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On linear operators and functors extending pseudometrics
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Czes law Bessaga (Warszawa)

Abstract. For some pairs (X,A), where X is a metrizable topological space and A
its closed subset, continuous, linear (i.e., additive and positive-homogeneous) operators
extending metrics for A to metrics for X are constructed. They are defined by explicit
analytic formulas, and also regarded as functors between certain categories. An essential
role is played by “squeezed cones” related to the classical cone construction. The main
result: if A is a nondegenerate absolute neighborhood retract for metric spaces, then
continuous linear operators extending metrics always exist.

There are two roots for the present study. The first is the theorem of
Hausdorff [H] on extending metrics for a closed subset A of a metrizable
topological space X to metrics on the whole space X. The second is the
Borsuk–Dugundji theorem ([Bo], [Du]) on the existence of continuous lin-
ear operators extending continuous functions on A to continuous functions
on X. The author tried to prove the existence of continuous, linear (i.e.,
additive and positive-homogeneous) operators extending admissible metrics
from A to X, and has only succeeded in special situations, e.g., when A is
a nondegenerate ANR for metric spaces (Corollary 2.3). Very stimulating
and helpful for our discussion was the paper [KN] of Nguyen Van Khue and
Nguyen To Nhu: they were the first to construct continuous (but merely
sublinear) operators extending metrics.

The main part of the paper are §§ 1 and 2 which lead to the above-
mentioned Corollary 2.3. A crucial role is played by an extension of spaces
and pseudometrics called the squeezed cone construction (in symbols: sc)
which is related to the classical cone construction in topology. §3 contains
examples of spaces with an “absolute” property of linear extending of metrics
but lacking the ANR property. §4 is devoted to discussion of the linear
extension constructions viewed as functors between certain categories. Fi-
nally, in §5 we ask some questions, mostly functional-analytic, related to
the results, proofs and the philosophy of the paper; also some comments are
included.
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It should be noted that the extension operators defined in this paper
are expressed by explicit analytic formulas and therefore they can easily be
examined for additional properties, e.g., preservation of special classes of
metrics.

Information on the history of the subject of extensions of metrics (till
the late seventies), interesting original results on extending individual met-
rics, and a strengthening of Hausdorff’s theorem can be found in Sect. 6 of
Luukkainen’s paper [L], and in the papers listed in the bibliography of [L],
in particular in [KN], [N] and [T].
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Lauri Leppik, the discussion with whom in 1988 (when he was a student of
Tallin State Pedagogical Institute, visiting Warsaw University) has helped to
crystallize the concept of squeezed cone. I am also very grateful to the referee
who studied very carefully the previous versions of the manuscript, pointed
out numerous misprints and some unprecise, or even incorrect statements
and made valuable suggestions improving the paper.

1. Squeezed products of spaces and pseudometrics

1.1. Consider two pointed sets (A, o) and (T,O), i.e., A and T are
arbitrary nonempty sets and o ∈ A, O ∈ T their base points. Let

A ∗ T = (A× T )/(A× {O} ∪ {o} × T ) ;

the set A × {O} ∪ {o} × T is regarded as a single point 0 ∈ A ∗ T , and
consequently we write

(11) (a, u) = 0 iff a = o or u = O .

Definition. The set A ∗ T is called the squeezed product of A and T
determined by the base points o and O.

By a symmetric function on X ×X we mean a function p : X ×X → R
satisfying p(x, y) = p(y, x), p(x, x) = 0. The linear space of symmetric
functions on X ×X will be denoted by S(X); the symbols P(X) and M(X)
will stand for its subsets (cones) consisting of pseudometrics and metrics,
respectively. Let

‖p‖ = sup{|p(x, y)| : x, y ∈ X} for p : X ×X → R .

Assuming p ∈ S(A), δ ∈ S(T ), a, b ∈ A, u, v ∈ T , we define

p ∗ δ((a, u), (b, v)) = 2−1[p(a, b)(δ(u, O) + δ(v,O)− δ(u, v))(12)
+ p(a, o)(δ(u, O)− δ(v,O) + δ(u, v))
+ p(b, o)(δ(v,O)− δ(u, O) + δ(u, v))] .

R e m a r k. A routine calculation yields

(13) p ∗ δ((a, u), (b, v)) = p ∗ δ((b, v), (a, u)) = δ ∗ p((u, a), (v, b)) ,
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(14) if (b, v) = 0, then p ∗ δ((a, u), (b, v)) = p(a, o)δ(u, O) ,

(15) p ∗ δ((a, u), (b, u)) = p(a, b)δ(u, O) ,

for every a, b ∈ A, u, v ∈ T .

1.2. According to (13) and (14) the function p ∗ δ may be regarded as a
function

(21) p ∗ δ : (A ∗ T )× (A ∗ T ) → R, p ∗ δ ∈ S(A ∗ T ) .

Definition. The function (21) is called the squeezed product of p and δ
determined by the base points o and O.

Proposition. The operation ∗ : S(A)×S(T ) → S(A ∗T ) is bilinear and
has the following properties:

(22) ‖p ∗ δ‖ ≤ 9 · 2−1‖p‖ · ‖δ‖ ,

(23) |p ∗ δ((a, u), (b, v))| ≤ 2−1(|δ(u, O)|+ |δ(v,O)|+ |δ(u, v)|)
× (|p(a, o)|+ |p(b, o)|+ |p(a, b)|) ,

(24) if p ≥ 0 and δ ∈ P(T ), then p ∗ δ ≥ 0 ,

(25) |p ∗ δ((a, u), 0)| ≤ min[|p(a, o)| ‖δ‖, |δ(u, O)| ‖p‖] .
If p ∈ P(A) and δ ∈ P(T ), then:

(26) p ∗ δ((a, u), (b, v)) ≤ p(a, b)δ(v,O) + δ(u, v)(p(a, b) + 2p(b, o)),
(27) p ∗ δ((a, u), (b, v)) ≥ δ(v,O) ·min[p(a, b), p(b, o)],
(27′) p ∗ δ((a, u), (b, v)) ≥ p(b, o) ·min[δ(u, v), δ(v,O)].

P r o o f. The estimates (22) and (23) are obvious. The estimate (25)
follows directly from (14). Define

∆ = p ∗ δ((a, u), (b, v)) .

P r o o f o f (24). If p ≥ 0 and δ ∈ P(T ), then all the three terms on the
right-hand side of (12) are nonnegative, and therefore ∆ ≥ 0.

P r o o f o f (26). By (12) and the triangle inequality,

∆ ≤ 2−1[p(a, b)2δ(v,O) + p(a, o)2δ(u, v) + p(b, o)2δ(u, v)]
= p(a, b)δ(v,O) + δ(u, v)(p(a, o) + p(b, o))
≤ p(a, b)δ(v,O) + δ(u, v)(p(a, b) + 2p(b, o)) .

P r o o f o f (27). Let η = min[p(a, b), p(b, o)]/2. Ignoring the second
term on the right-hand side of (12), we get

∆ ≥ η(δ(u, O) + δ(v,O)− δ(u, v) + δ(v,O)− δ(u, O) + δ(u, v)) = 2ηδ(v,O) ,

which is the inequality (27).
The estimate (27′) follows from (27) and the symmetry condition (13).
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Theorem. If p and δ are pseudometrics [metrics], then p ∗ δ is a pseu-
dometric [a metric].

P r o o f. Observe that, by (27), (27′) and (14), if p and δ are metrics and
if (a, u) 6= (b, v) as points of A ∗ T , then

p ∗ δ((a, u), (b, v)) 6= 0 .

Hence it is enough to prove the assertion concerning pseudometrics.
Begin with the special case:

(28) A = {1, 2, 3, o} .

Let H denote the class of nonempty subsets B ⊆ {1, 2, 3}. We say that
the set B ∈ H separates the pair (a, b) ∈ A × A, and write (a, b) |B, if B
and A \B each contain one point of the pair. For each B ∈ H, consider the
pseudometric pB ∈ P(A) defined by

(29) pB(a, b) =
{

1 if (a, b) |B,
0 otherwise.

Fix δ ∈ P(T ), let dB = pB ∗ δ, and define rB : A ∗ T → T by

rB(a, u) =
{

u if a ∈ B,
O if a 6∈ B.

A direct calculation yields

dB((a, u), (b, v)) = δ(rB(a, u), rB(b, v)) ,

whence it is seen that dB ∈ P(A ∗ T ) for every B ∈ H. Therefore, by
Proposition 1.2, p ∗ δ ∈ P(A ∗ T ) if p is an arbitrary nonnegative linear
combination of the pseudometrics pB . Hence, under the assumption (28),
the theorem is a consequence of the following

Lemma. If A = {1, 2, 3, o} and H are as above, then every p ∈ P(A) is
a nonnegative linear combination of the pseudometrics pB , B ∈ H.

P r o o f. First, introduce the abbreviations: po = p{1,2,3}, pi = p{i} for
i ∈ {1, 2, 3}, pij = p{i,j} for {i, j} ⊆ {1, 2, 3}.

Observe that if p ∈ P(A) \M(A), and for instance p(o, 1) = 0, then

2p = [p(1, 2) + p(1, 3)− p(2, 3)]p23 + [p(2, 1) + p(2, 3)− p(1, 3)]p2

+ [p(3, 1) + p(3, 2)− p(1, 2)]p3 ,

i.e., p satisfies the assertion of the Lemma.
So, it is enough to consider the case where p ∈ M(A). Let us say that a

point c ∈ A is internal for p if there exist a, b ∈ A such that 0 < p(a, c) <
p(a, b) and p(a, b) = p(a, c) + p(b, c); define

i(p) = {c ∈ A : c is internal for p} .
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Assume that c ∈ A \ i(p) and u = sup{t ≥ 0 : p − tpc ∈ P(A)}. It is
easy to see that q = p − upc ∈ P(A) and that either q ∈ P(A) \ M(A)
or q ∈ M(A) with i(q) = i(p) ∪ {c}. Hence, after subtracting from p a
nonnegative linear combination of the pseudometrics pc, c ∈ A, we arrive at
a pseudometric q which either is not a metric or is a metric with i(q) = A.
The first case is already done. An elementary examination of the second
case yields that after renaming the points 1, 2, 3, o, if necessary, the only
possible configuration is given by the equalities

p(o, 1) = p(2, 3) = α, p(o, 3) = p(1, 2) = β, p(o, 2) = p(1, 3) = α + β .

Hence p = αp12 + βp23. This completes the proof of the Lemma.

P r o o f o f t h e T h e o r e m (cont.). If cardA ≤ 3, we may assume
that {o} ⊆ A ⊆ {1, 2, 3, o}. Obviously, each p ∈ P(A) can be extended to a
pseudometric p0 ∈ P({1, 2, 3, o}) and then p ∗ δ is the restriction of p0 ∗ δ.
This observation reduces the proof to the case (28).

Now assume that cardA > 4. The triangle inequality for p ∗ δ, to be
checked, involves at most three distinct points of A ∗ T . We denote the
A-coordinates of these points by some of the symbols 1, 2, 3, o, reserving the
rest of them for denoting other points of A (and remembering that o is the
base point of A!). This way the proof again reduces to the case (28).

The statement (14) together with the estimates (26), (27) and (27′) yield
the following description of the convergence with respect to the squeezed
product of bounded pseudometrics:

Corollary. Assume that p ∈ P(A) and δ ∈ P(T ) are bounded. Then:

(i) p∗δ((an, un), (a, u)) → 0 iff p(an, a) → 0 and δ(un, u) → 0, provided
that p(a, o)δ(u, O) 6= 0.

(ii) p ∗ δ((an, un), (a, u)) → 0 iff p(an, o)δ(un, O) → 0 iff min[p(an, o),
δ(un, O)] → 0, provided that p(a, o)δ(u, O) = 0.

Let us note that the condition p(a, o)δ(u, O) = 0 means the same as
p ∗ δ((a, u), 0) = 0.

1.3. Definition. Let p, d ∈ P(X). We say that d dominates p if
d(xn, x) → 0 implies p(xn, x) → 0, and p, d are said to be equivalent , written
p ' d, if they dominate each other.

Theorem. If p, q ∈ P(A), δ ∈ P(T ), ‖p‖ < ∞ and ‖δ‖ < ∞ and q dom-
inates p, then q ∗ δ dominates p ∗ δ. In particular , if all three pseudometrics
p, q, δ are bounded and p ' q, then p ∗ δ ' q ∗ δ.

P r o o f. Let s = min[q, 1]. By (12), q ∗ δ ≥ s ∗ δ, in particular, q ∗ δ
dominates s ∗ δ. Therefore, without loss of generality we may assume that
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‖q‖ < ∞. In this case, the assertion of the Theorem follows from Corol-
lary 1.2.

1.4. Assume that A, T, X, . . . are metrizable topological spaces, and
o ∈ A, O ∈ T their base points. A metric δ ∈ M(X) is said to be admissible
if it determines the topology of X, and dominating if it dominates the
admissible metrics.

Denote by
Pb(X), Pc(X), Pbc(X)

the sets of all bounded, continuous, bounded and continuous pseudometrics
for X, respectively, and denote by

Mb(X), Mc(X), Mbc(X), Md(X), Ma(X), Mab(X)

the sets of all bounded, continuous, bounded and continuous, dominating,
admissible, admissible and bounded metrics for X, respectively.

From the last theorem it follows that any choice of the metrics p ∈
Mab(A) and δ ∈ Mab(T ) gives rise to the same topology of A ∗ T induced
by p ∗ δ. This motivates the following:

Definition. The squeezed product of metrizable topological spaces A,
T is A ∗ T equipped with the topology induced by p ∗ δ where p ∈ Mab(A),
δ ∈ Mab(T ).

According to the last Definition and to Theorem 1.3, we have

Theorem. Let K denote one of the symbols Pbc, Mbc, Md, Mab. Then
p ∈ K(A), δ ∈ K(T ) implies p ∗ δ ∈ K(A ∗ T ).

R e m a r k. From formula (14) it follows that if p and δ are continuous,
p is unbounded, δ is a metric, and O is not an isolated point of T , then
p ∗ δ is not continuous at 0.

Corollary 1.2 yields

Proposition. Convergence in A ∗ T is characterized as follows:

(i) (an, un) → (a, u) 6= 0 iff an → a and un → u;
(ii) (an, un) → 0 iff either an → o or un → O or the set N splits into

two subsequences (k(n)) and (l(n)) such that ak(n) → o and ul(n) → O.

Hint: If N′ = {n ∈ N : p(an, o) < δ(un, O)} and N \ N′ are both infinite,
we arrange the elements of these sets into the subsequences (k(n)) and (l(n)),
respectively.

Let us observe that the topology of A ∗ T is determined by all open
subsets of (A \ {o})× (T \ {O}) and by all sets of the form U × T ∪A× V
where U is an open neighborhood of o in A and V is an open neighborhood
of O in T .
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2. Squeezed cones. Linear extending of metrics from neighbor-
hood retracts. The symbols A,B, X, Y, Z, . . . will stand for metrizable
topological spaces.

2.1. Let A be a space with base point o, and let I be the segment [0; 1]
with base point 0 equipped with the standard metric: s(u, v) = |u− v|.
Definition. The squeezed cone over (A, o) is the space sc(A, o) = A∗I,

denoted also briefly by scA; for any p ∈ S(A), we let

scp((a, u), (b, v)) = 2−1[p(a, b)(u + v − |u− v|)
+ p(a, o)(u− v + |u− v|)
+ p(b, o)(v − u + |u− v|)] .

The space A itself is regarded as the subset A × {1} (more precisely: (A \
{o})×{1}∪{0}). The identification is justified by the assertion (11) below.

Proposition 1.4 yields

Proposition. Convergence in scA is characterized as follows:

(i) (an, un) → (a, u) 6= 0 iff an → a and un → u;
(ii) (an, un) → 0 iff either an → o or un → 0 or N splits into two

subsequences (k(n)) and (l(n)) such that ak(n) → o and ul(n) → 0.

The next theorem is related to Proposition 1.2.

Theorem. The map sc : S(A) → S(scA) is a linear operator. For every
a, b ∈ A, u, v ∈ I, p, q ∈ S(A), we have

(11) scp((a, u), (b, u)) = p(a, b)u; scp((a, u), (a, v)) = p(a, o)|u− v|,
(12) scp((a, u), 0) = p(a, o)u,

(13) ‖scp‖ ≤ ‖p‖; if p ≤ q, then scp ≤ scq,

(14) if K is one of the symbols P, M, Pbc, Mbc, Md, Mab, then p ∈ K(A)
implies scp ∈ K(scA).

2.2. Recall the following

Definition. A closed subset A of X is said to be an NR (neighborhood
retract) of X if there is a continuous retraction β from an open neighborhood
U of A in X onto A; a space Y is an ANR (absolute neighborhood retract)
if it is an NR of every space Z containing Y as a closed subset.

Proposition. If A is an NR of X, then there is a continuous retraction
r of scX onto scA such that , for every p ∈ Pc(A), the pseudometric Fp ∈
P(X) defined by

(21) Fp(x, y) = scp(rx, ry) for x, y ∈ X

is continuous and , evidently , extends p.
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We note that, if p is unbounded, the formula (21), regarded for x, y ∈
scX, yields a discontinuous pseudometric (cf. Remark 1.4).

P r o o f. Let U and β be those of the Definition. Assume V to be an
open neighborhood of A such that the closure of V is in U , and let g : X → I
be a continuous Urysohn function such that g−1(0) = X \ V and g(a) = 1
for a ∈ A. The required retraction r : scX → scA is defined by

(22) r(x, u) = (α(x), g(x)u) ,

where α(x) = β(x) if x ∈ U and α(x) = o if x ∈ X \ U .
Evidently, r(x, y) = 0 if (x, u) = 0, i.e., r is well-defined on scX; it is

also clear that r(a, u) = (a, u) for (a, u) ∈ scA. Thus r is a retraction.
During the proof we several times employ the fact that α is continuous at

each point x ∈ U , and is equal to o on X \U ∪{o}, other properties of α, β
and g (stated in their definitions), and the characterization of convergence
((i) and (ii) of Proposition 2.1). We shall make no further specific reference
to these facts.

For checking the continuity of r assume that (xn, un) → (x, u). We shall
consider several cases separately.

C a s e 1: (x, u) 6= 0 and x ∈ U . Then α(xn) → α(x) and g(xn)un →
g(x)u, i.e., r(xn, un) → r(x, u).

C a s e 2: (x, u) 6= 0 and x ∈ X \ U . Then g(xn) → g(x) = 0 and
g(xn)un → 0. Hence r(xn, un) → 0 = r(x, u).

C a s e 3: (x, u) = 0. Then, according to Proposition 2.1, it is enough to
restrict attention to the cases: xn → o; un → 0. In either, r(xn, un) → 0 =
r(0).

It remains to check the continuity of the pseudometric Fp. Assume that
x, xn ∈ X and xn → x. Let rx = (a, u), rxn = (an, un).

If rx 6= 0, then, by the continuity of r,

p(an, a) → 0 and |un − u| → 0 .

Hence, by (11),

Fp(xn, x) = scp((an, un), (a, u))
≤ scp((an, un), (a, un)) + scp((a, un), (a, u))
= p(an, a)un + p(a, o)|un − u| → 0 .

If rx = 0, then, by (12), Fp(xn, x) = p(α(xn), o)g(xn). We shall consider
two cases separately.

C a s e 1: x ∈ U . Then Fp(xn, x) → p(α(x), o)g(x) = 0 as α(x) = o or
g(x) = 0.

C a s e 2: x ∈ X \U . Then Fp(xn, x) → 0, because g(xn) = 0 for all but
finitely many indices n.
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Corollary. Formula (21) defines a map F : S(A) → S(X) which is
linear and has the following properties:

(23) ‖Fp‖ ≤ ‖p‖; p ≤ q implies Fp ≤ Fq ,

(24) if pn(a, b) → p(a, b) ∀a, b ∈ A, then Fpn(x, y) → Fp(x, y)
∀x, y ∈ X ,

(25) F (P(A)) ⊆ P(X); F (Pc(A)) ⊆ Pc(X); Fp(a, b) = p(a, b)
for a, b ∈ A .

2.3. Now we shall correct the operator F of Corollary 2.2 in order to get
a linear extension operator carrying admissible metrics on A into admissible
metrics on X. The correction is based on the following lemma due to Lauri
Leppik:

Lemma. Let r be a continuous retraction from a space Z onto its closed
subset Y. Then there exists a pseudometric q ∈ Pbc(Z), with q|Y × Y = 0,
such that if p ∈ M(Y ) [p ∈ Md(Y )] and if

d(x, y) = p(r(x), r(y)) + tq(x, y), t > 0 ,

then d ∈ M(Z) [d ∈ Md(Z)].

P r o o f. Let `∞(Z) denote the Banach space of all bounded real functions
defined on Z with the supremum norm. Pick a δ ∈ Mab(Z), and define
Φ : Z → `∞(Z) by the formula

(31) Φ(y)(z) = δ(y, ry)δ(y, z), y, z ∈ Z .

For all x, y, z ∈ Z we have

|Φ(y)(z)− Φ(x)(z)| = |δ(y, ry)(δ(y, z)− δ(x, z))
− δ(x, z)(δ(x, rx)− δ(y, ry))|

≤ δ(y, ry)δ(x, y) + ‖δ‖(δ(x, y) + δ(rx, ry)) .

Hence

(32) ‖Φ(y)− Φ(x)‖ ≤ (2δ(x, y) + δ(rx, ry))‖δ‖ .

The required q is defined by

(33) q(x, y) = ‖Φ(x)− Φ(y)‖ = sup
z
|Φ(x)(z)− Φ(y)(z)| .

From (32) and from the boundedness of δ it follows that q ∈ Pbc(Z). By
(31), Φ|Y = 0, therefore q|Y × Y = 0.

If p ∈ M(Y ), then d(x, y) = 0 implies rx = ry and q(x, y) = 0, whence

δ(x, rx)δ(x, z) = δ(y, ry)δ(y, z) for all z ∈ Z .

If rx 6= x or ry 6= y, then substituting, respectively, z = y or z = x gives
x = y. Otherwise x = rx = ry = y. Thus d is a metric.
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Remember the definition of d, and let

(34) y, yn ∈ Z, d(yn, y) → 0 .

Then, obviously,

(35) q(yn, y) → 0

and p(ryn, ry) → 0. If we assume that p ∈ Md(Y ) and remember that
δ ∈ Ma(Z), we also get

(36) δ(ryn, ry) → 0 .

1o If y ∈ Y , then Φ(y) = 0 and

q(yn, y) = sup
z
|Φ(yn)(z)| ≥ δ(yn, ryn)2 .

Hence, by (35), δ(yn, ryn) → 0. By (36) and the fact that ry = y, we get
δ(yn, y) → 0.

2o If y ∈ X \ Y , then δ(ry, y) > 0 and

q(yn, y) = sup |Φ(yn)(z)− Φ(y)(z)|
≥ |Φ(yn)(yn)− Φ(y)(yn)| = δ(y, ry)δ(y, yn) .

Hence, by (35), δ(yn, y) → 0.
We have shown that, in either case, the assumption (34) implies δ(yn, y)

→ 0. Since δ ∈ Ma(Z), this means that d ∈ Md(Z).

Now we are ready to prove our main results.

Theorem. Assume that A is an NR of X and A contains at least two
distinct points a0, b0. Then there exists a linear operator

G : S(A) → S(X)

such that , for every p ∈ S(A), Gp is an extension of p with p ≥ 0 implying
Gp ≥ 0, and such that if K is one of the symbols P, M, Pc, Pb, Mc, Ma,
Md, then G(K(A)) ⊆ K(X). Moreover , G is continuous with respect to the
uniform convergence of functions as well as with respect to their pointwise
convergence. The operator G can be defined by the formula

Gp(x, y) = Fp(x, y) + p(a0, b0)q(x, y) ,

where F is the operator of Corollary 2.2 and q is the pseudometric of
Lemma 2.3 with Z = scX and Y = scA.

P r o o f. G is a linear operator as the sum of two linear operators. From
Corollary 2.2 and the last lemma it follows that G(K(A)) ⊆ K(X), that
p ≥ 0 implies Gp ≥ 0, and that ‖G(p)‖ ≤ (1 + ‖q‖)‖p‖, which yields the
continuity with respect to the uniform convergence.
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Finally, if p, pn ∈ S(A), and pn(a, b) → p(a, b) for every a, b ∈ A, then

Gpn(x, y) = scpn(rx, ry) + pn(a0, b0)q(x, y)
→ scp(rx, ry) + p(a0, b0)q(x, y)
= Gp(x, y) for all x, y ∈ X .

Corollary. If A is a nondegenerate ANR, then, for every metrizable
space X containing A as a closed subset , there is an extension operator with
the properties stated in the theorem above.

This is a direct consequence of Proposition 2.2 and the last theorem.

Definition. Let A be a closed subset of X. An additive and positive-
homogeneous operator T : Pc(A) → Pc(X) such that Tp|A×A = p for p ∈
Pc(A) and T (Ma(A)) ⊆ Ma(X) is called a regular extensor if T is monotone
(i.e., p ≤ q implies Tp ≤ Tq) and continuous both with respect to the
uniform convergence of pseudometrics and with respect to their pointwise
convergence. A metrizable topological space X is said to have the ARE
property if, for every metrizable space Y containing X as a closed subspace,
a regular extensor T : Pc(X) → Pc(Y ) exists.

The last corollary says, in particular, that all nondegenerate ANR’s have
the ARE property. The converse is not true (see §3).

2.4. Example: applying the sc to spheres in normed spaces. Let X
be a normed linear space over the reals, B a closed ball in X, S = bdB
the sphere, o ∈ S a point which will be regarded as base point for the sc

operation, and let 0 stand both for the zero vector and the number zero.

Theorem. There is a homeomorphism h of scS onto B such that h|S =
id and h(0) = o.

Observe that there is no loss of generality in assuming that B = {x :
‖x−e‖ ≤ 1}, the ball of radius 1 centered at e with ‖e‖ = 1, and that o = 0.
Recall that y ∈ S is said to be a rotundity point of S if, for every x ∈ S \{y}
and for every 0 < t < 1, the point ty + (1− t)x is not in S.

First we establish a special case of the Theorem:

Proposition. If 0 is a rotundity point of S = {x : ‖x−e‖ = 1}, then the
map g : scS → B given by the formula g(a, t) = ta carries homeomorphically
scS onto B , and g|S = id, g(0) = 0.

P r o o f. From the rotundity assumption it follows that g is a bijection
of scS onto B; obviously g(S) = S, g(0) = 0. The continuity of g is a direct
consequence of Proposition 2.1. The same yields the continuity of g−1 at
the point 0.

To prove that g−1 is continuous at other points of B assume that xn →
x 6= 0 in B and denote by (yn) an arbitrary subsequence of (xn). Pick



112 C. Bessaga

b, bn ∈ S and t, tn ∈ I so that yn = tnbn and x = tb. Select a subsequence
(y′n) of (yn) such that the corresponding subsequence (t′n) is convergent, say
t′n → t′ ∈ I. Since tnbn → x 6= 0, and ‖bn‖ ≤ 2 for all n, we conclude that
t′ 6= 0. Since S is closed, b′n = y′n/t′n → x/t′ = (t/t′)b ∈ S. Therefore t′ = t.
Hence

g−1(y′n) = (b′n, t′n) → (b, t) = g−1(x) in scS .

Thus every subsequence of (g−1(xn)) admits a subsequence converging to
g−1(x), whence g−1(xn) → g−1(x), which is the continuity of g−1 at x.

It is well known that there exist Banach spaces whose spheres have no
rotundity points. However, the following is true:

Lemma. If (X, ‖ · ‖) is a normed space, S1 = {x : ‖x‖ = 1} the unit
sphere, and e ∈ S1, then there is an equivalent norm | · | for X such that
|e| = 1 and e is a rotundity point for the new sphere S2 = {x : |x| = 1}.

P r o o f. Let f be a continuous linear functional defined on X such that
f(e) = 1. The required norm can be defined by

|x| = [f(x)2 + ‖x− f(x)e‖2]1/2 .

P r o o f o f t h e T h e o r e m. Let | · | and e be those of the Lemma.
Define B0 = {x : |x − e| ≤ 1} and S0 = {x : |x − e| = 1}. Obviously
0 is a rotundity point of S0. Let f : X → X be the homeomorphism
acting affinely on each ray emanating from e, and carrying B0 onto B,
i.e., f(e + y) = e + |y|y/‖y‖ (with the convention 0/0 = 0). Let g be the
homeomorphism of the Proposition but applied to the sphere S0 rather than
S. Since S and S0 are homeomorphic, they may be regarded as the same
topological space equipped with two different admissible bounded metrics.
Therefore, by Theorem 2.1, there is a homeomorphism i of scS onto scS0

such that i(0) = 0, i(S) = S0. Now, the formula h = (f |B0) ◦ g ◦ i defines
the required homeomorphism of scB onto B.

3. Hats and multihats. ARE property does not imply ANR

3.1. First we define the hat operation: the adjoining of a single squeezed
cone over a subset of the space. We shall deal with pointed pairs (X, A, o),
where X, A are sets and o ∈ A ⊆ X.

Definition. Given (X, A, o) and a pseudometric d ∈ P(X), we let

(11) hat(X, A, o) = X ∪ scA ,

where the set A ⊆ X is identified with the subset A of scA, and

(12) hatd = scd|(X ∪ scA)× (X ∪ scA) .

If X is a metrizable topological space, then hat(X, A, o) will be regarded
as a topological space with the topology inherited from scX; therefore, by
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Theorem 2.1,

(13) hatd ∈ Mab(hat(X, A, o)) for every d ∈ Mab(X) .

Observe that if A = X, then hat(X, A, o) = scX; if A = {o}, then
hatX = X. In the sequel we shall assume that A admits at least two
distinct points. It is clear that hatd|X × X = d. Moreover, (12) and
Definition 2.1 yield the explicit formula

(14) hatd((a, t), x) = (1− t)d(x, o) + td(x, a) for (a, t) ∈ scA, x ∈ X .

3.2. In this section we shall define the multihat operation: the adjoining
of a family of hats. We assume that X is a set and A = [(Aλ, oλ)]λ∈Λ an
indexed family of pointed subsets of X.

Definition. Given a pair (X,A) and a d ∈ P(X), we let

(21) mht(X,A) = X ∪
⋃
λ∈Λ

Cλ, where Cλ = [sc(Aλ, oλ) \Aλ]× {λ} .

More conveniently, but with less precision, we may ignore the factors {λ} in
the last formula, remembering instead that the sets Cλ are pairwise disjoint
(even in the case where the members in the family A are repeated!). Taking
this into account we define

(22) mhtd|hat(X, Aλ, oλ)× hat(X, Aλ, oλ)
= hatd|hat(X, Aλ, oλ)× hat(X, Aλ, oλ) for λ ∈ Λ ,

and

(23) mhtd((a, u), (b, v))
= d(a, b)uv + d(a, oµ)u(1− v) + d(b, oλ)(1− u)v

+ d(oλ, oµ)(1− u)(1− v) if (a, u) ∈ Cλ, (b, v) ∈ Cµ, λ 6= µ .

Proposition.The function mhtd : mht(X,A) ×mht(X,A) → R is a
pseudometric and mhtd ∈ M(mht(X,A)) if d ∈ M(X).

P r o o f. Since the triangle inequality involves three points, it is enough
to consider the case where A = [(Aλ, oλ)]λ∈{1,2,3}. Clearly, then mht(X,A)
can be regarded as a subset of

sc(sc(sc(X, o1), o2), o3) ,

and it is easily seen that, with this identification,

mhtd = sc3sc2sc1d|mht(X,A)×mht(X,A) .

This combined with Theorem 2.1 yields the assertion.

Easy consequences of the properties of the sc operation discussed in
Sect. 2.1 are summarized in the following:



114 C. Bessaga

Theorem. The operator mht : P(X) → P(mht(X,A)) is additive,
positive-homogeneous, monotone (i.e., p ≤ q implies mhtp ≤ mhtq)
and continuous with respect to the pointwise convergence of pseudometrics
and with respect to their uniform convergence as well ; moreover , ‖mhtp−
mhtq‖ ≤ ‖p − q‖ for p, q ∈ P(X), mhtd|X × X = d, and mhtd|scAλ ×
scAλ = sc(d|Aλ ×Aλ), λ ∈ Λ.

3.3. We shall introduce a topology on the multihat mht(X,A), for X
being a metrizable topological space.

Theorem. Assume that X is a metrizable topological space and A =
[(Aλ, oλ)]λ∈Λ , where oλ ∈ Aλ for λ ∈ Λ. Then the topology of the metric
space (mht(X,A),mhtd) does not depend on the choice of the metric d in
Mab(X).

The topology described by the theorem will be referred to as the topology
of the multihat mht(X,A).

P r o o f. Let d ∈ Mab(X). Define: Y = mht(X,A), Yλ = scAλ \ Aλ =
hat(X, Aλ, oλ) \X, and δ = mhtd. By (14), (22) and (23) we have

(31) distδ(z, Y \ Yλ) ≥ min[t, 1− t]d(a, oλ) > 0 for each z = (a, t) ∈ Yλ .

Thus each Yλ is open in the metric space (Y, δ).
The theorem immediately follows from the last statement, from the fact

that δ extends d and from the next lemma, which together characterize the
convergence in the metric space (Y, δ).

Lemma. Let yn = (xn, tn) ∈ Yλ(n) for n ∈ N (xn ∈ Aλ(n) ⊆ X), and let
y ∈ Y . Then

(i) yn → y = (x, t) ∈ Yλ iff λ(n) = λ for all but finitely many n’s and
tn → t, xn → x;

(ii) yn → y = x ∈ X iff for every ε > 0 each set

N0(ε) = {n : 1− tn ≥ ε and d(oλ(n), x) ≥ ε} ,

N1(ε) = {n : tn ≥ ε and d(xn, x) ≥ ε} ,

N2(ε) = {n : min[d(oλ(n), x), d(xn, x)] ≥ ε}
is finite.

It is easily seen that the finiteness of the sets in (ii) does not depend on
the particular choice of the metric d ∈ Mab(X), although d appears in their
definitions.

P r o o f o f (i). This is an immediate consequence of (31).

P r o o f o f (ii). Assume that n is not in N0(ε)∪N1(ε)∪N2(ε) and that
ε ≤ 2−1. Then either d(oλ(n), x) < ε and tn < ε, or d(xn, x) < ε and
1− tn < ε.
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By (14) and (22) we have

(32) δ(yn, x) = tnd(xn, x) + (1− tn)d(oλ(n), x) .

Hence δ(yn, x) ≤ ε‖d‖+ε. Thus the condition of (ii) implies the convergence
yn → x.

On the other hand, by (32), N0(ε) ∪ N1(ε) ⊆ {n : δ(yn, x) ≥ ε2} and

δ(yn, x) ≥ min[d(xn, x), d(oλ(n), x)] .

Hence

N0(ε) ∪ N1(ε) ∪ N2(ε) ⊆ {n : δ(yn, x) ≥ ε2} ∪ {n : δ(yn, x) ≥ ε} ,

which is finite if yn → x.
This completes the proof of (ii).

Corollary. Under the assumption of the Theorem, the operator mht :
P(X) → P(mht(X, A)) has the properties:

mht(Pbc(X)) ⊆ Pbc(mht(X,A)),mht(Mab(X)) ⊆ Mab(mht(X,A)) .

Moreover , if X is compact , then mht |Pc(X) is a regular extensor.

Theorem 3.3 is due to the referee; the proof presented here is a slight
modification of his proof. The theorem stated in the original version of
the manuscript was valid only in the case where A = [(Yn, on)]n∈N, with Yn

closed and satisfying the condition (i) of the lemma below for (Y, p) = (X, d).

3.4. Lemma. Let (Y, p) be a metric space, let (Yn) be a sequence of closed
subspaces of Y such that :

(i) diam Yn → 0,bd Yn \
⋃

k∈N intYk 6= ∅,
and let f be a map from Y to a metric space (E, q) such that :

(ii) diam f(Yn) → 0,
(iii) f |Y \

⋃
k∈N intYk is continuous,

(iv) f |Yk is continuous for every k ∈ N.

Then f is continuous.

P r o o f. Assume that xn → x in Y . If x ∈ intYk for some k, then
f(xn) → f(x) by (iv); if (yn) is a subsequence of (xn) such that all yn’s
are in one set Yk or all of them are in Y \

⋃
k∈N intYk, then f(yn) → f(x)

by (iv) and (iii). Therefore, without loss of generality, we may assume that
x ∈ Y \

⋃
k∈N intYk and that xn ∈ intYk(n) where k(n) → ∞. By (i) we

can pick zn ∈ bd Yk(n) \
⋃

k∈N intYk and then zn → x by (i) again. By (iii),
f(zn) → f(x), whence, by (ii), f(xn) → f(x).

In the original version of the manuscript the statement of the lemma was
incorrect (the second condition in (i)). Its present appearance is due to the
referee.
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3.5. Let P be a closed r-dimensional cube, r ∈ N. Let (Kn)n∈N be a
sequence of pairwise disjoint open Euclidean balls contained in P. Finally,
let An = bdKn and on ∈ An for n ∈ N, and A = [(An, on)].

Theorem. The space X = P \
⋃

n∈N Kn has the ARE property but is not
an ANR.

First, we establish the following

Lemma. The space mht(X,A) is homeomorphic to the cube P and ,
therefore, is an ANR.

P r o o f. For each n ∈ N, let gn be the homeomorphism of Proposition 2.4
carrying sc(An, on) onto the closed ball Kn ∪ An, which is the identity on
An. Define f : mht(X,A) → P by

f |X = idX, f |scAn = gn .

Applying Lemma 3.4 to f and to f−1 (with Yn = scAn and with Yn =
Kn ∪An), we get the assertion of our Lemma.

P r o o f o f t h e T h e o r e m. Assume that Y is a metric space containing
X. By Theorem 3.3 the multihats mht(X,A) and mht(Y,A) are metrizable
topological spaces. Since X is a closed (compact) subset of Y , we conclude
that the ANR space mht(X,A) is a closed subspace and a neighborhood
retract of mht(Y,A). By Corollary 2.3, there is a regular extensor G :
Pc(mht(X,A)) → Pc(mht(Y,A)). By Corollary 3.3, the extension operator
mht : P(X) → P(mht(X,A)) restricted to Pc(X) is also a regular extensor.

Recalling that Y ⊆ mht(Y,A) we define the required regular extensor
T : Pc(X) → Pc(Y ) by the formula

Tp(y, z) = G(mhtp)(y, z) for y, z ∈ Y, p ∈ Pc(X) .

Since X is compact, and diam An → 0, the spheres An have at least one
cluster point, say x0, X is not locally contractible at x0, and therefore (cf.
[Bor]) is not an ANR.

3.6. We shall define some other extension constructions related to the
sc: chord (attaching a single string), isol (adjoining an isolated point), c

(the cone construction), harp (attaching a family of strings).
Given a bi-pointed set (A, a, α), a, α ∈ A, a 6= α, define

chord(A, a, α) = hat(A, {a, α}, a), chordp = hatp for p ∈ P(A) .

The subset S = sc({a, α}, a) is referred to as the string attached to the
points a, α. The point (α, t) ∈ S, t ∈ I, will be written in the form

tα⊕ (1− t)a .
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The last expression together with the formula (14) and the formula (11)
in 2.1 show that the roles of the end-points a, α are symmetric. We define

isol(A, a, α) = A ∪ {2−1α⊕ 2−1a}, isolp = chordp|isol(A, a, α) .

We define c(A, a, α) = sc(isol(A, a, α), o) where o = 2−1α ⊕ 2−1a and
cp = sc(isolp).

Given a set A admitting at least two distinct points and a family B =
[(aλ, bλ)]λ∈Λ of pairs of distinct points of A, define harp(A,B) = mht(A,A)
with A = [({aλ, bλ}, aλ)]λ∈Λ and harpq = mhtq. The subsets

Sλ = sc({aλ, bλ}, aλ) = {tbλ ⊕λ (1− t)aλ : t ∈ I}, λ ∈ Λ ,

of harp(A,B) are referred to as the strings of the harp. Let us note that
each string is well-spanned, i.e., it is isometric to the line segment of length
equal to the distance between the ends of the string, and, even if all the
strings have common ends, they do not touch each other, except at the
ends. Of course such a strange harp cannot be placed in any Euclidean
space (more generally: in a normed space with rotund norm) but, perhaps,
can be played by angels.

4. The sc construction and related metric extensions as functors

4.1. The category SET 1 and the construction sc. The objects of SET 1

are pointed sets (A, a), and morphisms f : (A, a) → (B, b) are maps f : A →
B such that f(a) = b. The construction sc is a triple of maps: sc, sc′, sc′′

acting on objects, morphisms and pseudometrics, respectively, which are
defined as follows:

(41) sc(A, a) = ((A \ {a})× J ∪A, a)

where J = (0; 1), the open interval; if f : (A, a) → (B, b), then sc′f :
sc(A, a) → sc(B, b) is defined by

(41′) sc′f(y) = f(y), sc′f(x, u) =
{

(f(x), u) if f(x) 6= b,
b if f(x) = b,

for y ∈ A, (x, u) ∈ (A \ {a}) × J ; for p ∈ P(A, a) we let sc′′p = q ∈
P(sc(A, a)) be defined by

(41′′)

q(x, y) = p(x, y) if x, y ∈ A ,

q((x, u), y) = (1− u)p(y, a) + up(y, x) ,

q((x, u), (y, v)) = 2−1[p(x, y)(u + v − |u− v|)
+ p(x, a)(u− v + |u− v|) + p(y, a)(v − u + |u− v|)] .

We note that the pair (sc, sc′′) corresponds to the sc defined in Sect. 2.1.
The reason for redefining it was to avoid identifications of points of A × I
and obtain the genuine inclusion A ⊆ scA.
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For every morphism f : (A, a) → (B, b) and for every pseudometric
p ∈ P(B, b) we define f∗p ∈ P(A, a) by

(42) f∗p(x, y) = p(f(x), f(y)) for x, y ∈ A .

We shall list some properties of the defined notions which easily follow
from the results of Sect. 2.1 and from formulas (41) and (42):

(43) The pair (sc, sc′) is a functor on the category SET 1.
(44) If f : (A, a) → (B, b) and q ∈ P(B, b), then sc′′(f∗q) = (sc′f)∗sc′′q.
(45) If f : (A, a) → (B, b) and p ∈ P(A), q ∈ P(B) are such that p

dominates f∗q and ‖q‖ < ∞ [such that f∗q ≤ p], then sc′′p dominates
(sc′f)∗sc′′q [(sc′f)∗sc′′q ≤ sc′′p].

(46) If A, B are metrizable topological spaces, and f : A → B is a con-
tinuous map with f(a) = b, then sc′f : sc(A, a) → sc(B, b) is con-
tinuous.

(47) If A and B are equipped with metrics d and δ, respectively , and
f : (A, a) → (B, b) is Lipschitzian (i.e., f∗δ ≤ Cd), then sc′f :
sc(A, a) → sc(B, b) satisfies the Lipschitz condition with the same
constant C.

We recall that the topology of sc(A, a) is the one determined by sc′′d
where d is an arbitrary admissible bounded metric for A. The statements
(46) and (47) are immediate consequences of (45) and (45) [. . .], respectively.

4.2. The category PAIR1 and the construction hat . Objects of PAIR1

are pointed pairs (X, A, a); morphisms f : (X, A, a) → (Y, B, b) are maps
f : X → Y such that f(A) ⊆ B and f(a) = b. The construction hat is the
triple hat ,hat ′,hat ′′, where

hat(X, A, a) = (X ∪ (A \ {a})× J , A, a) ;
hat ′f(x) = f(x) ,

hat ′f(y, u) =
{

(f(y), u) if f(y) 6= b,
b if f(y) = b;

hat ′′p = sc′′p|hat(X, A, a), where sc′′ : P(X) → P(sc(X, a)) .

The pair (hat ,hat ′) is a functor acting on PAIR1.

4.3. The category SET 2 and the constructions: chord , isol , cone .
SET 2 is the category of bi-pointed sets (A, a, α), a, α ∈ A, a 6= α, where the
morphisms f : (A, a, α) → (B, b, β) are maps f : A → B such that f(a) = b
and f(α) = β.

The construction chord is the triple chord , chord ′, chord ′′, where

chord(A, a, α) = (A ∪ {tα⊕ (1− t)a : t ∈ J }, a, α) ;
chord ′f(x) = f(x) ,
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chord ′f(tα⊕ (1− t)a) = tβ ⊕ (1− t)b ;
chord ′′p(x, y) = p(x, y) ,

chord ′′p(tα⊕ (1− t)a, y) = tp(α, y) + (1− t)p(a, y) ,

chord ′′p(tα⊕ (1− t)a, uα⊕ (1− u)a) = |t− u|p(a, α) .

Clearly, (chord , chord ′) is a functor acting on SET 2.
The construction isol is the triple isol , isol ′, isol ′′:

isol(A, a, α) = (A ∪ {oA}, oA) where oA = 2−1α⊕ 2−1a ;
isol ′f(x) = f(x) ,

isol ′f(oA) = oB for f : (A, a, α) → (B, b, β) ;
isol ′′p(x, y) = p(x, y) ,

isol ′′p(y, oA) = 2−1(p(y, α) + p(y, a)) .

The pair (isol , isol ′) is a functor from the category SET 2 to SET 1.
Finally, the cone construction is the triple c , c ′, c ′′, where (c , c ′) is the

functor from SET 2 to SET 1 which is the composition of the functors (isol ,
isol ′) and (sc, sc′); c ′′p = sc′′(isol ′′p).

5. Problems and comments. The word “linear”, when applied to
cones P(X), M(X), means “additive and positive-homogeneous”. The word
“compactum” means a “metrizable compact space”.

The problems are arranged according to the sections they are related to.
The crucial one for our subject is Problem 221.

To keep within the framework of Banach spaces, we ask most of the
questions about pseudometrics for compacta, although these questions ad-
mit analogues for general metrizable spaces.

To Section 1.2: For a set A with cardA ≥ 2, the positive multiples of
the pseudometrics pB defined by (29) are called in the literature “Hamming
semimetrics” (we say: Hamming pseudometrics). Lemma 1.2 is due to
Deza [De]. It says that, if 2 ≤ cardA ≤ 4, then every d ∈ P(A) is the
sum of a certain number of Hamming pseudometrics. This is not so when
cardA ≥ 5. The simplest example is A = {1, 2, 3, 4, 5}; the metric d ∈ M(A)
defined by d(i, j) = 3 + (−1)i+j for i 6= j, d(i, i) = 0 cannot be written as
a sum of Hamming pseudometrics (it is easily seen that subtracting from d
any Hamming pseudometric violates a triangle inequality). Clearly, d also
cannot be expressed as p + q with p, q ∈ P(A) \ M(A). For information
on Hamming pseudometrics and their relation to the problem of isometric
embeddings of metric spaces in L1 see [AM], [Av], [D], [De], [AD], [K], [Ke].

Problem 121. Describe all edge vectors of the polyhedral cone Pn =
P(A) with cardA = n.
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As far as I know the question has been answered only for small values
of n.

To Section 1.4:

Problem 141. Let X be a compactum. Investigate isomorphism prop-
erties of the Banach space E(X) generated in the space C(X×X) by Pc(X).
Does E(X) always have the approximation property or a basis?

By a Dugundji operator of a compact pair (Y, Z) we mean a bounded
linear operator T : C(Z) → C(Y ) such that Tf |Z = f for f ∈ C(Z).

Problem 142. Given a compactum A, let X = scA. Does the operator
sc : Pc(A) → Pc(X) extend to a Dugundji operator from C(A × A) into
C(X ×X)?

To Section 2.3: We note that, in the compact case, the proofs of the
main results are much simpler (cf. [B]).

Problem 231. Does every compact pair (X, A) admit a regular exten-
sor? Do there exist norm-continuous linear extending operators from Ma(A)
into Ma(X)?

Conjecture. The answer to the first question is “no”, to the second
“yes”.

Problem 232. For a compactum X describe all the continuous linear
functionals on Pc(X). Are they represented as integrals of p(x, y) with
respect to certain Borel measures on X ×X?

Problem 233. For a compact pair (X, A), cardA ≥ 2, every norm-
continuous linear extending operator from Pc(A) into Pc(X) can be “per-
turbed” to get an extension operator carrying Ma(A) into Ma(X). (Use the
trick in the proof of Theorem 1 in [KN] for a fixed metric.) Can this be
done in the noncompact case?

We note here that the proof of Leppik’s Lemma is a modification of the
[KN] trick.

Problem 234. Assume that (X, A) is a compact pair which admits a
regular extensor, and δ ∈ Ma(X) is a fixed metric. Does there exist a regular
extensor T : Pc(A) → Pc(X) and a constant c > 0 such that p ≤ δ|A implies
Tp ≤ cδ?

Problem 235. Let A and B be compacta. If shB = shA and A has the
ARE property, does B have it? (The symbol sh denotes the Borsuk shape
[Bors]).
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To Section 3.6:

Problem 361. Given a pointed metric space (X, o) and a metrizable
pair (B,A) with A closed, consider the reduced Cartesian product Z =
(B ×X)A = A ∪ (B \A)×X, with the topology defined in [BP], p. 25 (cf.
also [AS], p. 316). The space B is regarded as a subspace of Z by means
of the identification: a → a for a ∈ A, x → (x, o) for x ∈ B \ A. Write
an explicit formula for a metric δ ∈ Ma(Z) which extends a given metric
d ∈ Ma(B). Can this be done so as to obtain an extension construction?

To Section 4.1: Of course P is a functor from SET 1 to SET (the category
of sets): for f : A → B, Pf = f∗ : P(B) → P(A). It might be of interest
to study the interaction of the functor P with the extending functor and
construction sc and with related ones.

Finally, we note that similar problems to those on linear extending of
metrics can be stated in the equivariant context: 1o for spaces with a group
action; 2o for pointed spaces with a group action fixing the base point.

For a Banach space X let Na(X) be the cone of all admissible norms on
X equipped with the topology induced by the metric

δ(p, q) = sup{|log p(x)− log q(x)| : x ∈ X \ {0}}, p, q ∈ Na(X) .

Problem A. Let X be a Banach space and Y its closed linear subspace.
Does there exist a [continuous] linear operator Φ : Na(Y ) → Na(X) which
extends norms?

Problem B. Let X be a Banach space. Does there exist a retraction
r : Mainv(X) → Na(X) which is continuous in any sense? The symbol
Mainv(X) denotes the set of admissible invariant metrics for X.
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