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Linear subspace of R* without dense
totally disconnected subsets
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Abstract. In [1] the author showed that if there is a cardinal & such that 2% = k™
then there exists a completely regular space without dense 0-dimensional subspaces. This
was a solution of a problem of Arkhangel’skii. Recently Arkhangel’skii asked the author
whether one can generalize this result by constructing a completely regular space without
dense totally disconnected subspaces, and whether such a space can have a structure
of a linear space. The purpose of this paper is to show that indeed such a space can
be constructed under the additional assumption that there exists a cardinal k such that

+
2% = kT and 2° =TT,

1. Notation and lemmas. The topological terminology used in this
paper is standard and follows [2] with the exception that we use the term
totally disconnected for the topological spaces which have no connected sub-
sets with more than one point. (In [3, 2] such spaces are called hereditarily
disconnected.)

The set-theoretical terminology and notation used in this paper is stan-
dard and follows [3]. In particular, ordinals are identified with their sets of
predecessors and cardinals with the initial ordinals. The symbol w denotes
the first infinite ordinal as well as first infinite cardinal. P(X) stands for
the power set of X and |X| is the cardinality of X. If  is a cardinal then
kT denotes the cardinal successor of x and 2% = |P(k)|. [X]=* will denote
{Y € X :|Y| < k}. Similarly we define [X]<". Functions will be identified
with their graphs. The class of all functions f : X — Y from a set X to a
set Y is denoted by Y¥.

The space R* will always be considered as a linear topological space over
R with the standard operations and the product topology. For a cardinal s
a topological space X is said to be k-Lindelof provided every open cover of
X has a subcover of cardinality < k.

We will also need the following notation. Let By denote a fixed countable
base for R, let B(A) = {¢ : D — By : D € [A]<“} and for ¢ € B(A) let
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[e] = {f € RA: (Va € dom(e))(f(a) € £(a))} be a basic open set for R4.

For a cardinal k let H,(A) denote the set of all functions g : D — R such
that D € [A]=", and let F,.(A) be the class of all f: H,(A) — H,(A) such
that f(g) D g forall g € H.(A). For g € H.(A) let [g] = {f €eRA: g C f}.
Moreover, for an ordinal £ with kT < & < kT let D, (€) be the family of
all sets of the form Dy = (RS \ Uger.o[f(9)]) x RF T\ where k+ < ¢ < €
and f € F,(¢). Finally, define Dy = U+ ¢+ Dr(§)-

In what follows we will use the following well known fact. For complete-
ness sake, we sketch its proof.

LEMMA 1. For any disconnected set S C RX there exists § € H,(X)
such that [6] NS = (.

Proof. If S is not dense in RX then we can easily find an appro-
priate 9.

Assume that S is dense in RX and let U,V C R¥ be non-empty disjoint
open sets such that S C UUV. Let {[e,,] : n < w} be a maximal family of
non-empty disjoint basic open sets [¢] such that either [¢] C U or [¢] C V. It
is countable since RX has the Suslin property. Now, if D = U< dom(en),
Uo=UNU,culen)s Vo =V NU,<,len] and Uy and V; are the projections
of Uy and V; into RP, then U; and V; are non-empty, open, disjoint and,
by connectedness of R there is a § € cl(Uy) Ncl(Vy). Then [§] C cl(Up) N
cl(Vp) C cl(U) Nel(V) and indeed [§]NS C [§]N (U UV) = 0.

Now we are ready for our main lemma.

LEMMA 2. Assume that 2° = k* and 28 = k*+. Then

(1) [Dy| = w77

(2) for every totally disconnected set S C R there is a D € D,, such
that S C D;

(3) if kT < & < kTT, Dy C Dy(&), and |Do| < kT then there is a
g € Hyo+ (kTT) such that [g] N J Do = 0;

(4) r(h + D) € D, for any h € R*" r € R\ {0} and D € D,.

Proof. (1) For k™ < & < k1 we have |H,(€)| = [€]F|R|" = k"2F = kT,
and 50 [Dy(§)| = | U <c<e Fu(Q)] = w*. Hence, |Dy| < s7HDy(€)] = 7.

(2) Since S is totally disconnected, for every g € H,,(k™T) the set SN |[g]
must be disconnected or have at most one point. Since [g] is connected
and homeomorphic to R”++, by Lemma 1 we can find a countable extension
f(9) € Hy(kT") of g such that SN [f(g)] = 0. Thus, we have defined
f € Fu(ktt) such that S < R\ U{[f(9)] : g € Ho(r*T)}.

Now, define {¢,, : n < k*} by induction on 7 < k* by putting {, = s,
& = U,<x &y for limit ordinals A < &% and choosing &,+1 < & such
that f(Hs(&,)) C He(&y+1)- This can be done since |H,(&,)| < k. Define
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&= Un<ﬂ+ &, < ktT. Then fla,.e) € Fu(&) since for every g € H,(§) there
is an n < kT such that g € H,(&,). Thus,

s c RN\ @) 9 € Bols™)} <R HIF(9)] 1 9 € Hi()} € Dy

(3) Let {Dy, : m < £} be an enumeration of Dy where f, € Fx((,). Put
¢ =sup{¢, : n < T} and construct, by induction on 1 < k*, an increasing
(in the sense of inclusion) sequence of functions {g, € H.(¢) : n < T}
by taking g, = fn(U7<n gy). Thus, [g,] N Dy, = 0. It is easy to see that
9= U, <+ 9y € Her (k1) satisfies the requirements.

(4) It is easy to check that for f € F,.(() we have r(h+Dy) = Dy € Dy,
where [/ € F.(¢) is defined for every g € H,(¢) and £ € dom(f(g)) by
J'(r[g + hlaom(g)])(§) = r[f(9)(§) + h(&)]. The function f’ is indeed defined
on H,(() since for every ¢’ € H(() there is a g € H,({) such that ¢’ =
T[g + h|dom(g)}'

2. The example. Now we are ready to prove our main theorem.

THEOREM 1. Assume that there exists an infinite cardinal k such that
2% = k+ and 2" = kt*. Then there exists a linear subspace L C RF"
which does not contain any dense totally disconnected subset.

Proof. Let {D, : n < sT1} be an enumeration of D,. We will define
an increasing sequence {a, < k™1 : 1 < kTT} of ordinals and a sequence
{9, € R .y < k*+} by induction on < k*+. Assume that for some
n < k1 our construction is done for all { < 7. Let L,, be a linear subspace
of R generated by {g¢ : ¢ <n} and define

&)= {r(h+ D) ir € R\ {0}, he Ly, ¢ <u}.
By Lemma 2(4), &, C D, and it is easy to see that |£,| < kT. Hence, by
Lemma 2(3), there exists g € H,+(k™") such that [g] "JE, = 0. We can
also find a,, < k' such that g € Hy+ (o)) and a¢ < o, for all ¢ < .
Define g, € R by taking g, O g, gn(ay) = 1 and g¢,(§) = 0 for £ > oy,
and notice that g, ¢ |J&, since g, € [g]. Define L to be the linear subspace
of R*"" generated by {gn :n<KTT}

To see that L satisfies the assertion of the theorem first notice that
L = U,cu++ Ly If g € L then there are 71 < ... < 1, < %" and
non-zero real numbers ry,...,r, such that g = rg,, +...+ r,9,,. Then
g(ay,) =, # 0 while g(§) = 0 for £ > «,,,. Hence, for the function z,
defined by z,(£) = 0 for all o, <& < k™1 we have LN [z,] = L, # L. But
for every D C [L]<*", there is an n < k™t such that D C L,. Since every
set [zy] is closed in R*"", we conclude that L does not have a dense subset
of cardinality xT.
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On the other hand, we will show that L N D¢ C L¢ for every £ < x*T.
This will finish the proof since |L¢| < £+ and, by Lemma 2(2), every totally

disconnected set in R is a subset of some De.

Solet g = h+rg, € L\ L¢, where h € L,, n > £ and r € R\ {0}.
Then r~!'(—h + D¢) € &,, and so g, & r~'(—h + D¢). Hence, indeed,
g=h+rg, & De.

This finishes the proof of Theorem 1.

3. Remarks. The example from [1] mentioned in the abstract is hered-
itarily x-Lindelof if the assumption 27 = kT is used in the construction.
In particular, under the Continuum Hypothesis the space is hereditarily
Lindel6f, and hence also normal. By the similar method we can generalize
the example from Theorem 1 to be hereditarily x*-Lindelof. However, the
following problem remains open.

PROBLEM 1. Does there exist (at least consistently with ZFC) a lin-
ear topological space without dense totally disconnected subspaces which is
normal? Lindelof? hereditarily Lindeldf?

Let us also mention that the set-theoretical assumption in Theorem 1
can be weakened to the following: there exists an infinite cardinal A such
that 2<* = X and 2* = AT. The proof remains essentially the same.

We finish the paper by quoting yet another problem of Arkhangel’skii
(private communication) concerning the same subject.

PROBLEM 2. Does there exist a completely reqular topological space
X such that Cp(X) has no dense 0-dimensional (or totally disconnected)
subspace, where C,(X) stands for the space of all continuous functions
f: X — R with the topology of pointwise convergence?
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