of Jia and Micchelli ([1]). In particular, Theorem 1 is new even
when p = 2.

The author would like to thank the referee for his (her) useful sugges-
tions.

2. Proofs. The proof of Theorem 2 depends on the following two
technical lemmas.

Lemma 1. Let m be a continuous local Lq multiplier for some q > 2.
Then for every x0 such that m(x0) 6= 0 there exist a compact set K and
a constant C independent of f such that x0 is an inner point of K and
‖(m−1f̂ )∨‖p ≤ C‖f‖p for every f ∈ Lp with supp f̂ ⊂ K where q/(q− 1) <
p < q.

P r o o f. Without loss of generality we assume x0 = 0. Observe that

‖(m̃f̂ )∨‖2 ≤ C sup
B(r)

|m̃(x)| ‖f‖2

for every f ∈ L2 with supp f̂ ⊂ B(r) = {x : |x| ≤ r}, where m̃(x) =
m(x)−m(0) and r > 0. Recall that

‖(m̃f̂ )∨‖p ≤ ‖(mf̂ )∨‖p + |m(0)| ‖f‖p ≤ C‖f‖p

for every f ∈ Lq with supp f̂ ⊂ B(r). Therefore we get

‖(m̃f̂ )∨‖p ≤ C(sup
B(r)

|m̃(x)|)θ‖f‖p

for every f ∈ Lp with suppf̂ ⊂ B(r) by the Marcinkiewicz real interpolation
between 2 and q or q/(q − 1), where q/(q − 1) < p < q and θ = θ(p, q) > 0
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([5], p. 21). Furthermore,

‖(m̃f̂ )∨‖p ≤
1
2
|m(0)| ‖f‖p

holds for every f ∈ Lp with supp f̂ ⊂ B(r0) when r0 > 0 is chosen small
enough by the continuity of m(x). Observe that

m−1(x) = m(0)−1

(
1 +

∞∑
k=1

(
m(0)−m(x)

m(0)

)k )
.

Therefore

‖(m−1f̂ )∨‖p ≤ |m(0)|−1

(
‖f‖p +

∞∑
k=1

∥∥∥∥((
m(x)−m(0)

m(0)

)k

f̂

)∨∥∥∥∥
p

)
≤ 2|m(0)|−1‖f‖p

for every f ∈ Lp with supp f̂ ⊂ B(r0) and Lemma 1 is proved.

Lemma 2. Let Vj defined by (2) for some φ ∈ Lp satisfy Vj ⊂ Vj+1 and
ψ be any Schwartz function. Then for every f ∈ V0 there exists gj ∈ Vj such
that ‖ψ ∗ f − gj‖p → 0 as j →∞.

P r o o f. Let gj(x) = 2−jd
∑

k ψ(2−jk)f(x− 2−jk) ∈ Vj . Then

‖gj − ψ ∗ f‖p ≤
∑

k

∫
[0,2−j ]d

|ψ(y + 2−jk)− ψ(2−jk)| dy ‖f‖p

+
∑

k

2−jd|ψ(2−jk)|ωp(f, 2−j)

≤ C2−j‖f‖p + Cωp(f, 2−j) → 0 as j →∞,

where ωp(f, t) = sup|y|≤t ‖f(· − y)− f(·)‖p, and Lemma 2 is proved.

Now we start to prove Theorem 2. First, Y =
⋂

j∈Z Vj = {0}. Let K0

be a compact set such that for every ξ ∈ Rd there exists η ∈ K0 such that
φ̂(η) 6= 0 and (ξ− η)/(2π) ∈ Zd since the integer translates of φ are globally
linearly independent for tempered sequences. Then for every ξ0 6∈ K0 there
exists a Schwartz function ψ such that supp ψ̂ ∩ K0 = ∅ and ψ̂(ξ0) = 1.
Let f be any function in Y . Therefore ψ ∗ f ∈ Y ⊂ V0 by Lemma 2 and
ψ̂(ξ)f̂(ξ) = τ(ξ)φ̂(ξ), where τ(ξ) =

∑
C(k)eikξ is a 2π-periodic distribution

and {C(k)} ∈ lp. Let η0 be some point in K0 such that φ̂(η0) 6= 0 and
(ξ0 − η0)/(2π) ∈ Zd. Therefore τ(ξ) = 0 on some neighborhood of η0
and furthermore on some neighborhood of η0 + 2πZd since ψ̂f̂ = 0 in some
neighborhood of η0, φ̂(η0) 6= 0 and τ is 2π-periodic. Hence f̂(ξ) = 0 on some
neighborhood of ξ0 and supp f̂ ⊂ K0 for every f ∈ Y . Observe that f ∈ Y
if and only if f(2j ·) ∈ Y for j ∈ Z and any function f with supp f̂ = {0}
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is a nonzero polynomial. Recall that K0 is bounded. Therefore supp f̂ = ∅,
f = 0 and

⋂
j∈Z Vj = {0}.

Second,
⋃

j∈Z Vj = Lp(Rd). Define

X ′ = {f ∈ Lp : suppf̂ is compact in Rd}
and X =

⋃
j∈Z Vj . Therefore the matter reduces to X ′ ⊂ X since X ′ is

dense in Lp and X is a closed subspace of Lp. Let f be any function in X ′.
Recall that φ̂(0) 6= 0. Therefore there exists a positive integer j1 such
that |2−j1y| ≤ π/2 and |φ̂(2−j1y)| ≥ 1

2 |φ̂(0)| for any y ∈ supp f̂ . Since φ̂
is a local Lq multiplier for some q > max(p, p/(p − 1)), by Lemma 1 we
get τ(ξ)∨ = (φ̂(2−j1ξ)−1f̂(ξ))∨ ∈ Lp, where we set τ(ξ) = φ̂(2−j1ξ)−1f̂(ξ).
Furthermore,

∑
|τ∨(2−j1k)|p <∞ by the Shannon sampling theorem which

says that the Lp norm of a function f whose Fourier transform is supported
in [−π/2, π/2]d is equivalent to the lp norm of the sampling values of f at
the integer lattice points. Let

g(x) = 2j1d
∑

k

τ∨(2−j1k)φ(2j1x− k) ∈ Vj1 ⊂ X

and ψ be some Schwartz function such that ψ̂ = 1 on supp f̂ and supp ψ̂ ⊂
{|y| ≤ 2j1−1π}. Then̂(ψ ∗ g)(ξ) = ψ̂(ξ)ĝ(ξ) = ψ̂(ξ)

( ∑
k

τ∨(2−j1k)ei2−j1ξk
)
φ̂(2−j1ξ) = f̂(ξ) ,

f = ψ ∗ g ∈ X by Lemma 2 and Theorem 2 holds true.

The proof of Theorem 3 depends on the following lemma.

Lemma 3. If Dαm ∈ L2
loc for all |α| ≤ l and some integer l > d/2,

then m is a continuous local Lq multiplier for all 1 < q <∞, where Lq
loc =

{f :
∫

K
|f(x)|q < ∞ for every compact set K}, and α = (α1, . . . , αd) and

|α| =
∑d

i=1 |αi|.

The proof of Lemma 3 follows from the Marcinkiewicz multiplier theorem
([5], p. 96).

Now we start to prove Theorem 3. Let φ satisfy the refinement equation
(3) with the mask {a(k)}. Define H(ξ) = 1

2

∑
k a(k)e

ikξ. Observe that
φ̂(ξ) =

∏∞
j=1H(ξ/2j)φ̂(0) and

Dαφ̂(ξ) =
∑

α1+...+αs=α
αi∈Zd,αi 6=0

Cα,α1,...,αs

∑
j1,...,js

s∏
m=1

DαmH

(
ξ

2jm

)

× 2−jm|αm|
∏

j 6=j1,...,js

H

(
ξ

2j

)
.
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Therefore the matter reduces to proving
∑

j1,...,js

∏s
m=1 |DαmH(ξ/2jm)|

× 2−jm|αm| ∈ L2
loc, or there exist C and ε > 0 independent of j1, . . . , js for

every R ≥ 1 and every α with αm 6= 0 and |α| =
∑s

m=1 |αm| ≤ l0 = [d/2]+1,
such that∫

|x|≤R

( s∏
m=1

∣∣∣∣DαmH

(
ξ

2jm

)∣∣∣∣2−jm|αm|
)2

dx ≤ C2−ε(j1+...+js) ,

where [x] denotes the integer part of x. Recall that
∑

k |a(k)|2(1 + |k|)2l <
∞. Therefore DαH ∈ L2

loc for every |α| ≤ l0. By the Sobolev imbedding
theorem ([5], p. 124), DαH ∈ Lpα

loc for every pα such that 1/pα > 1/2− (l0−
|α|)/d. Since

s∑
m=1

(
1
2
− l − |αm|

d

)
<

1
2
,

there exist pαm such that DαmH ∈ L
pαm

loc , 1/r =
∑s

m=1 1/pαm ≤ 1/2 and
d/pαm < |αm|. Therefore∫

|x|≤R

( s∏
m=1

∣∣∣∣DαmH

(
x

2jm

)∣∣∣∣2−jm|αm|
)2

dx

≤ C

( ∫
|x|≤R

( s∏
m=1

∣∣∣∣DαmH

(
x

2jm

)∣∣∣∣2−jm|αm|
)r

dx

)2/r

≤ C

s∏
m=1

( ∫
|x|≤R

∣∣∣∣DαmH

(
x

2jm

)∣∣∣∣pαm

dx

)2/pαm

2−2jm|αm|

≤ C

s∏
m=1

2jm(−2|αm|+2d/pαm ) ≤ C2−ε(j1+...+js) ,

where ε is chosen as min(2|αm| − 2d/pαm) and Theorem 3 is proved.

3. Remarks. If φ has compact support, then

(4)
∥∥∥∑

k

C(k)φ(· − k)
∥∥∥

p
≤ B

( ∑
k

|C(k)|p
)1/p

holds if and only if φ ∈ Lp. Jia and Micchelli ([1]) proved that φ ∈ Lp
∗, i.e.∫

[0,1]d

( ∑
k

|φ(x+ k)|
)p

dx <∞ ,

is a sufficient condition for (4) to hold. Obviously φ ∈ Lp is a necessary
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condition. By the inequalities for Rademacher functions ([5], pp. 104, 276),
we know that (4) implies∫

Rd

( ∑
k

|C(k)|2|φ(x+ k)|2
)p/2

dx ≤ C
∑

k

|C(k)|p .

Furthermore, we have∫
[0,1]d

( ∑
k

|φ(x+ k)|2
)p/2

dx

≤ C lim
k→∞

2−kd
∑
|s|≤2k

∫
[0,1]d

( ∑
|j|≤2k+1

|φ(x+ j − s)|2
)p/2

dx

≤ C lim
k→∞

2−kd
∫

Rd

( ∑
|j|≤2k+1

|φ(x+ j)|2
)p/2

dx <∞ .

Therefore ∫
[0,1]d

( ∑
k

|φ(x+ k)|2
)p/2

dx <∞ ,

which is stronger than φ ∈ Lp when p > 2, is a necessary condition for (4)
to hold.

For some functions {φs}N
s=1, define

Vj =
{ N∑

s=1

∑
k

Cs(k)φs(x− k) :
N∑

s=1

∑
k

|Cs(k)|p <∞
}
.

Then the corresponding result of Theorem 2 holds (see [1], [6] for the defi-
nition of lp stable integer translates of {φs}N

s=1).
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