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1. Introduction. In [11] Petersen gave a direct proof of Cotlar’s [8]
result on the existence a.e. and boundedness of the ergodic Hilbert transform
defined by a measure-preserving invertible transformation on a probability
space (X, p). Petersen’s proof consists in proving ¢P-inequalities for the
maximal discrete Hilbert transform on sequence spaces and then applying
Calderén’s transference principle ([6], also [7]).

In this paper we study a class of operators, called singular series op-
erators (Definition 2.1), which are discrete analogues of singular integral
operators on R ([13], [14]). By transference, we then consider the corre-
sponding ergodic operators on LP-spaces of Banach space valued functions
on X, for suitable Banach spaces B.

In Section 2, the singular series operators are defined as convolution
operators on the sequence spaces £, 1 < p < oo, and we show that the
associated maximal operator is bounded on /P for 1 < p < oo and is of weak
type (1,1). This result can be proved by standard real variable methods
using Calderén—Zygmund decomposition. We prove the maximal operator
inequalities by transferring these from the corresponding inequalities on R.
This transference works for Banach space valued sequence spaces ¢4, where
B is a Banach space. The singular integral operators are well behaved on the
Banach space valued function spaces L% (R) if B is a UMD space (uncon-
ditional martingale differences) with an unconditional basis. UMD spaces
were discovered by Burkholder ([4]). A Banach space B is a UMD space
iff the Hilbert transform is a bounded operator on L5 (R), 1 < p < oo ([4]
and [2]). A UMD space can also be characterized by the boundedness of the
discrete Hilbert transform on ¢4, ([1]) . For a geometric characterization, we
refer to [5].

In Section 3, we define the ergodic singular operators and using the
transference principle as in [11], we prove the existence a.e. and boundedness
of these operators on the spaces L7 (X) consisting of B-valued (strongly)
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measurable functions on X with [, ||f(z)||” du(x) < co, where B is as in
the above paragraph.

Throughout we write C1, C,, C etc. for positive constants which may
vary from one line to the next. Z denotes the additive group of integers, T
the circle group. We write || ||, for the norm in ¢? as well as in L%, as the
case may be. For a subset E of Z, card ¥ denotes the cardinality of E.

2. Singular series operators on sequence spaces

2.1. DEFINITION. A sequence ¢ = {¢(n)}nez is said to be a singular
kernel if there exist constants C';, Cy > 0 such that

N
(S1) Z ¢(n) converges as N — oo,
n=—N
(52) ¢(0) =0 and |p(n)| <Ci/|nl, n#0,
(S3) [6(n+1) — ¢(n)| < Ca/n®,  n#0.

Clearly a singular kernel ¢ is in £" for all 1 < r < co. Hence the convolution
dxa(n) = 3 6(n — Ka(k) = Tya(n)
kEZ

is defined for all a = {a(n)}nez in 7, 1 < p < oo (in fact also for a € £
where B is any Banach space). The kernel of the discrete Hilbert transform,
¢(n) = 1/n, is an example, as is also ¢(n) = 1/(nlog|n|), n # 0, +1.

It is not difficult to see that if ¢ is a singular kernel, then the truncations
on, N > 1, defined as ¢n(n) = ¢(n) for |n] < N and 0 otherwise, satisfy

(S3)’ sup > |on(k—n) —on (k)| < Co
" k|>2|n|

where C does not depend on N. This fact is needed in §2.3. We remark
that the {¢x} need not satisfy (S3) uniformly in N (take ¢(n) = 1/n as an
example).

2.2. The following proposition along with the Plancherel theorem shows
that the operator T} , where Tya(n) = ¢ * a(n), is bounded on £2.

PROPOSITION. If ¢ = {p(n)}nez is a singular kernel, then gg € L>(T).

Proof. Observe that
N
¢(t) = lim > ¢(k)e ™ = lim ¢n,(t) ac.,
Jj—00 j—00
k=—N;
for some subsequence N, so that it is enough to prove that sup ||<;AS Nlloo <
o0o. Fix N >1and t € T. We will choose m, depending on N and ¢, to
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estimate ngbN(t):
GOl =| > otk)e ™
k=—N

S‘ Z ¢(k>e—z‘kt +’ Z ¢(k)eiikt

|k|<m m<[k|<N

=A1+ As.

Let m = min(N, [7/|t|]), where for a non-negative real number «, [«] denotes
the largest integer less than or equal to a. Then

A< | Y o)™ 1| +| D (k)|

[k|<m |k|<m
< 3 [¢lk)|[kt| + C < Cr2mlt| + C < C,
[k|<m

using (S1), (S2) and the choice of m.
For estimating As we have m < N, and so

N N
A< | 30 e ™| | DD ok | = Ap + Ay
k=m+1 k=m+1
and
Nt k .. N ..
A=| 3 @R -0k +1) D eI o) Do e
k=m+1 j=m+1 j=m+1
N-1
<| Y0 (@) — ok + 1)1/ sint/2| + [6(N)|[1/sint/2]
k=m++1
N-1 Crn
< C|1/sint/2|{ k:Zm:H 1k + 1/N} < i <€

since |1/sint/2| < 7 /|t| for t € [—m,n| and by the choice of m, we have
m > (m+1)/2 > 7/(2|t]). The estimate for AY is similar. This completes
the proof of the proposition.

2.3. With Proposition 2.2 and (S3)’, the kernels {¢n} satisfy the hy-
pothesis of Corollary 2.4.5 of [10], so that the operator T (T} in the notation
of [10]) is bounded on ¢? for 1 < p < oo and is of weak type (1,1).

In the following theorem we show that in fact the maximal operator

defined as
N
Tja(n) = 51]\1[p ‘ Z o(k)a(n — k)
k=—N

is bounded on 7 for 1 < p < oo and is of weak type (1,1).
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2.4. THEOREM. Let ¢ be a singular kernel and 1 < p < oco. Then there
exists a constant C, > 0 such that

(i) [Thall, < Cpllallp,  Ya€l?, if 1 <p<oo,
C
(i)  card{j € Z:Tja(j) > A\} < 71\|a||1, VYA >0 anda e (*.

Before proving the theorem we observe that if ¢ is a singular kernel and
we let K be the linear extension of ¢ to R , then K is locally integrable and
satisfies :

(K1) f K (z)dx converges as € — 0,
e<|z|<1/e

(K2) [K ()| < C/lz|,  =#0,

(K3) K (2) — K(z —y)| < C'lyl/a*  for x| > 2Jy|.

Then K is a Calderén-Zygmund singular kernel on R ([14], Ch. XI, §5).
The principal value integral
T f(z) =pv. [ K(z—y)f(y)dy
is defined a.e. for f € LP(R), 1 < p < oo, and the maximal operator
Tif@) =sw| [ K@-yi@)dy

e>0
e<|z—y|<1/e

satisfies

(i) Tk fllp < Cpllfll, for 1 <p< oo,
.. y C

(ii) m{z € R:T:f(z) > A} < TIHle

(where m denotes the Lebesgue measure on R).
For these results we refer to [14] , Theorems 6.2 and 6.3 in Ch. XI.
Proof of Theorem 2.4. Let a = {a(k)}rez € ¢ and define
f(@) =2 alk)xr.(z)
keZ
where I}, = [k — 1/4,k + 1/4] and x; denotes the characteristic function of

I. Clearly f € LP(R) with ||f|, = 1|lall,- Fix n > 0; then for j € Z and
x € I;, we have

Y alkgli-k -2 [ K@-yfydy

lk—j|>n |z—y|>n+1/2

=2 > [ (e —k) - K(z—y)fy)dy.

|k—j|>n yEl}
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If x € I;, y € I, and j # k, we have |x—y—j+k|§%§%| — k| so that
by (K3),

. C
9(j — k) — K(z —y)| < G
Hence
| Y ameli-k-2 [ K-/
[k—j|>n |a: y|>n+1/2
IO 4 osie
<C|k§]|:>ny€£ 5 dy <om y{l/z(x_yy dy = CSf(x).

Therefore, if x € I; then
| ST ke — B < C(Tis (@) + S1().
lk—j|>n
In particular, putting n = 0,
Toa(j)| < C(Tk f(x) + Sf(x)) for z €I

and

> alk)ot k)

[k—j|<n

< Tja(i) +sup| 2 a(k)e(j - k)|

™ k—j>n

Tja(j) = sup

n

<C(Txf(x)+ Sf(x)), =zelj.
From this the conclusion of Theorem 2.4 follows, since using Holder’s in-
equality we have ||Sf|l, < C||f|l, for 1 <p < oo .

2.5. If B is a Banach space for which the maximal singular integral
operators

Tif@) =sw| [ K@-y)/w) feLy®),
e>0
e<|z—y|<1/e
satisfy inequalities (i) and (ii) of Section 2.4, where now || - ||, denotes the

norm in L% (R), then the above proof works and Theorem 2.4 holds for the
sequence spaces ¢%;. In particular, this is the case if B is a UMD space
with an unconditional basis ([3] and [12]). We remark that the geometric
properties of the Banach space do not play any role in the above transference.

3. Ergodic operators

3.1. Let (X, u) be a probability space and U an invertible measure-
preserving transformation on X. In this section, we assume that B is a
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UMD space with an unconditional basis. Then by 2.5 above, Theorem 2.4
holds for the B-valued sequence spaces ;.

If $ = {¢(n)}nez is a singular kernel and f € L% (X), consider the
operator defined, a priori, as

Tof(x) =) o) (U x).
JEz
We observe that for f € L (X), the sequences { f(U 7x)};ez need not be in
the sequence spaces %, so that nothing can be said about the convergence

of the series defining T, »f. We show below that if B is reflexive then the
operator is well defined for f belonging to a dense subspace of L% (X).
In particular, this is so for a UMD space, since such a space is always
reflexive [5].

3.2. LEMMA. Let B be a reflerive Banach space, and U an invertible
measure-preserving transformation on a probability space (X, u). Let 1 <
p <2 and

D={f:f=g—goU withge LF(X)} +{fe L} (X): f=foU}.
Then D is dense in L (X).

Proof. For a reflexive Banach space B with dual B*, the dual of L% (X)
is L%/*(X), where 1/p+1/p’ = 1 ([9]). Suppose h* € L%’*(X) and (f,h*) =0,

VfeD.
First, if f=g—goU, g € LE(X), we have

0=(f.0") = [ {g(x) — g(U),h" (@) du(z)

X

= [ {g(@),h* () = (U '2)) du(x)
X
= (g,h* —h*oU ).
Since this holds for all g € L% (X), a dense subset of L% (X), we conclude
h*(z) =h* (U 'z) ae.
Now observe that h* is almost separably valued, i.e. the space M =

(ess. range h*)~ is separable and reflexive, so that M™ is also separable.
Let {b;} be a countable dense set in M* ~ B/M~* and put f;(z) =

(b;, h* (x))b;. Then f; € LE(X) if 1 < p < 2, since h* € L. (X). Also if
h* = h*oU, we have f; = f;j oU so that f; € D and (f;,h*) = 0 implies

[ 14bg, b (@) dpa() = 0.

Hence (b;, h*(x)) = 0 a.e., V b;. But then h* =0 a.e.
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3.3. LEMMA. Let ¢ = {p(n)}nez be a singular kernel. Then the series
Z]kV:_N é(k)f(U~Fx) converges a.e. for all f € D.
Proof. If f = foU, this is obvious by (S1). If f = g—goU, g € L (X),

we use a partial summation formula:

| > emrwa)

N<[k|<M
=| > smtewra) - gt
N<|k|<M

M—-1 —N-1

<lgle( 3+ 30 )lotk) — ok + 1)

k=N k=—-M
+ lglloc (lo(N) + [¢(=N)[ + [#(M)] + [¢(= D))

M
C

< 19lleo 12+ ——— N, M )

= ol <C,§N/ +min(M,N))H0 ceE

3.4. In the following theorem we prove the boundedness of the maximal
ergodic singular operator by transferring the result of Theorem 2.4. This
transference works exactly as it does for the ergodic Hilbert transform ([11]).
The details are given below for completeness.

THEOREM. Let ¢ = {¢(n)} be a singular kernel, (X, u) a probability
space and U an invertible measure-preserving transformation on X. Then
the maximal ergodic singular operator

N
Tif(x) =sup| S FU " 2)o(k)
N k=N
satisfies
(i) ||f;f|’p§0p”f"p if 1<p<oo,

~ C
(ii) uf{r e X : T;f(:r) >\ < XHle, Vf e LI(X) and A > 0.
Proof Fix N > 0 and let

Tif(@) = suwp | > U 2)o(k)|.

1<n<N b =

It is enough to prove that T} satisfies (i) and (i) with constants not de-
pending on N. Let A > 0 and put

Ey={ze X :Tyf(x)>A}.
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Since U is measure-preserving, we have

W(Ex) = p(U"™Ex)  ¥m
M

:2M+ :Z_: UTmEN) M
:2M+1 Z {x:ISSBEN‘Zf —k+m ., ())>)\}

For z lying outside a p-null set, we can define

M () = {f(ka) if |k| < M + N,

aiE .
0 otherwise.

Then, using Theorem 2.4 and Fubini’s theorem, we get

e = gy 2 e | 3 an—a] >}

= 1<n<N
1
<
_2M+1(Card XM){( 1<SBEN‘ Z (k)‘ S )\}
1 M
< - o
~2M +1 f card{m : Tga; (m) > A} dp(x)
< p
_2M+1)\pgz|a DIP dp(z)
1 C M+N
< “p i\
“2M 41 Z f |f(U7z)|P du(x)

j=—M-—-N X
_ @ww”p
N 2M +1 P

and so by choosing M large enough,

p(E) < 2

Conclusion (i) of the theorem now follows by using the Marcinkiewicz inter-
polation theorem.

£, YA>0.

3.5. As remarked earlier, if B is a UMD Banach space with an uncon-
ditional basis, then Theorem 2.4 holds for the sequence spaces £;. In that
case Theorem 3.4 holds for L% (X) with the same proof upon replacing |-| by
the norm in B wherever necessary. For such Banach spaces, Tv(z, is defined
on a dense subset of L7 (X) by Lemmas 3.2 and 3.3. Then Theorem 3.4
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and standard arguments show that iﬁ [ is defined a.e. for all f € LE(X),
1 <p<oo.
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