Linear subspace of \mathbb{R}^{λ} without dense totally disconnected subsets

by

Krzysztof Ciesielski (Morgantown, W.Va.)

Abstract. In [1] the author showed that if there is a cardinal κ such that $2^{\kappa} = \kappa^+$ then there exists a completely regular space without dense 0-dimensional subspaces. This was a solution of a problem of Arkhangel'skiĭ. Recently Arkhangel'skiĭ asked the author whether one can generalize this result by constructing a completely regular space without dense totally disconnected subspaces, and whether such a space can have a structure of a linear space. The purpose of this paper is to show that indeed such a space can be constructed under the additional assumption that there exists a cardinal κ such that $2^{\kappa} = \kappa^+$ and $2^{\kappa^+} = \kappa^{++}$.

1. Notation and lemmas. The topological terminology used in this paper is standard and follows [2] with the exception that we use the term *totally disconnected* for the topological spaces which have no connected subsets with more than one point. (In [3, 2] such spaces are called hereditarily disconnected.)

The set-theoretical terminology and notation used in this paper is standard and follows [3]. In particular, ordinals are identified with their sets of predecessors and cardinals with the initial ordinals. The symbol ω denotes the first infinite ordinal as well as first infinite cardinal. $\mathcal{P}(X)$ stands for the power set of X and |X| is the cardinality of X. If κ is a cardinal then κ^+ denotes the cardinal successor of κ and $2^{\kappa} = |\mathcal{P}(\kappa)|$. $[X]^{\leq \kappa}$ will denote $\{Y \subset X : |Y| \leq \kappa\}$. Similarly we define $[X]^{<\kappa}$. Functions will be identified with their graphs. The class of all functions $f : X \to Y$ from a set X to a set Y is denoted by Y^X .

The space \mathbb{R}^{λ} will always be considered as a linear topological space over \mathbb{R} with the standard operations and the product topology. For a cardinal κ a topological space X is said to be κ -Lindelöf provided every open cover of X has a subcover of cardinality $\leq \kappa$.

We will also need the following notation. Let \mathcal{B}_0 denote a fixed countable base for \mathbb{R} , let $\mathcal{B}(A) = \{ \varepsilon : D \to \mathcal{B}_0 : D \in [A]^{<\omega} \}$ and for $\varepsilon \in \mathcal{B}(A)$ let

K. Ciesielski

 $[\varepsilon] = \{ f \in \mathbb{R}^A : (\forall a \in \operatorname{dom}(\varepsilon))(f(a) \in \varepsilon(a)) \} \text{ be a basic open set for } \mathbb{R}^A.$

For a cardinal κ let $H_{\kappa}(A)$ denote the set of all functions $g: D \to \mathbb{R}$ such that $D \in [A]^{\leq \kappa}$, and let $\mathcal{F}_{\kappa}(A)$ be the class of all $f: H_{\kappa}(A) \to H_{\kappa}(A)$ such that $f(g) \supset g$ for all $g \in H_{\kappa}(A)$. For $g \in H_{\kappa}(A)$ let $[g] = \{f \in \mathbb{R}^{A} : g \subset f\}$. Moreover, for an ordinal ξ with $\kappa^{+} \leq \xi \leq \kappa^{++}$, let $\mathcal{D}_{\kappa}(\xi)$ be the family of all sets of the form $D_{f} = (\mathbb{R}^{\zeta} \setminus \bigcup_{g \in H_{\kappa}(\zeta)} [f(g)]) \times \mathbb{R}^{\kappa^{++} \setminus \zeta}$ where $\kappa^{+} \leq \zeta \leq \xi$ and $f \in \mathcal{F}_{\kappa}(\zeta)$. Finally, define $\mathcal{D}_{\kappa} = \bigcup_{\kappa^{+} < \xi < \kappa^{++}} \mathcal{D}_{\kappa}(\xi)$.

In what follows we will use the following well known fact. For completeness sake, we sketch its proof.

LEMMA 1. For any disconnected set $S \subset \mathbb{R}^X$ there exists $\delta \in H_{\omega}(X)$ such that $[\delta] \cap S = \emptyset$.

Proof. If S is not dense in \mathbb{R}^X then we can easily find an appropriate δ .

Assume that S is dense in \mathbb{R}^X and let $U, V \subset \mathbb{R}^X$ be non-empty disjoint open sets such that $S \subset U \cup V$. Let $\{[\varepsilon_n] : n < \omega\}$ be a maximal family of non-empty disjoint basic open sets $[\varepsilon]$ such that either $[\varepsilon] \subset U$ or $[\varepsilon] \subset V$. It is countable since \mathbb{R}^X has the Suslin property. Now, if $D = \bigcup_{n < \omega} \operatorname{dom}(\varepsilon_n)$, $U_0 = U \cap \bigcup_{n < \omega} [\varepsilon_n], V_0 = V \cap \bigcup_{n < \omega} [\varepsilon_n]$ and U_1 and V_1 are the projections of U_0 and V_0 into \mathbb{R}^D , then U_1 and V_1 are non-empty, open, disjoint and, by connectedness of \mathbb{R}^D , there is a $\delta \in \operatorname{cl}(U_1) \cap \operatorname{cl}(V_1)$. Then $[\delta] \subset \operatorname{cl}(U_0) \cap$ $\operatorname{cl}(V_0) \subset \operatorname{cl}(U) \cap \operatorname{cl}(V)$ and indeed $[\delta] \cap S \subset [\delta] \cap (U \cup V) = \emptyset$.

Now we are ready for our main lemma.

LEMMA 2. Assume that $2^{\kappa} = \kappa^+$ and $2^{\kappa^+} = \kappa^{++}$. Then

(1) $|\mathcal{D}_{\kappa}| = \kappa^{++};$

(2) for every totally disconnected set $S \subset \mathbb{R}^{\kappa^{++}}$ there is a $D \in \mathcal{D}_{\kappa}$ such that $S \subset D$;

(3) if $\kappa^+ < \xi < \kappa^{++}$, $\mathcal{D}_0 \subset \mathcal{D}_{\kappa}(\xi)$, and $|\mathcal{D}_0| \leq \kappa^+$ then there is a $g \in H_{\kappa^+}(\kappa^{++})$ such that $[g] \cap \bigcup \mathcal{D}_0 = \emptyset$;

(4) $r(h+D) \in \mathcal{D}_{\kappa}$ for any $h \in \mathbb{R}^{\kappa^{++}}$, $r \in \mathbb{R} \setminus \{0\}$ and $D \in \mathcal{D}_{\kappa}$.

Proof. (1) For $\kappa^+ < \xi < \kappa^{++}$ we have $|H_{\kappa}(\xi)| = |\xi|^{\kappa} |\mathbb{R}|^{\kappa} = \kappa^{\kappa} 2^{\kappa} = \kappa^+$, and so $|\mathcal{D}_{\kappa}(\xi)| = |\bigcup_{\kappa^+ < \zeta < \xi} \mathcal{F}_{\kappa}(\zeta)| = \kappa^+$. Hence, $|\mathcal{D}_{\kappa}| \le \kappa^{++} |\mathcal{D}_{\kappa}(\xi)| = \kappa^{++}$.

(2) Since S is totally disconnected, for every $g \in H_{\kappa}(\kappa^{++})$ the set $S \cap [g]$ must be disconnected or have at most one point. Since [g] is connected and homeomorphic to $\mathbb{R}^{\kappa^{++}}$, by Lemma 1 we can find a countable extension $f(g) \in H_{\kappa}(\kappa^{++})$ of g such that $S \cap [f(g)] = \emptyset$. Thus, we have defined $f \in \mathcal{F}_{\kappa}(\kappa^{++})$ such that $S \subset \mathbb{R}^{\kappa^{++}} \setminus \bigcup \{[f(g)] : g \in H_{\kappa}(\kappa^{++})\}$.

Now, define $\{\xi_{\eta} : \eta < \kappa^+\}$ by induction on $\eta < \kappa^+$ by putting $\xi_0 = \kappa^+$, $\xi_{\lambda} = \bigcup_{\eta < \lambda} \xi_{\eta}$ for limit ordinals $\lambda < \kappa^+$ and choosing $\xi_{\eta+1} < \kappa^{++}$ such that $f(H_{\kappa}(\xi_{\eta})) \subset H_{\kappa}(\xi_{\eta+1})$. This can be done since $|H_{\kappa}(\xi_{\eta})| \leq \kappa^+$. Define $\xi = \bigcup_{\eta < \kappa^+} \xi_\eta < \kappa^{++}$. Then $f|_{H_\kappa(\xi)} \in \mathcal{F}_\kappa(\xi)$ since for every $g \in H_\kappa(\xi)$ there is an $\eta < \kappa^+$ such that $g \in H_\kappa(\xi_\eta)$. Thus,

$$S \subset \mathbb{R}^{\kappa^{++}} \setminus \bigcup \{ [f(g)] : g \in H_{\kappa}(\kappa^{++}) \} \subset \mathbb{R}^{\kappa^{++}} \setminus \bigcup \{ [f(g)] : g \in H_{\kappa}(\xi) \} \in \mathcal{D}_{\kappa}$$

(3) Let $\{D_{f_{\eta}} : \eta < \kappa^+\}$ be an enumeration of \mathcal{D}_0 where $f_{\eta} \in \mathcal{F}_{\kappa}(\zeta_{\eta})$. Put $\zeta = \sup\{\zeta_{\eta} : \eta < \kappa^+\}$ and construct, by induction on $\eta < \kappa^+$, an increasing (in the sense of inclusion) sequence of functions $\{g_{\eta} \in H_{\kappa}(\zeta) : \eta < \kappa^+\}$ by taking $g_{\eta} = f_{\eta}(\bigcup_{\gamma < \eta} g_{\gamma})$. Thus, $[g_{\eta}] \cap D_{f_{\eta}} = \emptyset$. It is easy to see that $g = \bigcup_{\eta < \kappa^+} g_{\eta} \in H_{\kappa^+}(\kappa^{++})$ satisfies the requirements.

(4) It is easy to check that for $f \in \mathcal{F}_{\kappa}(\zeta)$ we have $r(h+D_f) = D_{f'} \in \mathcal{D}_{\kappa}$, where $f' \in \mathcal{F}_{\kappa}(\zeta)$ is defined for every $g \in H_{\kappa}(\zeta)$ and $\xi \in \text{dom}(f(g))$ by $f'(r[g+h|_{\text{dom}(g)}])(\xi) = r[f(g)(\xi) + h(\xi)]$. The function f' is indeed defined on $H_{\kappa}(\zeta)$ since for every $g' \in H_{\kappa}(\zeta)$ there is a $g \in H_{\kappa}(\zeta)$ such that $g' = r[g+h|_{\text{dom}(g)}]$.

2. The example. Now we are ready to prove our main theorem.

THEOREM 1. Assume that there exists an infinite cardinal κ such that $2^{\kappa} = \kappa^+$ and $2^{\kappa^+} = \kappa^{++}$. Then there exists a linear subspace $L \subset \mathbb{R}^{\kappa^{++}}$ which does not contain any dense totally disconnected subset.

Proof. Let $\{D_{\eta} : \eta < \kappa^{++}\}$ be an enumeration of \mathcal{D}_{κ} . We will define an increasing sequence $\{\alpha_{\eta} < \kappa^{++} : \eta < \kappa^{++}\}$ of ordinals and a sequence $\{g_{\eta} \in \mathbb{R}^{\kappa^{++}} : \eta < \kappa^{++}\}$ by induction on $\eta < \kappa^{++}$. Assume that for some $\eta < \kappa^{++}$ our construction is done for all $\zeta < \eta$. Let L_{η} be a linear subspace of $\mathbb{R}^{\kappa^{++}}$ generated by $\{g_{\zeta} : \zeta < \eta\}$ and define

$$\mathcal{E}_{\eta} = \left\{ r(h + D_{\zeta}) : r \in \mathbb{R} \setminus \{0\}, \ h \in L_{\eta}, \ \zeta < \eta \right\}.$$

By Lemma 2(4), $\mathcal{E}_{\eta} \subset \mathcal{D}_{\kappa}$ and it is easy to see that $|\mathcal{E}_{\eta}| \leq \kappa^{+}$. Hence, by Lemma 2(3), there exists $g \in H_{\kappa^{+}}(\kappa^{++})$ such that $[g] \cap \bigcup \mathcal{E}_{\eta} = \emptyset$. We can also find $\alpha_{\eta} < \kappa^{++}$ such that $g \in H_{\kappa^{+}}(\alpha_{\eta})$ and $\alpha_{\zeta} < \alpha_{\eta}$ for all $\zeta < \eta$. Define $g_{\eta} \in \mathbb{R}^{\kappa^{++}}$ by taking $g_{\eta} \supset g$, $g_{\eta}(\alpha_{\eta}) = 1$ and $g_{\eta}(\xi) = 0$ for $\xi > \alpha_{\eta}$, and notice that $g_{\eta} \notin \bigcup \mathcal{E}_{\eta}$ since $g_{\eta} \in [g]$. Define L to be the linear subspace of $\mathbb{R}^{\kappa^{++}}$ generated by $\{g_{\eta} : \eta < \kappa^{++}\}$.

To see that L satisfies the assertion of the theorem first notice that $L = \bigcup_{\eta < \kappa^{++}} L_{\eta}$. If $g \in L$ then there are $\eta_1 < \ldots < \eta_n < \kappa^{++}$ and non-zero real numbers r_1, \ldots, r_n such that $g = r_1 g_{\eta_1} + \ldots + r_n g_{\eta_n}$. Then $g(\alpha_{\eta_n}) = r_n \neq 0$ while $g(\xi) = 0$ for $\xi > \alpha_{\eta_n}$. Hence, for the function z_η defined by $z_\eta(\xi) = 0$ for all $\alpha_\eta \leq \xi < \kappa^{++}$ we have $L \cap [z_\eta] = L_\eta \neq L$. But for every $D \subset [L]^{\leq \kappa^+}$, there is an $\eta < \kappa^{++}$ such that $D \subset L_\eta$. Since every set $[z_\eta]$ is closed in $\mathbb{R}^{\kappa^{++}}$, we conclude that L does not have a dense subset of cardinality κ^+ .

On the other hand, we will show that $L \cap D_{\xi} \subset L_{\xi}$ for every $\xi < \kappa^{++}$. This will finish the proof since $|L_{\xi}| \leq \kappa^{+}$ and, by Lemma 2(2), every totally disconnected set in $\mathbb{R}^{\kappa^{++}}$ is a subset of some D_{ξ} .

So let $g = h + rg_{\eta} \in L \setminus L_{\xi}$, where $h \in L_{\eta}, \eta \geq \xi$ and $r \in \mathbb{R} \setminus \{0\}$. Then $r^{-1}(-h + D_{\xi}) \in \mathcal{E}_{\eta}$, and so $g_{\eta} \notin r^{-1}(-h + D_{\xi})$. Hence, indeed, $g = h + rg_{\eta} \notin D_{\xi}$.

This finishes the proof of Theorem 1.

3. Remarks. The example from [1] mentioned in the abstract is hereditarily κ -Lindelöf if the assumption $2^{\kappa} = \kappa^+$ is used in the construction. In particular, under the Continuum Hypothesis the space is hereditarily Lindelöf, and hence also normal. By the similar method we can generalize the example from Theorem 1 to be hereditarily κ^+ -Lindelöf. However, the following problem remains open.

PROBLEM 1. Does there exist (at least consistently with ZFC) a linear topological space without dense totally disconnected subspaces which is normal? Lindelöf? hereditarily Lindelöf?

Let us also mention that the set-theoretical assumption in Theorem 1 can be weakened to the following: there exists an infinite cardinal λ such that $2^{<\lambda} = \lambda$ and $2^{\lambda} = \lambda^+$. The proof remains essentially the same.

We finish the paper by quoting yet another problem of Arkhangel'skiĭ (private communication) concerning the same subject.

PROBLEM 2. Does there exist a completely regular topological space X such that $C_p(X)$ has no dense 0-dimensional (or totally disconnected) subspace, where $C_p(X)$ stands for the space of all continuous functions $f: X \to \mathbb{R}$ with the topology of pointwise convergence?

References

- K. Ciesielski, L-space without any uncountable 0-dimensional subspace, Fund. Math. 125 (1985), 231–235.
- [2] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa 1977.
- [3] K. Kunen, Set Theory, North-Holland, 1983.

DEPARTMENT OF MATHEMATICS WEST VIRGINIA UNIVERSITY MORGANTOWN, WEST VIRGINIA 26506-6310 U.S.A.

> Received 31 March 1992; in revised form 2 September 1992