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Finite atomistic lattices that can be

represented as lattices of quasivarieties

by

K. V. Ada r i c h ev a (Novosibirsk), W. Dz i ob i a k (Toruń)

and V. A. Go rbunov (Novosibirsk)

Abstract. We prove that a finite atomistic lattice can be represented as a lattice of
quasivarieties if and only if it is isomorphic to the lattice of all subsemilattices of a finite
semilattice. This settles a conjecture that appeared in the context of [11].

Introduction. A quasivariety is any universal Horn class of algebraic
systems that contains a trivial algebraic system, or equivalently, any class of
algebraic systems that is closed under isomorphic images, subsystems, direct
products (including direct products of empty families), and ultraproducts.
The set of all quasivarieties contained in a given quasivariety K forms, with
respect to inclusion, a lattice denoted by Lq(K). In [16], A. I. Mal’cev asked
which lattices can be represented up to isomorphism as lattices of the form
Lq(K), where K ranges over all quasivarieties. The question has been named
in the literature Mal’cev problem for Q-lattices, where a Q-lattice is a lattice
isomorphic to any lattice of the form Lq(K). So far a complete solution of
Mal’cev problem is only known within the class of Boolean lattices ([11]),
the class of lattices of convex subsets of partially ordered sets ([2]) and the
class of finite distributive lattices ([20]).

In [11], it was shown that every lattice Sp(A) of algebraic subsets of an
algebraic lattice A ordered by inclusion is a Q-lattice, where by an algebraic
subset of A is meant any subset of A that is closed under arbitrary meets
and joins of arbitrary chains formed in A. Notice that Sp(A) is always an
atomistic lattice, i.e. every non-zero element of Sp(A) is the join of the atoms
under it. These and other properties of Sp(A) lead in [11] to the question
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whether every atomistic Q-lattice is isomorphic to Sp(A) for some algebraic
lattice A. Next, it was conjectured that the question should have an affir-
mative answer at least within the class of finite lattices. The conjecture in a
slightly modified but equivalent form postulates that every finite atomistic
Q-lattice is isomorphic to a lattice of the form Sub(P ), where P is a finite
semilattice and Sub(P ) is the lattice of all subsemilattices of P with empty
set as zero. The main aim of this paper is to prove that the conjecture is
true.

In [1], certain pure lattice-theoretical necessary and sufficient conditions
were given for a finite atomistic lattice to be isomorphic to Sub(P ); we recall
them in Section 2. In this paper we show that they are satisfied by every
finite atomistic Q-lattice. We show first in Section 1 that every Q-lattice
is biatomic and has a certain map, called an equa-closure operator, defined
on it (for the definitions, see Section 1). Next, we show in Sections 3, 4
and 5 that every finite atomistic lattice that is biatomic and admits an
equa-closure operator satisfies the conditions given in [1]. As a result we
obtain the following

Theorem. For a finite atomistic lattice L the following conditions are

equivalent :

(i) L is a Q-lattice;
(ii) L is biatomic and admits an equa-closure operator ;
(iii) L is isomorphic to Sub(P ) for some finite semilattice P ;
(iv) L is isomorphic to Lq(K) for some quasivariety K of rings.

We want to mention that the class of all lattices of the form Sub(P )
generates the variety of all lattices (see Freese and Nation [8]).

1. Biatomicity and equa-closure operator. A lattice order of any
lattice occurring in this paper will be denoted by ≤, and the lattice meet
and join of any its two elements a and b by ab and a+ b, respectively. The
smallest and greatest elements of a lattice L (if they exist) will be denoted
by 0 and 1, respectively. If a, b are atoms of L, then we shall write a ∼ b
whenever either a = b, or a 6= b and the interval [0, a + b] in L consists of
0, a, b and a+ b. A lattice L is said to be atomic if it has 0 and for each b
in L different from 0 there exists an atom a of L with a ≤ b. L is said to
be atomistic (see [13] or [19]) if it is atomic and every non-zero element of
L is the join of the atoms under it. A lattice L is said to be biatomic (see
Bennett [4], also Birkhoff and Bennett [5]) if it is atomic and, for each atom
a of L and all b, c in L, a ≤ b+ c implies a ≤ b′ + c′ for some atoms b′, c′ of
L with b′ ≤ b and c′ ≤ c.

The least quasivariety containing a class K of algebraic systems will
be denoted by Q(K), and instead of Q({A}) we shall write Q(A). A re-
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sult of Mal’cev [17] (see also Grätzer and Lakser [14]) states that Q(K) =
ISPPU(K), where I, S, P and PU denote the operators of forming isomor-
phic copies, subsystems, direct products (including direct products of empty
families), and ultraproducts, respectively. The operator of forming homo-
morphic images is denoted by H.

We now proceed to show that every Q-lattice is biatomic. First, however,
we want to mention that so far only few nontrivial properties of Q-lattices
are known to be expressible in the first-order lattice language. The first
such property, already noticed by Mal’cev [17], is the atomicity of Q-lattices.
The second, observed in [10], is the join-semidistributivity. The third is the
property saying that the lattice join of a finite set of n atoms contains at
most 2n − 1 atoms below (see [7]). Thus biatomicity is another first-order
property that is shared by every Q-lattice. This property together with the
existence on a Q-lattice of an equa-closure operator defined below will play
an essential role in our considerations.

Proposition 1.1. Every Q-lattice is biatomic.

P r o o f. Let L be a Q-lattice. Then L ∼= Lq(K) for some quasivariety K.
We show that Lq(K) is biatomic. Let A, B and C be elements of Lq(K) with
A being an atom and A ≤ B + C. Notice that it suffices only to show that
A ≤ D + C for some atom D of Lq(K) with D ≤ B. Let A be a fixed non-
trivial algebraic system of A. Since A is an atom, we have A = Q(A). So, as
A ≤ B+C and B+C = ISP(B∪C), it follows that there exist congruence
relations ΘB and ΘC on A with A/ΘB ∈ B, A/ΘC ∈ C and ΘB ∧ΘC = idA

(see [12]). We may assume that A/ΘB is non-trivial since otherwise A ∈ C

and hence A ≤ C from which the biatomicity of Lq(K) immediately follows.
This assumption gives that Q(A/ΘB) 6= OK. So, as Lq(K) is atomic, there
exists an atom D of Lq(K) with D ≤ Q(A/ΘB). Pick a non-trivial algebraic
systemD from D. AsD ∈ Q(A/ΘB), D is isomorphic to a subdirect product
of some family of non-trivial algebraic systems belonging to SPU(A/ΘB). In
particular, there exists a homomorphism of D onto a non-trivial system, say
D′, which is a subsystem of some ultrapower, say,

∏

U(A/ΘB)I , of A/ΘB .
Define ϕ0 :

∏

UA
I →

∏

U(A/ΘB)I by

ϕ0([〈ai : i ∈ I〉]ΘU) = [〈[ai]ΘB : i ∈ I〉]ΘU .

Similarly, define ϕ1 :
∏

UA
I →

∏

U(A/ΘC)I by

ϕ1([〈ai : i ∈ I〉]ΘU) = [〈[ai]ΘC : i ∈ I〉]ΘU .

Obviously, both maps are homomorphisms and Ker ϕ0 ∧ Ker ϕ1 = idΠUAI

because ΘB ∧ΘC = idA. Hence the map ϕ(x) = (ϕ0(x), ϕ1(x)) establishes
an embedding of

∏

UA
I in

∏

U(A/ΘB)I ×
∏

U(A/ΘC )I . Recall that D′ is
a subsystem of

∏

U(A/ΘB)I . Let D′′ be a subsystem of
∏

UA
I that is the

pre-image of D′ under ϕ0, and let C be the image of D′′ by ϕ1. Then the
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map ϕ restricted to D′′ embeds D′′ in D′ ×C. So, as D′ is a homomorphic
image of D, we obtain D′′ ∈ HSP({D,C}). But D′′ ∈ Q(A) and hence
Q(D′′) = Q(A) since D′′ is non-trivial and Q(A) is an atom in Lq(K).
Therefore, A ∈ HSP({D,C}). Evidently, D ∈ HSP(A) and C ∈ HSP(A).
Thus HSP(A) = HSP({D,C}) which, by A = Q(A) and D = Q(D), implies
F ∈ D+Q(C) where F is a free algebraic system of A with ω free generators.
So, as A is an atom, A = Q(F ), and, as Q(C) ≤ C, we obtain A ≤ D + C,
proving that Lq(K) is biatomic and so is L.

Given a quasivariety K. Define a map h : Lq(K) → Lq(K) by h(M) =
H(M) ∩ K. It is easy to see that the map has all properties of an abstract
closure operator defined on a lattice. The map has, however, its own char-
acteristic properties, independently of what quasivariety is taken as K. It
turned out (see [2] and [7]) that discovering the characteristic properties of
h is very helpful for recognizing the inner structure of the lattice Lq(K), or
more generally, of any Q-lattice. In [2], an approach is proposed to look at
h as an abstract operator acting on a lattice and to isolate its characteristic
properties in the form of axioms. Seven such axioms were postulated in
[2]. We adjoin to them a new one and show that every finite atomistic and
biatomic lattice on which it is possible to define an operator satisfying all
those eight axioms meets the conditions given in [1] for a finite atomistic
lattice to be isomorphic to Sub(P ). This will occupy most of the paper.

Let L be a complete lattice. A function h : L → L is said to be an
abstract closure operator if, for a, b ∈ L,

(h1) a ≤ h(a);

(h2) h(h(a)) = h(a);

(h3) a ≤ b implies h(a) ≤ h(b).

Notice that the set h(L) of h-closed elements of L is closed under arbi-
trary meets formed in L and h(1) = 1. Hence h(L) has the structure of a
complete lattice.

An abstract closure operator h : L → L is said to be an equa-closure

operator (cf. [2]) if, for a, b, c ∈ L,

(h4) h(0) = 0;

(h5) h(a) = h(b) implies h(a) = h(ab);

(h6) h(a)(b + c) = h(a)b+ h(a)c;

(h7) Every element of h(L) is the lattice meet formed in L of some family
of dually compact elements of L.

An example of an abstract closure operator satisfying (h4)–(h7) is the
map h : Lq(K) → Lq(K) defined above (see [2] for the proof). In the sequel,
this map will be called the actual equa-closure operator of Lq(K).
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The existence on a complete lattice L of an abstract closure operator
satisfying (h1)–(h7) yields that the structure of L cannot be arbitrary. For
instance, the join of a finite set of n atoms of L can contain at most 2n − 1
atoms below. This property was proved first for L being a Q-lattice and
next extended to arbitrary L admitting a map with (h1)–(h7) (see [7] and
[2]). This seems to justify the abstract approach adopted here (see also [2]).

The new axiom we want to adjoin is the following, where a, b, c, d are
arbitrary atoms of L:

(h8) a ∼ d, d 6≤ h(a), d ≤ h(c) and h(c) = h(a+ b) imply h(c) = h(d+ b) .

Thus an equa-closure operator is any abstract closure operator satisfying
(h4)–(h8). The axiom (h8) has been isolated from the corresponding prop-
erty of h (see Proposition 1.2 below).

We say that a complete lattice L admits an equa-closure operator if there
exists a map defined on L that satisfies all axioms (h1)–(h8).

Proposition 1.2. For each quasivariety K, the actual equa-closure op-

erator h : Lq(K) → Lq(K) satisfies (h8). In particular , every Q-lattice

admits an equa-closure operator.

P r o o f. Let A, B, C and D be atoms of Lq(K) such that A ∼ D,
D 6≤ h(A), D ≤ h(C) and h(C) = h(A+B). Let F denote the free algebraic
system in C with ω free generators. As C is an atom, C is generated by
F , that is, C = ISPPU(F ). As h(C) = h(A + B), the algebraic system
F is also free in h(A + B), and, therefore, it belongs to A + B. Hence
F ∈ ISP(A∪B) since A+B = ISPPU(A∪B) = ISP(A∪B). So there exist
congruence relations ΘA and ΘB on F such that F/ΘA ∈ A, F/ΘB ∈ B

and ΘA ∧ ΘB = idF . We may of course assume that F/ΘA is non-trivial
since otherwise F ∈ B and then h(C) = h(D + B). As A is an atom,
the assumption implies that F/ΘA generates A. On the other hand, as
D ≤ h(C) and D is an atom, there must exist a congruence relation ΘD

on F such that F/ΘD generates D. We may assume that A 6≤ h(D) since
otherwise the conclusion is immediate. We claim that the quotient system
F/ΘA ∧ΘD generates A + D. Evidently, F/ΘA ∧ΘD ∈ A + D and, as the
lattice Lq(K) is atomic and A ∼ D, it follows that either A = Q(F/ΘA ∧
ΘD), or D = Q(F/ΘA ∧ ΘD), or A + D = Q(F/ΘA ∧ ΘD). Since F/ΘA

generates A and F/ΘD generates D, we have A ≤ h(Q(F/ΘA ∧ ΘD)) and
D ≤ h(Q(F/ΘA ∧ ΘD)). So, as A 6≤ h(D) and D 6≤ h(A), we obtain
A + D = Q(F/ΘA ∧ΘD) which proves the claim.

As A 6≤ h(D), applying (h6) we obtain h(D)(A + D) = D. It follows
that D is generated by an algebraic system, say, D, that is subdirectly
irreducible in A + D. By the above claim D is isomorphic to a subsystem,
say, D′, of some ultrapower

∏

U(F/ΘA ∧ΘD)I of F/ΘA ∧ΘD.
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Now, define ϕ0 :
∏

U F
I →

∏

U(F/ΘA ∧ΘD)I by

ϕ0([〈ai : i ∈ I〉]ΘU) = [〈[ai]ΘA ∧ΘD : i ∈ I〉]ΘU .

Similarly, define ϕ1 :
∏

U F
I →

∏

U(F/ΘB)I by

ϕ1([〈ai : i ∈ I〉]ΘU) = [〈[ai]ΘB : i ∈ I〉]ΘU .

Both maps are homomorphisms and, as ΘA ∧ΘD ∧ΘB = idF because ΘA ∧
ΘB = idF , Ker ϕ0∧Ker ϕ1 = idΠUF I . Hence the map ϕ(x) = (ϕ0(x), ϕ1(x))
establishes an embedding of

∏

U F
I in

∏

U(F/ΘA ∧ ΘD)I ×
∏

U(F/ΘB)I .
Denote by D′′ a subsystem of

∏

U F
I that is the pre-image of D′ under

ϕ0, and by B the homomorphic image of D′′ by ϕ1. Then ϕ restricted
to D′′ embeds D′′ in D′ × B and ϕ0(D

′′) = D′. Hence, as D′ ∈ D and
B ∈ B, it follows that D′′ ∈ D + B. Notice that D′′ generates C because
D′′ is non-trivial and C is an atom. Thus C ≤ D + B and, therefore,
h(C) = h(D + B) since D,B ≤ h(C), showing that h satisfies (h8).

The following example shows that (h8) does not follow from (h1)–(h7).
Let P be a meet semilattice whose diagram is given in Figure 1, and let
ε be a binary relation defined on P by x ε y iff x = 5, 6, 7, 8, y = 1, 2, 3, 4
and x ≤ y in P . Denote by Sub(P, ε) the lattice of all subsemilattices of
P , including empty set, that are closed under ε, where a subset X of P is
closed under ε if, for all x, y in P , x ∈ X and x ε y imply y ∈ X. Define
h : Sub(P, ε) → Sub(P, ε) by h(X) = X if 9 6∈ X, and h(X) = P otherwise.
Obviously, h satisfies (h1)–(h5) and, as Sub(P, ε) is finite, h satisfies (h7).
To verify (h6) we need to show that h(X)(Y +Z)≤h(X)Y +h(X)Z, where
X,Y,Z ∈ Sub(P, ε). If 9 ∈ X, this is obvious since in this case h(X) = P . So
let 9 6∈ X. Then h(X) = X and we need to show thatX(Y +Z) ≤ XY +XZ.
But Sub(P, ε) is atomistic with atoms {i}, where i = 1, 2, 3, 4, 9. So, as {i} ≤
Y +Z, for i = 1, 2, 3, 4, implies {i} ∈ Z, it follows that X(Y +Z) ≤ XY +XZ
whenever 9 6∈ X. Notice now that {1} ∼ {2}, {2} 6≤ h({1}), {2} ≤ h({9})
and h({9}) = h({1} + {4}). Hence, as h({9}) 6= h({2} + {4}), the map h
does not satisfy (h8).

Fig. 1

1 2 3 4

5 6 7 8

9

The lattice L of Figure 2 shows that biatomicity does not follow from the
existence on a lattice of an equa-closure operator. Indeed, define h : L→ L
by h(x) = 1 if b ≤ x, and h(x) = x otherwise. Then h satisfies (h1)–(h8).
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On the other hand, as b ≤ a + (c + d), b 6≤ a + c and b 6≤ a + d, L is not
biatomic.

Fig. 2

a db c

2. Finite lattices of subsemilattices. We recall in this section the
necessary and sufficient conditions given in [1] for a finite atomistic lattice
to be isomorphic to Sub(P ).

A finite lattice L is said to satisfy D2 if, for each pair a, b of atoms of
L, the interval [0, a + b] in L contains at most 3 atoms of L. Recall from
Section 1 that a ∼ b means that either a = b, or a 6= b and the interval
[0, a + b] in L consists of 0, a, b and a + b. If L is atomistic then a ∼ b is
equivalent to the property that [0, a + b] contains at most 2 atoms of L. If
a, b and c are atoms of L, we write c E a+ b to denote that c ≤ a + b and
c 6∈ {a, b}.

A sequence a0, a1, . . . , an of atoms of L, where n ≥ 2, is said to be a
cycle if a0 = an and, for each i < n, there exists an atom bi of L with
ai+1 E ai + bi. It is not hard to see that a finite atomistic lattice has no
cycles if and only if it is lower bounded in the sense of McKenzie [18] (see
also Day [6] and Jónnson and Nation [15]).

Let a and b be atoms of L. A sequence (a1, b), . . . , (an, b) of pairs of
atoms of L is said to be a left descent from (a, b) if it satisfies the following
conditions:

(i) a1 = a;

(ii) For each atom c of L, b ∼ c implies an ∼ c;

(iii) If 2 ≤ n then, for each i < n, ai+1 E ai + bi for some atom bi of L
with bi ∼ b.

Similarly, we define a right descent from (a, b) as a sequence (b, a1), . . .
. . . , (b, an) of pairs of atoms of L satisfying (i)–(iii). If n = 1, the descent
will be called trivial . If it is not trivial, we write (a1, b)

b1ր (a2, b)
b2ր

. . . bn−1ր (an, b) if it is left, and (b, a1) ց
b1 (b, a2) ց

b2 . . . ցbn−1 (b, an) if it
is right, to emphasize that the descents have been formed with the help of
the sequence b1, . . . , bn.
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We say that L has univocally terminating left descents if, for each pair
a, b of atoms of L with a ∼ b and any two left descents (a1, b), . . . , (an, b)
and (c1, b), . . . , (cm, b) from (a, b), we have an = cm. Notice that the concept
can be equivalently expressed in terms of right descents.

A sequence (a, b), . . . , (c, d) of pairs of atoms of L is said to be a slalom

with the origin at (a, b) if it consists of alternating non-trivial left and right
descents the last pairs of which are the first pairs of the subsequent descents.
The sequences ({1}, {3}) {4}ր ({9}, {3}) ց{2} ({9}, {9}) and ({1}, {3}) ց{2}

({1}, {9}) {4}ր ({9}, {9}) are examples of slaloms in the lattice Sub(P, ε),
where P is the semilattice of Figure 1.

A slalom is said to be even (odd) if the number of alternating descents in
it is even (odd), and left (right) if its first descent is left (right), and is said
to be exact if its last pair has equal components. The above two slaloms
in Sub(P, ε) are even and exact, the first of them is left while the second is
right.

We say that the right and left slaloms in a lattice L have different parities

if, for each pair a, b of atoms of L with a ∼ b, there are no right and left
slaloms with the origin at (a, b) that are exact and are both even or both
odd.

The following theorem provides pure lattice-theoretical conditions for a
finite atomistic lattice to be isomorphic to Sub(P ). Actually, the theorem
provides conditions for a finite lattice to be isomorphic to Sub(P ) because
the lattice Sub(P ) is always atomistic.

Theorem 2.1 ([1]). A finite atomistic lattice L is isomorphic to the

lattice Sub(P ) for some finite semilattice P iff it satisfies D2, has no cycles,
is biatomic, has univocally terminating left descents and the right and left

slaloms in L have different parities.

3. A partial semilattice. In this section assuming that L is a lattice
admitting an equa-closure operator we define on the set A(L) of atoms of L a
partial semilattice operation ◦. This operation will be helpful in proving that
if, in addition, L is finite then L has univocally terminating left descents,
and the right and left slaloms in it have different parities.

Lemma 3.1. Suppose that L is a lattice with an equa-closure operator h
and a, b ∈ A(L). Then the interval [0, a+ b] contains at most 3 atoms of L.

Moreover , if [0, a + b] contains 3 atoms of L then the atoms a, b and c it

contains satisfy a+ b ≤ h(c), c 6≤ h(a) and c 6≤ h(b).

P r o o f. The first part is obvious since as mentioned earlier the existence
of an equa-closure operator on a lattice yields that the join of a finite set of
n atoms contains at most 2n − 1 atoms below. To show that a + b ≤ h(c)
notice that, by (h6), we have h(c)(a+ b) = h(c)a+h(c)b and that it suffices
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to prove h(c)a 6= 0 and h(c)b 6= 0. But if h(c)a = 0 then h(c)(a+b) = b and,
as c ≤ a + b and c ≤ h(c), it follows that c = b, a contradiction. Similarly,
h(c)b 6= 0. Now, suppose that c ≤ h(a). Then, by a+ b ≤ h(c) just proved,
we have h(a+ b) = h(a) which, again by a+ b ≤ h(c) and c ≤ a+ b, implies
h(a) = h(c). Hence, by (h1) and (h5), we obtain a = c, a contradiction.
Thus c 6≤ h(a), and similarly c 6≤ h(b).

Recall from Section 2 that if a, b and c are atoms of a lattice L, then
c E a+ b means that c ≤ a+ b and c 6∈ {a, b}. We define a ternary relation r
on A(L) as follows: r(a, b, c) holds iff either c E a+ b, or c = a and a E b+d
for some d ∈ A(L), or c = b and b E a+ d for some d ∈ A(L).

Lemma 3.2. Suppose L is a lattice that admits an equa-closure operator

and a, b, c, d ∈ A(L). Then r(a, b, c) and r(a, b, d) imply c = d.

P r o o f. Let h be an equa-closure operator on L and assume that r(a, b, c)
and r(a, b, d) hold. We consider three cases depending on which of the
disjuncts defining r(a, b, c) is satisfied.

C a s e 1: c E a + b. As r(a, b, d) holds, one of the disjuncts defining it
is satisfied. If it is the first then, as a + b contains exactly 3 atoms below
(see Lemma 3.1), we have c = d. So, assume that d = a and a E b + e for
some e ∈ A(L). By Lemma 3.1, we have b ≤ h(a) and, as c E a + b, also
h(c) = h(a + b). This, by (h1)–(h3), implies h(c) = h(a) which in turn, by
(h1) and (h5), gives c = a and hence c = d. Assume now that d = b and
b E a+e for some e ∈ A(L). So, by Lemma 3.1, a ≤ h(b) and h(c) = h(a+b)
which gives h(c) = h(b) and, therefore, c = b by (h1) and (h5). Thus c = d.

C a s e 2: c = a and a E b+e for some e ∈ A(L). If d E a+b (recall that
r(a, b, d)) then similarly to Case 1 we obtain c = d. If the second disjunct
for r(a, b, d) is satisfied then, as c=a, we trivially get c=d. So assume that
d= b and b E a+f for some f ∈ A(L). Then, by Lemma 3.1, a≤h(b) and,
as a E b+ e, b ≤ h(a). Thus h(a) = h(b) and, therefore, a = b and c = d.

C a s e 3: c = b and b E a + e for some e ∈ A(L). If r(a, b, d) is due to
the first disjunct then as in Case 1 we obtain c = d. If r(a, b, d) is due to
the second then as in Case 2 we get c = d. In the case of the third disjunct
for r(a, b, d), we have d = b and thus c = d.

Let L be a lattice that admits an equa-closure operator. Notice that
r(a, a, c) never holds in L. By Lemma 3.2 we can define a partial binary
operation ◦ on A(L) as follows:

a ◦ b =

{

a if a = b ,
c if r(a, b, c) .

In general, the operation ◦ is partial. For the lattice L of Figure 3 define
h : L→ L by h(x) = 1 if b ≤ x, and h(x) = x otherwise. Notice that h is an
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equa-closure operator and that the only triples of r here are: (a, c, b), (c, a, b),
(c, d, b), (d, c, b), (a, b, b), (b, a, b), (b, d, b), (d, b, b), (c, b, b) and (b, c, b). So ◦
is not defined on (a, d) and (d, a).

Fig. 3

d

c
b

a

Writing a ◦ b we shall always mean that ◦ is defined on (a, b) and some-
times we shall additionally stress this by writing “a ◦ b is defined”.

Lemma 3.3. Suppose that L is a lattice and h is an equa-closure operator

defined on L. Then the following conditions hold , where a, b, c are atoms

of L:

(i) h(c) = h(a+ b) implies c ≤ a+ b;
(ii) h(a ◦ b) = h(a+ b).

P r o o f. (i) Applying (h5) to h(c) = h(a+b) we obtain h(c) = h(c(a+b)).
As h(c) 6= 0 because c ≤ h(c) by (h1), the equality implies c(a+ b) 6= 0. So,
as c is an atom, it follows that c ≤ a+ b.

(ii) When a = b, the condition is obvious. So assume that a 6= b and
that a◦b is defined. Then either a◦b E a+ b or a◦b ∈ {a, b}. If a◦b E a+ b
then, by Lemma 3.1, h(a ◦ b) = h(a + b). If a ◦ b = a then r(a, b, a) and,
therefore, b ≤ h(a) which implies h(a) = h(h(a)) = h(h(a) + b) = h(a+ b),
and hence h(a ◦ b) = h(a+ b). If a ◦ b = b then r(a, b, b), and the argument
is similar.

Proposition 3.4. If L is a lattice that admits an equa-closure operator

then (A(L); ◦) is a partial semilattice.

P r o o f. That the operation is idempotent is clear. The (partial) com-
mutativity of ◦ follows from Lemma 3.3. For the proof of the (partial)
associativity of ◦ assume that a, b, c are atoms such that b ◦ c, a ◦ (b ◦ c),
a ◦ b, (a ◦ b) ◦ c are defined. Let h be an equa-closure operator on L. By
Lemma 3.3(ii), we have h(a◦(b◦c)) = h(a+b+c) and h((a◦b)◦c) = h(a+b+c).
Hence, applying Lemma 3.3(i) we obtain a ◦ (b ◦ c) = (a ◦ b) ◦ c.

We call a subset X of A(L) a relative partial subsemilattice of (A(L); ◦)
if, for all a, b in L, a ◦ b ∈ X whenever a ◦ b is defined and a, b ∈ X. It is
clear that the set of all relative partial subsemilattices of (A(L); ◦) forms a
complete lattice with respect to inclusion.
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Proposition 3.5. Suppose L is an algebraic, atomistic and biatomic

lattice that admits an equa-closure operator. Then L is isomorphic to the

lattice of all relative partial subsemilattices of (A(L); ◦).

P r o o f. Define ϕ(x) = {a ∈ A(L) : a ≤ x} for x ∈ L. We show
that ϕ is an isomorphism between L and the lattice of all relative partial
subsemilattices of (A(L); ◦). Let a, b ∈ ϕ(x) and assume that a◦b is defined.
Then a◦b ≤ a+b which implies a◦b ∈ ϕ(x) and gives that ϕ is well-defined.
That ϕ is one-to-one follows from the atomisticity of L. That ϕ preserves
meets is obvious. For joins apply the biatomicity of L. To see that ϕ is onto
use the biatomicity of L and the assumption that L is algebraic. Thus ϕ is
an isomorphism.

Having a lattice L with the properties of Proposition 3.5 one can ask
whether the partial semilattice operation ◦ can be extended to a total semi-
lattice operation ◦′ on A(L) so that every relative partial subsemilattice of
(A(L); ◦) would be a subsemilattice of (A(L); ◦′) and vice versa. A positive
answer to this question would give us that L is isomorphic to the lattice of
all subsemilattices of (A(L); ◦′).

If in addition L is finite, we can take for ◦′ the semilattice operation
defined in the proof of the “if” part of Theorem 2.1, though we have not
shown yet that all conditions of Theorem 2.1 are satisfied by L. The proof
that L satisfies D2 and has no cycles is relatively easy and was already given
in [1]. Indeed, that L satisfies D2 follows from Lemma 3.1. In order to show
that L has no cycles suppose on the contrary that a0, a1, . . . , an, where
n ≥ 2, is a cycle in L. Applying Lemma 3.3(ii) we have ai ≤ h(ai+1) for all
i < n which, by a0 = an, implies h(ai) = h(an) for all i < n. Now referring
to Lemma 3.3(i) we get an−1 = an, a contradiction since an E an−1 + bn−1.
It is much harder to show that L satisfies the remaining two conditions of
Theorem 2.1. This will be done in the next two sections.

4. Univocal termination of left descents. In this section we prove
that every finite atomistic lattice L that admits an equa-closure operator
has univocally terminating left descents. In proving this we shall refer to
the structure of the partial semilattice (A(L); ◦) defined in Section 3.

Throughout this section L is a finite atomistic lattice with an equa-
closure operator h, and a ⊑ b, where a, b ∈ A(L), means that b ≤ h(a).
Notice that by Lemma 3.3(i) the relation ⊑ is a partial order on A(L).

Lemma 4.1. The following conditions are satisfied for a, b, c ∈ A(L):

(i) If a ◦ b is defined then so is a ◦ (a ◦ b) and a ◦ (a ◦ b) = a ◦ b;
(ii) If a◦b is defined and a◦b ⊑ c ⊑ a then c◦b is defined and c◦b = a◦b;
(iii) If a ◦ c and b ◦ c are defined , a ◦ c = a and b ◦ c = b then a ◦ b is

defined.
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P r o o f. (i) If a 6∼ b then a◦ b E a+ b and so r(a, a◦ b, a◦ b) which means
that a ◦ (a ◦ b) is defined and a ◦ (a ◦ b) = a ◦ b. If a ∼ b then, as a ◦ b is
defined, a ◦ b = a or a ◦ b = b. Assume a ◦ b = a. Then a ◦ (a ◦ b) is defined
and a◦(a◦b) = a. If a◦b = b, then a◦(a◦b) is defined and a◦(a◦b) = a◦b.

(ii) Notice that h(a ◦ b) = h(c + b). By Lemma 3.3(i), a ◦ b ≤ c + b.
If a ◦ b E c + b then c ◦ b is defined and c ◦ b = a ◦ b. Otherwise we have
a ◦ b = c or a ◦ b = b. If a ◦ b = c then, by the commutativity of ◦, b ◦ a = c
which, by (i) just proved, implies that b ◦ c is defined and b ◦ c = b ◦ a. Thus
c ◦ b is defined and c ◦ b = a ◦ b. So consider the case when a ◦ b = b. If
a = b then evidently c ◦ b is defined and c ◦ b = a ◦ b because a = b implies
a = c. So we may assume that a 6= b. Then b E a + d for some d ∈ A(L).
As a ◦ d ⊑ c ⊑ a because b ⊑ c ⊑ a, applying Lemma 3.3(ii) we obtain
h(a ◦ d) = h(c + a ◦ d) = h(c + a + d) = h(c + d). Hence a ◦ d ≤ c + d by
Lemma 3.3(i). It follows that a ◦ d = c or a ◦ d E c+ d; the case a ◦ d = d is
excluded since a ◦ d E a+ d. If a ◦ d = c then a ◦ b = c which gives the case
considered before. If a ◦ d E c+ d then c ◦ d is defined and a ◦ d = c ◦ d. So,
as b = a ◦ d (recall that a ◦ b = b and b = a ◦ d), we obtain b = c ◦ d which,
by (i) just proved, yields that c ◦ b is defined and c ◦ b = c ◦ d = a ◦ b.

(iii) We may assume that a 6= c and b 6= c since otherwise it is easily
seen that a ◦ b is defined. This implies that a E c + d and b E c + e for
some atoms d, e of L. We need to show that ◦ is defined on the pair (a, b).
Suppose on the contrary that this is not the case.

Claim 1. (a+ e)(a+ b) = a.

P r o o f. As ◦ is not defined on (a, b), the join a + b contains only two
atoms under itself, that is, a and b. Thus (a + e)(a + b) = a or = b or
= a + b since L is atomistic. We show that (a + e)(a + b) 6∈ {b, a + b}.
Indeed, otherwise (a + e)(a + b) ∈ {b, a + b}, and hence b ≤ a + e. So, as
b is an atom, by Lemma 3.1 it follows that b = a or b = e or b E a + e. If
b = a or b E a+ e then ◦ is defined on (a, b), a contradiction. If b = e then
we have a contradiction with b E c+ e. Thus (a+ e)(a + b) = a.

Claim 2. a(b+ d) = 0.

P r o o f. As a is an atom, supposing the claim does not hold we have
a ≤ b + d. Then, by Lemma 3.1, a = b or a = d or a E b + d. If a = b
or a E b+ d then ◦ is defined on (a, b), contradicting our assumption. The
case a = d also yields a contradiction since a E c+ d. Thus a 6≤ b+ d which
proves that a(b+ d) = 0.

Now, define X to be the set of all x in L such that h(x) = h(c+ d+ e).
Recall that a = c ◦ d and b = c ◦ e. So, applying Lemma 3.3(ii) we have

h(c+ d+ e) = h(c ◦ d+ e) = h(a+ e) ,
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h(c+ d+ e) = h(c ◦ d+ e) = h(a+ e) = h(a+ c+ e) = h(a+ b) ,

h(c+ d+ e) = h(c+ e+ d) = h(c ◦ e+ d) = h(b+ d) .

This gives that a+ e, a+ b, b+d ∈ X. So, by (h5), (a+ e)(a+ b)(b+d) ∈ X
which together with Claims 1 and 2 shows that 0 ∈ X. Hence, by (h4), we
obtain h(c+d+e) = 0 which, by (h1), implies c = d = e = 0, a contradiction.
Thus ◦ must be defined on (a, b).

Lemma 4.2. Suppose a ∈ A(L) and c1, . . . , cn, n ≥ 2, is a sequence in

A(L) with the following properties:

(i) a 6∼ ci for all i = 1, . . . , n,
(ii) ci 6≤ h(a+ c1 + . . .+ ci−1) for all i = 2, . . . , n.

Then each of the expressions (. . . (a ◦ c1) ◦ c2 . . .) ◦ ci, where i = 2, . . . , n, is

defined in (A(L); ◦).

P r o o f (By induction on n). For n = 2, from the property (i) and the def-
inition of ◦ it follows that a◦c1 and a◦c2 are defined which, by Lemma 4.1(i)
and (iii), implies that so is (a ◦ c1) ◦ (a ◦ c2). Applying Lemma 3.3(ii) we
have h((a ◦ c1) ◦ (a ◦ c2)) = h(a ◦ c1 + c2) which, by Lemma 3.1, yields
(a ◦ c1) ◦ (a ◦ c2) ∈ {a ◦ c1, c2} or (a ◦ c1) ◦ (a ◦ c2) E a ◦ c1 + c2. But
c2 ≤ h((a◦c1)◦(a◦c2)). So, as c2 6≤ h(a+c1), we have (a◦c1)◦(a◦c2) 6= a◦c1.
On the other hand, as a 6∼ c2, it follows by Lemma 3.1 that a 6≤ h(c2) which
in turn implies (a ◦ c1) ◦ (a ◦ c2) 6= c2 because applying Lemma 3.3(ii) we
have a ≤ h((a ◦ c1) ◦ (a ◦ c2)). Thus (a ◦ c1) ◦ (a ◦ c2) E a ◦ c1 + c2 which
means that (a ◦ c1) ◦ c2 is defined.

Now, assume that the lemma is true for each sequence of length n, and
let c1, . . . , cn+1 be a sequence in A(L) with the properties (i) and (ii). By the
induction hypothesis, a◦c1(= b1), (a◦c1)◦c2(= b2), . . . , (. . . (a◦c1)◦c2 . . .)◦
cn(= bn) and a ◦ cn+1 are all defined. Hence, by Lemma 4.1(i) and (iii), so
are b1◦(a◦cn+1), b2◦(b1◦(a◦cn+1)), . . . , bn◦(bn−1◦. . . (b2◦(b1◦(a◦cn+1)))).
Applying Lemma 3.3(ii) to the last expression we obtain

h(bn ◦ (bn−1 ◦ . . . (b2 ◦ (b1 ◦ (a ◦ cn+1))) . . .)) = h(bn + cn+1) .

As cn+1 6≤ h(a+ c1 + . . .+ cn) = h(bn) and

cn+1 ≤ h(bn ◦ (bn−1 ◦ . . . (b2 ◦ (b1 ◦ (a ◦ cn+1))) . . .)) ,

we have bn 6= bn ◦ (bn−1 ◦ . . . (b2 ◦ (b1 ◦ (a ◦ cn+1))) . . .). On the other hand,
as a 6≤ h(cn+1) (use (i) and Lemma 3.1) and

a ≤ h(bn ◦ (bn−1 ◦ . . . (b2 ◦ (b1 ◦ (a ◦ cn+1))) . . .)) ,

we obtain cn+1 6= bn ◦ (bn−1 ◦ . . . (b2 ◦ (b1 ◦ (a ◦ cn+1))) . . .). Thus

bn ◦ (bn−1 ◦ . . . (b2 ◦ (b1 ◦ (a ◦ cn+1))) . . .) E bn + cn+1

which yields that bn◦cn+1 is defined and so is (. . . ((a◦c1)◦c2) . . .)◦cn+1.
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For a subset A of A(L), we denote by [A] the least relative partial sub-
semilattice of (A(L); ◦) containing A.

Lemma 4.3. Let a ∈ A(L) and A be a subset of A(L) whose elements b
satisfy a 6∼ b. Then the set B of all c ∈ [A ∪ {a}] with c ⊑ a has a smallest

element d with respect to ⊑. Moreover , if c ∈ B and c ⊑ b for all b ∈ A
then c = d.

P r o o f. If A = ∅ then d = a. So, assume that A 6= ∅. Pick c1 ∈ A. As
a 6∼ c1, by Lemma 3.1 it follows that a◦c1 is defined and, by Lemma 3.3(ii),
a ◦ c1 ∈ B. Next, pick c2 ∈ A such that c2 6≤ h(a + c1). By Lemma 4.2,
(a ◦ c1) ◦ c2 is defined and, by Lemma 3.3(ii), (a ◦ c1) ◦ c2 ∈ B. Further, pick
c3 ∈ A such that c3 6≤ h(a+ c1 + c2). Again ((a ◦ c1) ◦ c2) ◦ c3 is defined and
((a ◦ c1) ◦ c2) ◦ c3 ∈ B. Continuing this process we find, in a finite number
of steps (recall that L is finite), an element d of B such that a ≤ h(d) and
b ≤ h(d) for all b ∈ A, that is, d ⊑ a and d ⊑ b for all b ∈ A.

Let x ∈ B. Then x = p(X) for some semilattice term p and X ⊆ A∪{a}.
Applying Lemma 3.3(ii) we have h(x) = h(

∑

X) where
∑

X is the join of
X in L. As d ⊑ a and d ⊑ b for all b ∈ A, we have h(

∑

X) ≤ h(d) and
hence d ⊑ x, proving that d is the smallest element of (B,⊑).

Now, assume that c ∈ B and c ⊑ b for all b ∈ A. Notice that c ⊑ a. So,
applying Lemma 3.3(ii) and the definition of d, we obtain c ⊑ d. Evidently,
d ⊑ c. Thus c = d.

Lemma 4.4. Let (a0, b)
c0ր (a1, b)

c1ր . . . cn−1ր (an, b) be a left descent

in L from (a, b) with n ≥ 1 and let d be an atom of L with d 6∼ a and d ∼ b.
Then an ⊑ d and if a1 6⊑ d then n ≥ 2 and ai ◦ d is defined for all i < l,
where l is the greatest number with 1 ≤ l ≤ n− 1 and al 6⊑ d.

P r o o f. It is obvious that an ⊑ a(= a0). Hence d ⊑ an implies d ⊑ a
which contradicts d 6∼ a (see Lemma 3.1). So in order to prove that an ⊑ d
we need only show that an and d are ⊑-comparable. Suppose they are not.
Since d 6∼ a0 (= a), it follows that d◦a0 is defined and, by Lemma 4.1(i),
(d ◦ a0) ◦ a0 = d ◦ a0. Recalling the definition of a left descent we have
a1 E a0+c0. So a1◦a0 is defined and a1◦a0 = a1. Hence, by Lemma 4.1(iii),
(d◦a0)◦a1 is defined and, by Lemma 4.1 (i), ((d◦a0)◦a1)◦a1 = (d◦a0)◦a1.
But, as a2 E a1 + c1, a2 ◦ a1 is defined and a2 ◦ a1 = a2. So, applying
Lemma 4.1(iii) again we find that ((d ◦ a0) ◦ a1) ◦ a2 is defined and, by
Lemma 4.1(i), (((d ◦ a0) ◦ a1) ◦ a2) ◦ a2 = ((d ◦ a0) ◦ a1) ◦ a2. Continuing this
argument we conclude that (. . . ((d ◦ a0) ◦ a1) ◦ a2 . . .) ◦ an(= f) is defined.
Now notice that, by Lemma 3.3(ii) and the property that an ⊑ ai for all
i < n, we get h(f) = h(d+ an). Thus, by Lemma 3.3(i), f ≤ d+ an. Hence,
by Lemma 3.1, either f = d, or f = an, or f E d + an. If f = d then, as
an ≤ h(f) (use Lemma 3.3(ii)), we obtain an ≤ h(d), that is, d ⊑ an which



Lattices of quasivarieties 33

contradicts our assumption. If f = an then, as d ≤ h(f) (use Lemma 3.3(ii)),
we have d ≤ h(an), that is, an ⊑ d which again contradicts our assumption.
If f E d + an then d 6∼ an which together with the assumption that d ∼ b
contradicts the assumption that (a0, b), . . . , (an, b) is a left descent from
(a, b). Thus d and an are ⊑-comparable. Consequently, an ⊑ d.

We now show that ai ◦ d is defined for all i ≤ l provided that a1 6⊑ d.
That a0 ◦ d is defined is obvious since a0 = a and d 6∼ a. Fix i = 1, . . . , l.
Arguing as above one shows that (. . . (d ◦ a0) ◦ a1 . . .) ◦ ai is defined. Since
ai ⊑ ak for all k = 0, . . . , i, by Lemma 3.3(ii) we have h(d+ai) = h((. . . (d ◦
a0) ◦ a1 . . .) ◦ ai). Hence, by Lemma 3.3(i), (. . . (d ◦ a0) ◦ a1 . . .) ◦ ai ≤ ai + d.
If (. . . (d ◦ a0) ◦ a1 . . .) ◦ ai = ai then ai ⊑ d, a contradiction since i ≤ l and,
therefore, ai 6⊑ d. If ((d ◦ a0) ◦ a1 . . .) ◦ ai = d then d ⊑ a0 which in view of
Lemma 3.1 contradicts d 6∼ a0 (= a). Thus ((d ◦ a0) ◦ a1 . . .) ◦ ai E ai + d
and, therefore, ai ◦ d is defined which completes the proof.

Lemma 4.5. Let (a0, b)
c0ր (a1, b)

c1ր . . . cn−1ր (an, b) be a left descent

in L from (a, b) with n ≥ 1 and let d be an atom of L with d 6∼ a, d ∼ b
and a1 6⊑ d. Then there exists a left descent in L from (a, b) which ends in

(an, b) and starts with (a0, b)
c0ր (a1, b)

dր (a1 ◦ d, b).

P r o o f. By Lemma 4.4, ai ◦ d is defined for each i = 0, 1, . . . , l, where l
is the greatest number such that 1 ≤ l ≤ n − 1 and al 6⊑ d. In particular,
a1 ◦ d is defined which, by Lemma 3.3, implies a1 ◦ d ≤ a1 + d and so, by
Lemma 3.1, we have either a1 ◦ d ∈ {a1, d} or a1 ◦ d E a1 + d. If a1 ◦ d = a1

then a1 ⊑ d, a contradiction. If a1 ◦ d = d then d ⊑ a1 and hence d ⊑ a0,
since a1 ⊑ a0, but this in view of Lemma 3.1 contradicts d 6∼ a0. Thus
a1 ◦ d E a1 + d. So we have a sequence

(a0, b)
c0ր (a1, b)

dր (a1 ◦ d, b) .

C a s e 1: l = 1. If a2 = a1 ◦ d then the proof is complete. So, consider
the case when a2 6= a1 ◦ d. As a2 ⊑ d because l = 1 and, as a2 ⊑ a1 and
a1 ◦ d is defined, by Lemma 3.3(ii), we obtain a2 ⊑ a1 ◦ d ⊑ a1. This, by
a2 = a1 ◦ c1 and Lemma 4.1(ii), implies that (a1 ◦ d) ◦ c1 is defined and
(a1 ◦ d) ◦ c1 = a2. So, by Lemma 3.3(i), we have a2 ≤ a1 ◦ d + c1. Hence
a2 E a1 ◦ d+ c1 because a2 6= a1 ◦ d and a2 6= c1. So, the desired descent is

(a0, b)
c0ր (a1, b)

dր (a1 ◦ d, b)
c1ր (a2, b)

c2ր . . . cn−1ր (an, b) .

C a s e 2: l ≥ 2. For a fixed 1 ≤ i ≤ l − 1 we have

Claim 1. If ci 6∼ ai ◦ d then (ai ◦ d, b)
ciր (ai+1 ◦ d, b).

P r o o f. As ai ◦ d is defined and, since ci 6∼ ai ◦ d, so is ci ◦ (ai ◦ d),
applying Proposition 3.4 we have ai+1 ◦ d = (ci ◦ ai) ◦ d = ci ◦ (ai ◦ d).
So, as ci 6∼ ai ◦ d, it follows that ai+1 ◦ d E ai ◦ d + ci which means that
(ai ◦ d, b)

ciր (ai+1 ◦ d, b).
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Claim 2. If ci ∼ ai ◦ d then ai ◦ d = ai+1 ◦ d.

P r o o f. As ai◦d is defined and ai◦ai+1 = ai+1 (recall that ai+1 E ai+ci),
it follows by Lemma 4.1(i) and (iii) that (ai ◦ d) ◦ ai+1 is defined. Applying
Lemma 3.3(ii) we have h((ai◦d)◦ai+1) = h(ai◦d+ai+1). We now show that
ai ◦ d ⊑ ci. Suppose otherwise, that is, ci 6≤ h(ai ◦ d). As ai ◦ d ∼ ci, ci ≤
h((ai ◦d)◦ai+1), since ci ≤ h(ai+1), and h((ai ◦d)◦ai+1) = h(ai ◦d+ai+1),
by (h8) it follows that h((ai ◦ d) ◦ ai+1) = h(ci + ai+1) = h(ai+1). So, by
Lemma 3.3(ii), we obtain d ≤ h(ai+1), a contradiction since i + 1 ≤ l and,
therefore, ai+1 6⊑ d. Thus ai ◦ d ⊑ ci. So, applying Lemma 3.3(ii) again, we
obtain

h(ai ◦ d) = h(ai ◦ d+ ci) = h(ai + d+ ci) = h(ai + ci + d)

= h(ai+1 + d) = h(ai+1 ◦ d) .

Hence, by Lemma 3.3(i), ai ◦ d = ai+1 ◦ d which shows the claim.

Applying Claims 1 and 2 we get a sequence

(a0, b)
c0ր (a1, b)

dր (a1 ◦ d, b) ր . . . ր (al ◦ d, b) .

Now, we split Case 2 into the following two subcases.

S u b c a s e A: al ◦ d = al+1. The desired left descent is

(a0, b)
c0ր (a1, b)

dր (a1 ◦ d, b) ր . . .ր (al ◦ d, b)
cl+1ր . . . cn−1ր (an, b) .

S u b c a s e B: al ◦ d 6= al+1. As al+1 ⊑ al and al+1 ⊑ d, we have
al+1 ⊑ al ◦ d ⊑ al. So, as al+1 = al ◦ cl, by Lemma 4.1(ii) we see that
(al ◦ d) ◦ cl is defined and (al ◦ d) ◦ cl = al+1. As al+1 6∈ {al ◦ d, cl}, applying
Lemmas 3.3(i) and 3.1 we obtain al+1 E (al ◦ d) + cl. So the desired left
descent from (a, b) is

(a0, b)
c0ր (a1, b)

dր (a1 ◦ d, b) ր . . .

. . .ր (al ◦ d, b)
clր (ai+1, b)

ci+1ր . . . cn−1ր (an, b) .

This completes the proof of the lemma.

We are now ready to prove the main lemma of this section.

Lemma 4.6. Suppose L is a finite atomistic lattice that admits an equa-

closure operator. Then L has univocally terminating left descents.

P r o o f. Let (a, b) be a pair of atoms of L with a ∼ b. Let

(D1) (a0, b)
c0ր . . . cn−1ր (an, b)

be a left descent in L from (a, b). Of course, we may assume that n ≥ 1
since otherwise the pair (a, b) would be free and this would mean that any
left descent from (a, b) consists only of (a, b). The assumption gives that
x 6∼ a and x ∼ b for some x of A(L).
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We define inductively two sequences A0, A1, . . . , B0, B1, . . . of non-empty
subsets of A(L) and a sequence d0, d1, . . . in A(L). Recall that, for C ⊆
A(L), [C] denotes the least relative partial subsemilattice of (A(L); ◦) con-
taining C. We set

A0 := {x ∈ A(L) : x 6∼ a and x ∼ b} ,

B0 := {x ∈ [A0 ∪ {a}] : x ⊑ a} ,

d0 := the smallest element of (B0,⊑)

(which exists in view of Lemma 4.3). Assume now that Ai, Bi and di are
defined. If there is no x in A(L) such that x 6∼ di and x ∼ b, then we stop
the construction. Otherwise we set

Ai+1 := {x ∈ A(L) : x 6∼ di and x ∼ b} ,

Bi+1 := {x ∈ [Ai+1 ∪ {di}] : x ⊑ di} ,

di+1 := the smallest element of (Bi+1,⊑)

(which exists in view of Lemma 4.3). As L is finite, the above procedure
terminates after a finite number of steps, say k. Thus we have sequences
A0, A1, . . . , Ak, B0, B1, . . . , Bk and d0, d1, . . . , dk.

The idea of the proof is to construct a left descent in L from (a, b) that
ends in (an, b) and contains each of the pairs (d0, b), . . . , (dk, b). This will
give that (dk, b) = (an, b), that is, dk = an since, for each x in A(L), x ∼ b
implies x ∼ dk. This in turn will show that L has univocally terminating
left descents because the sequence d0, d1, . . . , dk is uniquely determined by
the pair (a, b).

We first construct a left descent in L from (a, b) that ends in (an, b) and
contains (d0, b).

C a s e 1: For each x in A0, a1 ⊑ x. Notice that a1 ∈ B0 since c0 ∈ A0

and a1 = a ◦ c0. So a1 = d0 by Lemma 4.3. Thus (d0, b) already occurs in
(D1).

C a s e 2: a1 6⊑ x for some x of A0. Pick e1 in A0 such that a1 6⊑ e1.
Then Lemma 4.5 yields a left descent in L from (a, b)

(D2) (a0, b)
c0ր (a1, b)

e1ր (a1 ◦ e1, b) ր . . .ր (an, b) .

If there is no x in A0 with a1 ◦ e1 6⊑ x then, by Lemma 4.3, a1 ◦ e1 = d0

and hence (D2) contains the pair (d0, b). Otherwise, pick e2 in A0 with
a1 ◦ e1 6⊑ e2. Obviously, e2 ∼ b since e2 ∈ A0. We show e2 6∼ a1. This, by
a1 ◦ e1 6⊑ e2, will allow us to apply Lemma 4.5 to the left descent

(D3) (a1, b)
e1ր (a1 ◦ e1, b) ր . . . ր (an, b)

obtained from (D2) by cancelling (a0, b). We will then have a left descent
from (a1, b) that ends in (an, b) and whose first three elements are (a1, b)

e1ր
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(a1 ◦ e1, b)
e2ր ((a1 ◦ e1)◦ e2, b). This in turn will give us a left descent from

(a, b) that ends in (an, b) and whose first four elements are

(D4) (a0, b)
c0ր (a1, b)

e1ր (a1 ◦ e1, b)
e2ր ((a1 ◦ e1) ◦ e2, b) .

So we need to show that e2 6∼ a1. Since a1 ◦ e1 ⊑ a1 and a1 ◦ e1 6⊑ e2,
we have a1 6⊑ e2. By Lemma 4.4, a1 ◦ e2 is defined. Hence a1 ◦ e2 ≤ a1 + e2.
If a1 ◦ e2 = a1 then a1 ⊑ e2 which is impossible since a1 ◦ e1 ⊑ a1 and
a1 ◦ e1 6⊑ e2. If a1 ◦ e2 = e2 then e2 ⊑ a1 ⊑ a0(= a) which is impossible
since e2 ∈ A0 and so e2 6∼ a (use Lemma 3.1). Thus a1 ◦ e2 E a1 + e2 which
implies that e2 6∼ a1.

Now, if (a1 ◦ e1) ◦ e2 ⊑ x for all x ∈ A0 then, by Lemma 4.3, (a1 ◦ e1) ◦
e2 = d0 and the construction of a left descent in L from (a, b) that ends in
(an, b) and contains (d0, b) is complete. Otherwise we pick e3 in A0 with
(a1 ◦ e1) ◦ e2 6⊑ e3. Recall that we have already found a left descent in L
from (a0, b) that ends in (an, b) and starts with (D4).

We show a1 ◦ e1 6∼ e3. As (a1 ◦ e1) ◦ e2 ⊑ a1 and (a1 ◦ e1) ◦ e2 6⊑ e3,
we have a1 6⊑ e3. So, by Lemma 4.4, (a1 ◦ e1) ◦ e3 is defined. Hence
(a1 ◦ e1)◦ e3 ≤ a1 ◦ e1 + e3. If (a1 ◦ e1)◦ e3 = a1 ◦ e1 then a1 ◦ e1 ⊑ e3 which,
by (a1 ◦ e1) ◦ e2 ⊑ a1 ◦ e1, implies (a1 ◦ e1) ◦ e2 ⊑ e3, a contradiction. If
(a1 ◦ e1) ◦ e3 = e3 then e3 ⊑ a1 ◦ e1 ⊑ a1 ⊑ a, a contradiction since e3 ∈ A0

and, by Lemma 3.1, e3 6⊑ a. Thus (a1 ◦ e1) ◦ e3 E a1 ◦ e1 + e3 which implies
that a1 ◦ e1 6∼ e3.

Notice that e3 ∼ b since e3 ∈ A0. Hence applying Lemma 4.5 we have a
left descent in L from (a1 ◦ e1, b) that ends in (an, b) and starts with

(a1 ◦ e1, b)
e2ր ((a1 ◦ e1) ◦ e2, b)

e3ր (((a1 ◦ e1) ◦ e2) ◦ e3, b) .

So we have a left descent in L from (a, b) that ends in (an, b) and starts with

(a0, b)
c0ր(a1, b)

e1ր(a1◦e1, b)
e2ր((a1◦e1)◦e2, b)

e3ր(((a1 ◦e1)◦e2)◦e3, b).

If, for each x of A0, ((a1 ◦ e1) ◦ e2) ◦ e3 ⊑ x then, by Lemma 4.3, ((a1 ◦ e1) ◦
e2)◦e3 = d0 and the construction of a left descent in L from (a, b) that ends
in (an, b) and contains (d0, b) is complete. Otherwise we pick e4 in A0 with
((a1 ◦ e1) ◦ e2) ◦ e3 6⊑ e4 and continue the above argument. As A0 is finite,
after a finite number of steps we find a left descent

(a0, b) ր . . . ր (d0, b) ր . . .ր (an, b)

that ends in (an, b) and contains the pair (d0, b). Now applying the above
arguments to the part of the resulting left descent that begins with (d0, b)
we find a left descent that ends in (an, b) and contains (d1, b). Next gluing
the left descent from (d0, b) obtained in this way with the beginning part of
the previously constructed left descent we obtain a left descent from (a, b)
that ends in (an, b) and contains both (d0, b) and (d1, b). Continuing in this
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way we find a left descent in L from (a, b) that ends in (an, b) and contains
all the pairs (dm, b), where m = 0, . . . , k. This completes the proof.

5. Parities of right and left slaloms. In this section we show that
in every finite atomistic lattice that admits an equa-closure operator right
and left slaloms have different parities.

As in the previous section L is a finite atomistic lattice with an equa-
closure operator h.

Lemma 5.1. If a ∼ b and (a0, b)
c0ր . . . cn−1ր (an, b) is a left descent in

L from (a, b) with an and b ⊑-comparable then a0 ⊑ b or b ⊑ an.

P r o o f. Assume b 6⊑ an. Then an ⊑ b since an and b are ⊑-comparable.
Denote by k the smallest number 0 ≤ k ≤ n such that ak ⊑ b. Since
an ⊑ b, such a number exists. We show k = 0 which will complete the
proof. Suppose k ≥ 1. We have

Claim. For each i = 0, . . . , n, ai ⊑ b or b ⊑ ai.

P r o o f. We split the proof into two cases.

C a s e 1: ak−1 ◦ b is not defined . Then ak−1 ∼ b. So, as ak−1 6⊑ b,
ak ⊑ b and h(ak) = h(ak−1 + ck−1), by (h8) we have h(ak) = h(b + ck−1).
This implies ak ≤ b + ck−1. But b ∼ ck−1. So ak = b; the case ak = ck−1

is impossible since ak E ak−1 + ck−1. Hence, for each 0 ≤ i ≤ n, ai ⊑ b or
b ⊑ ai since an ⊑ . . . ⊑ a0.

C a s e 2: ak−1 ◦ b is defined . We first show b ⊑ a0. Suppose b 6⊑ a0.
Then, as b ∼ a0 because b ∼ a and a0 = a, a0 ≤ h(ak−1 ◦ b) because
a0 ≤ h(ak−1), and, by Lemma 3.3(ii), h(ak−1 ◦ b) = h(ak−1 + b), it follows
by (h8) that h(ak−1 ◦ b) = h(ak−1 + a0) which, by a0 ≤ h(ak−1), implies
h(ak−1 ◦ b) = h(ak−1). So, applying (h5) we obtain ak−1 ◦ b = ak−1. This,
however, by Lemma 3.3(ii), yields ak−1 ⊑ b which contradicts the minimality
of k. Thus b ⊑ a0.

As ak−1 ◦ b is defined, we have either ak−1 ◦ b E ak−1 + b or ak−1 ◦ b ∈
{ak−1, b}. Accordingly we consider two subcases.

S u b c a s e A: ak−1 ◦ b E ak−1 + b. As a0 ∼ b, it follows that k− 1 6= 0,
that is, k ≥ 2. We show that b ⊑ ci for all i < k − 1. Suppose b 6⊑ ci
for some i < k − 1. Then ci 6≤ h(b). As b ∼ ci and ci ≤ h(ak−1 ◦ b)
because ci ≤ h(ak−1) and, by Lemma 3.3(ii), h(ak−1 ◦ b) = h(ak−1 + b),
it follows by (h8) that h(ak−1 ◦ b) = h(ak−1 + ci). But ci ≤ h(ak−1).
So h(ak−1 ◦ b) = h(ak−1). Therefore, by (h5), ak−1 ◦ b = ak−1 which
yields ak−1 ⊑ b and contradicts the minimality of k. Thus b ⊑ ci for all
i < k − 1. In particular, b ⊑ c0. So, as b ⊑ a0 (see above), we obtain
a0 ◦c0 ≤ a0 + c0 ≤ h(b) which, by a1 = a0 ◦c0, implies b ⊑ a1. But b ⊑ c1 (if
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k−1 ≥ 2). So, as b ⊑ a1, we obtain as before b ⊑ a2; recall that a2 = a1 ◦c1.
Eventually, we get b ⊑ ak−1. Thus ak ⊑ b ⊑ ak−1, and, therefore, ai ⊑ b or
b ⊑ ai for all i = 0, . . . , n.

S u b c a s e B: ak−1 ◦ b ∈ {ak−1, b}. Then ak−1 ◦ b = b because the case
ak−1 ◦ b = ak−1 contradicts the minimality of k. Hence b ⊑ ak−1 and so
ak ⊑ b ⊑ ak−1. Thus either ai ⊑ b or b ⊑ ai for all i = 0, . . . , n.

Thus the proof of the claim is complete.

The claim, definition of k and k ≥ 1 show that ak ⊑ b ⊑ ak−1. But
ak = ak−1 ◦ck−1. So, by Lemma 4.1(ii), b◦ck−1 is defined and b◦ck−1 = ak.
From the definition of a left descent it follows that b ∼ ck−1, and, therefore,
we have ak ∈ {b, ck−1}. But ak 6= ck−1 because ak E ak−1 + ck−1. So
ak = b. Since b 6⊑ an, this yields k < n. Hence k + 1 ≤ n and, therefore,
ak+1 E ak + ck. So, as ak = b, we obtain ak+1 E b + ck. But this is
impossible because b ∼ ck. Thus k = 0 which means a0 ⊑ b and completes
the proof of the lemma.

Lemma 5.2. If a ∼ b and (a, b0) ցc0 . . . ցcn−1 (a, bn) is a right descent

in L from (a, b) with a and bn ⊑-comparable then b0 ⊑ a or a ⊑ bn.

P r o o f. Notice that (b0, a)
c0ր . . . cn−1ր (bn, a) is a left descent in L

from (b, a). Next apply Lemma 5.1.

Lemma 5.3. Suppose a, b ∈ A(L), a ∼ b and (a0, b)
c0ր . . . cn−1ր

(an, b) ցd0 . . . ցdm−1 (an, bm) is a left descent followed by a right descent ,
both non-trivial , with a0 = a. Then the following conditions hold :

(i) an ⊑ bm implies a ⊑ b;
(ii) an 6= bm and bm ⊑ an imply b ⊑ a.

P r o o f. (i) Assume an ⊑ bm. As (an, b) ց
d0 . . .ցdm−1 (an, bm) is a right

descent from (an, b), we have bm ⊑ b and hence an ⊑ b. So, by Lemma 5.1,
either a ⊑ b or an = b. On the other hand, as both descents are non-trivial,
we have an 6= b. Thus a ⊑ b.

(ii) Assume an 6= bm and bm ⊑ an. Applying Lemma 5.2 to the right
descent (an, b) ցd0 . . . ցdm−1 (an, bm) we obtain b ⊑ an. But (a0, b)

c0ր
. . . cn−1ր (an, b) is a left descent from (a, b). So an ⊑ a. Hence b ⊑ a.

Lemma 5.4. Suppose a, b ∈ A(L), a ∼ b and (a0, b) ցc0 . . . ցcn−1

(a0, bn) d0ր . . . dm−1ր (am, bn) is a right descent followed by a left one,
both non-trivial , with a0 = a. Then the following conditions hold :

(i) bn ⊑ am implies b ⊑ a;
(ii) am 6= bn and am ⊑ bn implies a ⊑ b.

P r o o f. Notice that (b, a0)
c0 ր . . . cn−1 ր (bn, a0) ցd0 . . . ցdm−1

(bn, am) satisfies the assumptions of Lemma 5.3.
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Lemma 5.5. If a, b ∈ A(L), a ∼ b and there exists a slalom in L with the

origin at (a, b) that is left and exact then a ⊑ b whenever the slalom is even,
and b ⊑ a whenever it is odd.

P r o o f. Let (a, b), . . . , (c, c) be a relevant slalom and k be the number
of its descents.

We consider first the case k = 2. Then the slalom is of the form
(a0, b)

c0ր . . . cn−1ր (an, b) ցd0 . . . ցdm−1 (an, bm) where a0 = a and
(an, bm) = (c, c). In particular, an = bm. So applying Lemma 5.3 we obtain
a ⊑ b.

Assume that k is even and k ≥ 4. Consider the last two descents in our
slalom. They form a left and exact slalom of the form

(S) (a′0, b
′) c′0ր . . . c′n−1ր (a′n, b

′) ցd′

0 . . . ցd′

m−1 (a′n, b
′
m)(= (c, c)) .

Applying Lemma 5.3 to (S), we obtain a′0 ⊑ b′. Now notice that the part of
our slalom without (S) but with (a′0, b

′) forms a left and even slalom that
ends in (a′0, b

′) and starts with (a, b). So, as a′0 ⊑ b′, applying Lemma 5.3 a
suitable number of times we eventually obtain a ⊑ b.

Now, let k be odd. If k = 1 then evidently b ⊑ a. So, let k ≥ 3. Consider
the last two descents in (a, b), . . . , (c, c). They form a right and exact slalom
of the form

(a′0, b
′) ցc′0 . . .ցc′n−1 (a′n, b)

d′

0ր . . . d′

m−1ր (a′n, b
′
m)(= (c, c)) .

By Lemma 5.4, b′ ⊑ a′0, so that repeated application of that lemma yields
b ⊑ a.

Again, we have a “dual” version:

Lemma 5.6. If a, b ∈ A(L), a ∼ b and there exists a slalom in L with

the origin at (a, b) that is right and exact then b ⊑ a whenever the slalom is

even, and a ⊑ b whenever it is odd.

P r o o f. Let (a, b), . . . , (c, d) be a relevant slalom. Then (b, a), . . . , (d, c)
forms a slalom with the origin at (b, a) that is left and exact. The lemma
now follows from Lemma 5.5.

The following lemma is the main result of this section.

Lemma 5.7. Suppose L is a finite atomistic lattice that admits an equa-

closure operator. Then right and left slaloms in L have different parities.

P r o o f. Let a, b ∈ A(L), a ∼ b and suppose that there are two exact
slaloms with the origin at (a, b), a left and a right one, that are both even
or both odd. Then applying Lemmas 5.5 and 5.6 we obtain a ⊑ b and
b ⊑ a. Hence a = b because ⊑ is a partial order on A(L). This yields a
contradiction since no non-trivial descent can start from (a, a). Thus right
and left slaloms in L must have different parities.
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6. Proof of the theorem. We are now ready to prove the theorem
formulated in the introduction.

Assume L is a finite atomistic lattice.
(i)⇒(ii). Use Propositions 1.1 and 1.2.
(ii)⇒(iii). Apply Theorem 2.1, remarks following Proposition 3.5 and

Lemmas 4.6 and 5.7.
(iv)⇒(i). This implication is obvious.
(iii)⇒(iv). Assume L ∼= Sub(P ) for some finite semilattice P . Define

ϕ : P → 2P by ϕ(x) = {y ∈ P : y 6≤ x} where y ≤ x means y ◦ x = y. Then
ϕ embeds the semilattice P in (2P ;∪). Indeed, if x 6= x′ then either x 6≤ x′

or x′ 6≤ x and so either x ∈ ϕ(x′) \ ϕ(x) or x′ ∈ ϕ(x) \ ϕ(x′) which means
that ϕ(x) 6= ϕ(x′). As x◦x′ ≤ x, x′, it follows that y 6≤ x◦x′ whenever y 6≤ x
or y 6≤ x′. Hence ϕ(x) ∪ ϕ(x′) ⊆ ϕ(x ◦ x′). But if y 6∈ ϕ(x) and y 6∈ ϕ(x′)
then y ≤ x and y ≤ x′ which implies y ≤ x ◦x′ and, therefore, y 6∈ ϕ(x ◦x′).
So ϕ(x ◦ x′) = ϕ(x) ∪ ϕ(x′). Notice now that the map A 7→ ϕ(A), where
A ∈ Sub(P ), establishes an isomorphism between the lattice Sub(P ) and
the principal ideal of Sub(2P ;∪) generated by ϕ(P ). So, as L ∼= Sub(P ), in
order to show that L ∼= Lq(K) for some quasivariety K of rings it suffices to
show that Sub(2P ;∪) ∼= Lq(M) for some quasivariety M of rings and then
to take as K the subquasivariety of M that corresponds to ϕ(P ).

As P is finite, we may assume that P = {1, . . . , n}. Let p1, . . . , pn be a
fixed sequence of pairwise different prime numbers and let Zpi

, i = 1, . . . , n,
denote the ring of integers modulo pi which is treated as an abstract algebra
with the unit as a nullary operation. Let M denote the variety of rings
generated by all Zpi

’s, where i = 1, . . . , n. Define ψ : Sub(2P ;∪) → Lq(M)
by ψ(A) = Q({

∏

(Zpi
: i ∈ X) : X ∈ A}), where A is a subsemilattice of

(2P ;∪). We show that ψ is a lattice isomorphism.
1-1: Assume ψ(A) = ψ(B). By symmetry, it suffices to show that A ⊆ B.

Let X ∈ A. Then
∏

(Zpi
: i ∈ X) is in ψ(A) and hence in ψ(B). This implies

that
∏

(Zpi
: i ∈ X) is embeddable, say, via an embedding f , into the direct

product of some algebras (= rings) of the form
∏

(Zpi
: i ∈ Yj) where

j ∈ J and Yj ∈ B. Consider πj ◦ f :
∏

(Zpi
: i ∈ X) →

∏

(Zpi
: i ∈ Yj)

where πj is the projection of the direct product of
∏

(Zpi
: i ∈ Yj), j ∈ J ,

onto
∏

(Zpi
: i ∈ Yj). As the latter has no proper subalgebras, we have

∏

(Zpi
: i ∈ X)/Ker πj ◦ f ∼=

∏

(Zpi
: i ∈ Yj). On the other hand, as

each congruence on
∏

(Zpi
: i ∈ X) is a product of congruences on Zpi

’s,
where i ∈ X, and each Zpi

is a simple ring, it follows that Yj ⊆ X. But
∧

(Ker πj ◦ f : j ∈ J) = idΠ(Zpi
:i∈X). So

⋃

(Yj : j ∈ J) = X. Hence X ∈ B
and thus A ⊆ B.

O n t o: Let N ∈ Lq(M), and let A denote the family of subsets X of P
such that

∏

(Zpi
: i ∈ X) ∈ N. As, for X,Y ∈ A,

∏

(Zpi
: i ∈ X ∪ Y ) is

isomorphic to a subalgebra of
∏

(Zpi
: i ∈ X) ×

∏

(Zpi
: i ∈ Y ), it follows
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that A is a subsemilattice of (2P ;∪). To show that ψ(A) = N we need to
show that N is generated by all algebras of the form

∏

(Zpi
: i ∈ X), where

X ∈ A. But this is almost immediate since each quasivariety contained in
M is generated by its members that are of the form

∏

(Zpi
: i ∈ X), where

X ⊆ P . To see this notice that M is a directly representable variety and its
directly indecomposable members are Zpi

, where i = 1, . . . , n.

M e e t s: As ψ preserves ≤, we have ψ(AB) ⊆ ψ(A)ψ(B). So let R ∈
ψ(A)ψ(B). In view of the previous remarks we may assume that R is of the
form

∏

(Zpi
: i ∈ X) where X ⊆ P . Then

∏

(Zpi
: i ∈ X) belongs to ψ(A)

and to ψ(B). So arguing as in the proof that ψ is one-to-one we find that
X ∈ AB. Hence R ∈ ψ(AB). Thus ψ(AB) = ψ(A)ψ(B).

J o i n s: Evidently, ψ(A) + ψ(B) ⊆ ψ(A + B) since A,B ≤ A + B. As
ψ(A + B) is generated by all algebras of the form

∏

(Zpi
: i ∈ X), where

X ∈ A + B, to prove the inverse inclusion it suffices to show that, for
each X ∈ A + B, the algebra

∏

(Zpi
: i ∈ X) belongs to ψ(A) + ψ(B).

But this is obvious since X = Y ∪ Z for some Y ∈ A and Z ∈ B and
since the algebra

∏

(Zpi
: i ∈ Y ∪ Z) is isomorphic to a subalgebra of

∏

(Zpi
: i ∈ Y ) ×

∏

(Zpi
: i ∈ Z).

Thus ψ is a lattice isomorphism.

7. Two questions. Recall that (see McKenzie [18]) a finite lattice L
is said to be lower bounded if L is a homomorphic image of a free lattice by
a lattice homomorphism φ satisfying: for each a in L, the set φ−1({a}) has
a least element. For some equivalents of this notion see Day [6], Gaskill,
Grätzer and Platt [9], and Jónsson and Nation [15]. From our theorem
it easily follows that if L is a finite atomistic Q-lattice then L is lower
bounded. We wonder whether this remains valid without the assumption
that L is atomistic. In other words, we ask the following

Question 1. Is every finite Q-lattice lower bounded?

The first author has recently proved that a finite lattice is lower bounded
if and only if it is isomorphic to a sublattice of Sub(P ) for some finite semi-
lattice P . So if the question has an affirmative answer then we can localize
the finite Q-lattices as the sublattices of the lattices of finite semilattices.
This in our opinion would give an essential step towards finding a complete
solution of Mal’cev problem for finite Q-lattices. We also want to mention
that the question was verified in [3] for finite Q-lattices that come from lo-
cally finite quasivarieties. In [3], it was shown that Lq(K) is lower bounded
provided that K is a locally finite quasivariety and Lq(K) is finite. However,
we do not know whether or not the lattice of Figure 4, called by us the leaf,
is a Q-lattice. Notice that it is not lower bounded.
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Fig. 4

The above remarks and Propositions 1.1 and 1.2 also suggest the follow-
ing

Question 2. Given a finite lattice L that is lower bounded, biatomic
and admits an equa-closure operator. Is L a Q-lattice?

The authors would like to thank Professors Ralph Freese, Keith Kearnes
and J. B. Nation for their correspondence, and for providing us with their
paper Congruence lattices of congruence semidistributive algebras, preprint
(1991), where the above Question 1 is also raised and verified within Q-
lattices of locally finite quasivarieties. The authors would also like to thank
the referee for valuable suggestions improving the presentation of the paper.

References

[1] K. V. Adar icheva, A characterization of finite lattices of subsemilattices, Algebra
i Logika 30 (1991), 385–404 (in Russian).

[2] K. V. Adar icheva and V. A. Gorbunov, Equaclosure operator and forbidden
semidistributive lattices, Sibirsk. Mat. Zh. 30 (1989), 7–25 (in Russian).

[3] K. V. Adar icheva, W. Dziob iak and V. A. Gorbunov, The lattices of quasi-
varieties of locally finite quasivarieties, preprint.

[4] M. K. Bennett, Biatomic lattices, Algebra Universalis 24 (1987), 60–73.
[5] G. Birkhof f and M. K. Bennett, The convexity lattice of a poset , Order 2 (1985),

223–242.
[6] A. Day, Characterization of finite lattices that are bounded-homomorphic image of

sublattices of free lattices, Canad. J. Math. 31 (1979), 69–78.
[7] W. Dziob iak, On atoms in the lattice of quasivarieties, Algebra Universalis 24

(1987), 31–35.
[8] R. Freese and J. B. Nat ion, Congruence lattices of semilattices, Pacific J. Math.

44 (1973), 51–58.
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