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Linear subspace of Rλ without dense
totally disconnected subsets

by

Krzysztof C i e s i e l s k i (Morgantown, W.Va.)

Abstract. In [1] the author showed that if there is a cardinal κ such that 2κ = κ+

then there exists a completely regular space without dense 0-dimensional subspaces. This
was a solution of a problem of Arkhangel’skĭı. Recently Arkhangel’skĭı asked the author
whether one can generalize this result by constructing a completely regular space without
dense totally disconnected subspaces, and whether such a space can have a structure
of a linear space. The purpose of this paper is to show that indeed such a space can
be constructed under the additional assumption that there exists a cardinal κ such that

2κ = κ+ and 2κ
+
= κ++.

1. Notation and lemmas. The topological terminology used in this
paper is standard and follows [2] with the exception that we use the term
totally disconnected for the topological spaces which have no connected sub-
sets with more than one point. (In [3, 2] such spaces are called hereditarily
disconnected.)

The set-theoretical terminology and notation used in this paper is stan-
dard and follows [3]. In particular, ordinals are identified with their sets of
predecessors and cardinals with the initial ordinals. The symbol ω denotes
the first infinite ordinal as well as first infinite cardinal. P(X) stands for
the power set of X and |X| is the cardinality of X. If κ is a cardinal then
κ+ denotes the cardinal successor of κ and 2κ = |P(κ)|. [X]≤κ will denote
{Y ⊂ X : |Y | ≤ κ}. Similarly we define [X]<κ. Functions will be identified
with their graphs. The class of all functions f : X → Y from a set X to a
set Y is denoted by Y X .

The space Rλ will always be considered as a linear topological space over
R with the standard operations and the product topology. For a cardinal κ
a topological space X is said to be κ-Lindelöf provided every open cover of
X has a subcover of cardinality ≤ κ.

We will also need the following notation. Let B0 denote a fixed countable
base for R, let B(A) = {ε : D → B0 : D ∈ [A]<ω} and for ε ∈ B(A) let
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[ε] = {f ∈ RA : (∀a ∈ dom(ε))(f(a) ∈ ε(a))} be a basic open set for RA.
For a cardinal κ let Hκ(A) denote the set of all functions g : D → R such

that D ∈ [A]≤κ, and let Fκ(A) be the class of all f : Hκ(A) → Hκ(A) such
that f(g) ⊃ g for all g ∈ Hκ(A). For g ∈ Hκ(A) let [g] = {f ∈ RA : g ⊂ f}.
Moreover, for an ordinal ξ with κ+ ≤ ξ ≤ κ++, let Dκ(ξ) be the family of
all sets of the form Df = (Rζ \

⋃
g∈Hκ(ζ)[f(g)])×Rκ++\ζ where κ+ ≤ ζ ≤ ξ

and f ∈ Fκ(ζ). Finally, define Dκ =
⋃

κ+<ξ<κ++ Dκ(ξ).
In what follows we will use the following well known fact. For complete-

ness sake, we sketch its proof.

Lemma 1. For any disconnected set S ⊂ RX there exists δ ∈ Hω(X)
such that [δ] ∩ S = ∅.

P r o o f. If S is not dense in RX then we can easily find an appro-
priate δ.

Assume that S is dense in RX and let U, V ⊂ RX be non-empty disjoint
open sets such that S ⊂ U ∪ V . Let {[εn] : n < ω} be a maximal family of
non-empty disjoint basic open sets [ε] such that either [ε] ⊂ U or [ε] ⊂ V . It
is countable since RX has the Suslin property. Now, if D =

⋃
n<ω dom(εn),

U0 = U ∩
⋃

n<ω[εn], V0 = V ∩
⋃

n<ω[εn] and U1 and V1 are the projections
of U0 and V0 into RD, then U1 and V1 are non-empty, open, disjoint and,
by connectedness of RD, there is a δ ∈ cl(U1) ∩ cl(V1). Then [δ] ⊂ cl(U0) ∩
cl(V0) ⊂ cl(U) ∩ cl(V ) and indeed [δ] ∩ S ⊂ [δ] ∩ (U ∪ V ) = ∅.

Now we are ready for our main lemma.

Lemma 2. Assume that 2κ = κ+ and 2κ+
= κ++. Then

(1) |Dκ| = κ++;
(2) for every totally disconnected set S ⊂ Rκ++

there is a D ∈ Dκ such
that S ⊂ D;

(3) if κ+ < ξ < κ++, D0 ⊂ Dκ(ξ), and |D0| ≤ κ+ then there is a
g ∈ Hκ+(κ++) such that [g] ∩

⋃
D0 = ∅;

(4) r(h + D) ∈ Dκ for any h ∈ Rκ++
, r ∈ R \ {0} and D ∈ Dκ.

P r o o f. (1) For κ+ < ξ < κ++ we have |Hκ(ξ)| = |ξ|κ|R|κ = κκ2κ = κ+,
and so |Dκ(ξ)| = |

⋃
κ+≤ζ≤ξ Fκ(ζ)| = κ+. Hence, |Dκ| ≤ κ++|Dκ(ξ)| = κ++.

(2) Since S is totally disconnected, for every g ∈ Hκ(κ++) the set S∩ [g]
must be disconnected or have at most one point. Since [g] is connected
and homeomorphic to Rκ++

, by Lemma 1 we can find a countable extension
f(g) ∈ Hκ(κ++) of g such that S ∩ [f(g)] = ∅. Thus, we have defined
f ∈ Fκ(κ++) such that S ⊂ Rκ++ \

⋃
{[f(g)] : g ∈ Hκ(κ++)}.

Now, define {ξη : η < κ+} by induction on η < κ+ by putting ξ0 = κ+,
ξλ =

⋃
η<λ ξη for limit ordinals λ < κ+ and choosing ξη+1 < κ++ such

that f(Hκ(ξη)) ⊂ Hκ(ξη+1). This can be done since |Hκ(ξη)| ≤ κ+. Define
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ξ =
⋃

η<κ+ ξη < κ++. Then f |Hκ(ξ) ∈ Fκ(ξ) since for every g ∈ Hκ(ξ) there
is an η < κ+ such that g ∈ Hκ(ξη). Thus,

S ⊂ Rκ++
\
⋃
{[f(g)] : g ∈ Hκ(κ++)} ⊂ Rκ++

\
⋃
{[f(g)] : g ∈ Hκ(ξ)} ∈ Dκ .

(3) Let {Dfη
: η < κ+} be an enumeration of D0 where fη ∈ Fκ(ζη). Put

ζ = sup{ζη : η < κ+} and construct, by induction on η < κ+, an increasing
(in the sense of inclusion) sequence of functions {gη ∈ Hκ(ζ) : η < κ+}
by taking gη = fη(

⋃
γ<η gγ). Thus, [gη] ∩ Dfη = ∅. It is easy to see that

g =
⋃

η<κ+ gη ∈ Hκ+(κ++) satisfies the requirements.
(4) It is easy to check that for f ∈ Fκ(ζ) we have r(h+Df ) = Df ′ ∈ Dκ,

where f ′ ∈ Fκ(ζ) is defined for every g ∈ Hκ(ζ) and ξ ∈ dom(f(g)) by
f ′(r[g + h|dom(g)])(ξ) = r[f(g)(ξ) + h(ξ)]. The function f ′ is indeed defined
on Hκ(ζ) since for every g′ ∈ Hκ(ζ) there is a g ∈ Hκ(ζ) such that g′ =
r[g + h|dom(g)].

2. The example. Now we are ready to prove our main theorem.

Theorem 1. Assume that there exists an infinite cardinal κ such that
2κ = κ+ and 2κ+

= κ++. Then there exists a linear subspace L ⊂ Rκ++

which does not contain any dense totally disconnected subset.

P r o o f. Let {Dη : η < κ++} be an enumeration of Dκ. We will define
an increasing sequence {αη < κ++ : η < κ++} of ordinals and a sequence
{gη ∈ Rκ++

: η < κ++} by induction on η < κ++. Assume that for some
η < κ++ our construction is done for all ζ < η. Let Lη be a linear subspace
of Rκ++

generated by {gζ : ζ < η} and define

Eη = {r(h + Dζ) : r ∈ R \ {0}, h ∈ Lη, ζ < η} .

By Lemma 2(4), Eη ⊂ Dκ and it is easy to see that |Eη| ≤ κ+. Hence, by
Lemma 2(3), there exists g ∈ Hκ+(κ++) such that [g] ∩

⋃
Eη = ∅. We can

also find αη < κ++ such that g ∈ Hκ+(αη) and αζ < αη for all ζ < η.
Define gη ∈ Rκ++

by taking gη ⊃ g, gη(αη) = 1 and gη(ξ) = 0 for ξ > αη,
and notice that gη 6∈

⋃
Eη since gη ∈ [g]. Define L to be the linear subspace

of Rκ++
generated by {gη : η < κ++}.

To see that L satisfies the assertion of the theorem first notice that
L =

⋃
η<κ++ Lη. If g ∈ L then there are η1 < . . . < ηn < κ++ and

non-zero real numbers r1, . . . , rn such that g = r1gη1 + . . . + rngηn . Then
g(αηn) = rn 6= 0 while g(ξ) = 0 for ξ > αηn . Hence, for the function zη

defined by zη(ξ) = 0 for all αη ≤ ξ < κ++ we have L ∩ [zη] = Lη 6= L. But
for every D ⊂ [L]≤κ+

, there is an η < κ++ such that D ⊂ Lη. Since every
set [zη] is closed in Rκ++

, we conclude that L does not have a dense subset
of cardinality κ+.
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On the other hand, we will show that L ∩Dξ ⊂ Lξ for every ξ < κ++.
This will finish the proof since |Lξ| ≤ κ+ and, by Lemma 2(2), every totally
disconnected set in Rκ++

is a subset of some Dξ.
So let g = h + rgη ∈ L \ Lξ, where h ∈ Lη, η ≥ ξ and r ∈ R \ {0}.

Then r−1(−h + Dξ) ∈ Eη, and so gη 6∈ r−1(−h + Dξ). Hence, indeed,
g = h + rgη 6∈ Dξ.

This finishes the proof of Theorem 1.

3. Remarks. The example from [1] mentioned in the abstract is hered-
itarily κ-Lindelöf if the assumption 2κ = κ+ is used in the construction.
In particular, under the Continuum Hypothesis the space is hereditarily
Lindelöf, and hence also normal. By the similar method we can generalize
the example from Theorem 1 to be hereditarily κ+-Lindelöf. However, the
following problem remains open.

Problem 1. Does there exist (at least consistently with ZFC) a lin-
ear topological space without dense totally disconnected subspaces which is
normal? Lindelöf ? hereditarily Lindelöf ?

Let us also mention that the set-theoretical assumption in Theorem 1
can be weakened to the following: there exists an infinite cardinal λ such
that 2<λ = λ and 2λ = λ+. The proof remains essentially the same.

We finish the paper by quoting yet another problem of Arkhangel’skĭı
(private communication) concerning the same subject.

Problem 2. Does there exist a completely regular topological space
X such that Cp(X) has no dense 0-dimensional (or totally disconnected)
subspace, where Cp(X) stands for the space of all continuous functions
f : X → R with the topology of pointwise convergence?
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