ω_1 -Souslin trees under countable support iterations

by

Tadatoshi Miyamoto (Nagoya)

Abstract. We show the property "is proper and preserves every ω_1 -Souslin tree" is preserved by countable support iteration.

Introduction. In [1], the forcing axiom SAD is introduced and its consistency is established by forcing. It is also shown that the forcing axiom does not imply the nonexistence of ω_1 -Souslin trees by constructing a pair of an ω_1 -Souslin tree and a notion of forcing in such a way that the ω_1 -Souslin tree remains an ω_1 -Souslin tree in the generic extensions via the forcing. In [2], a general theory of countable support iterations is developed and stronger versions of SAD are shown to be consistent.

We show the property "is proper and preserves every ω_1 -Souslin tree" is preserved by countable support iteration. As an application we remark that countable support iterations for getting SAD preserve every ω_1 -Souslin tree in the ground model.

0. Preliminaries

(0.0) DEFINITION. A triple $(P, \leq, 1)$ is a preorder iff \leq is a reflexive and transitive binary relation on P with a greatest element 1. The symbol \dot{G} usually denotes the canonical P-name for a P-generic filter over the ground model V. For an element x in V, we usually use x itself instead of \check{x} to denote its P-name. The preorder is separative iff for any $p, q \in P, q \models_P$ " $p \in \dot{G}$ " implies $q \leq p$. We consider separative preorders in this note and so a preorder is always a separative one. For a formula φ , we simply write \models_P " φ " instead of $1 \models_P$ " φ ". A subset D of P is predense below q in P iff $q \models_P$ " $D \cap \dot{G} \neq \emptyset$ ".

For a set x, let TC(x) denote the transitive closure of x. For a regular cardinal θ , let $H_{\theta} = \{x : |TC(x)| < \theta\}$. A countable subset N of H_{θ} is a countable elementary substructure of H_{θ} iff the structure (N, \in) is an elementary substructure of (H_{θ}, \in) . For a regular cardinal θ and a countable

elementary substructure N of H_{θ} with $(P, \leq, 1) \in N$, a condition q in P is (P, N)-generic iff for any dense subset $D \in N$ of $P, D \cap N$ is predense below q. For a P-generic filter G over V and a P-name $\tau, \tau[G]$ denotes the interpretation of τ by G. But $\{\tau[G] \mid \tau \text{ is a } P\text{-name and } \tau \in N\}$ is denoted by N[G], which is a countable elementary substructure of $H_{\theta}^{V[G]}$. Let $((P_{\alpha}, \leq_{\alpha}, 1_{\alpha})_{\alpha \leq \nu}, (\dot{Q}_{\alpha}, \dot{\leq}_{\alpha}, \dot{1}_{\alpha})_{\alpha < \nu})$ be a countable support iteration. For $p \in P_{\alpha}$, we denote $\{\beta < \alpha \mid p(\beta) \neq \dot{1}_{\beta}\}$ by $\operatorname{supp}(p)$ and so $|\operatorname{supp}(p)| \leq \omega$. For $p \in P_{\alpha}$ and $\beta \leq \alpha, p[\beta$ denotes the initial segment of p decided by β and $[\beta, \alpha)$ denotes the interval $\{\gamma \mid \beta \leq \gamma < \alpha\}$. For a P_{α} -generic filter G_{α} over V, $G_{\alpha}[\beta = \{p[\beta \mid p \in G_{\alpha}\}, \text{ which is a } P_{\beta}\text{-generic filter over } V$. For an ω_1 -Souslin tree T and $\delta < \omega_1, T_{\delta}$ denotes the δ th level of T and $T[\delta = \bigcup \{T_{\alpha} \mid \alpha < \delta\}.$

The following is from [2] with minor modifications.

(0.1) DEFINITION. A preorder $(P, \leq, 1)$ is proper iff for all sufficiently large regular cardinals θ and all countable elementary substructures N of H_{θ} with $(P, \leq, 1) \in N$, we have $\forall p \in P \cap N \exists q \leq p \ q$ is (P, N)-generic.

Let $((P_{\alpha}, \leq_{\alpha}, 1_{\alpha})_{\alpha \leq \nu}, (\dot{Q}_{\alpha}, \leq_{\alpha}, \dot{1}_{\alpha})_{\alpha < \nu})$ be a countable support iteration such that for all $\alpha < \nu$, $||_{-P_{\alpha}}$ " $(\dot{Q}_{\alpha}, \leq_{\alpha}, \dot{1}_{\alpha})$ is proper". Let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_{θ} with $(P_{\nu}, \leq_{\nu}, 1_{\nu}) \in N$.

(0.2) ITERATION LEMMA FOR PROPER. Let $\beta \leq \alpha \leq \nu, \beta \in N$ and $\alpha \in N$. Then for any $x \in P_{\beta}$ and any P_{β} -name τ , if x is (P_{β}, N) -generic and $x \parallel_{P_{\beta}} "\tau \in P_{\alpha} \cap N$ and $\tau \lceil \beta \in \dot{G}_{\beta} "$, then there is an $x^* \in P_{\alpha}$ such that $x^* \lceil \beta = x, x^* \text{ is } (P_{\alpha}, N)$ -generic, $x^* \parallel_{P_{\alpha}} "\tau [\dot{G}_{\alpha} \lceil \beta] \in \dot{G}_{\alpha} "$ and $\operatorname{supp}(x^*) \cap [\beta, \alpha) \subseteq N$.

In particular, for any $x \in P_{\beta}$ and any $p \in P_{\alpha} \cap N$, if x is (P_{β}, N) -generic and $x \leq_{\beta} p \lceil \beta$, then there is an $x^* \in P_{\alpha}$ such that $x^* \lceil \beta = x, x^*$ is (P_{α}, N) -generic, $x^* \leq_{\alpha} p$ and $\operatorname{supp}(x^*) \cap [\beta, \alpha) \subseteq N$.

1. Preserving ω_1 -Souslin trees. For the rest of this note a Souslin tree means an ω_1 -Souslin tree.

(1.1) PROPOSITION. Let $(P, \leq, 1)$ be a proper preorder and $(T, <_T)$ be a Souslin tree. The following are equivalent.

- (1) $\parallel_{P} "(T, <_T)$ remains a Souslin tree".
- (2) For all sufficiently large regular cardinals θ and all countable elementary substructures N of H_{θ} with $(P, \leq, 1), (T, <_T) \in N$, if q is (P, N)generic and $t \in T$, then (q, t) is $(P \times T, N)$ -generic.

 $Souslin\ trees$

(3) For all sufficiently large regular cardinals θ and all countable elementary substructures N of H_{θ} with $(P, \leq, 1), (T, <_T) \in N$, let $\delta = N \cap \omega_1$. Then $\forall p \in P \cap N \exists q \leq p \forall t \in T_{\delta} (q, t)$ is $(P \times T, N)$ -generic.

Proof. (1) implies (2): As $\Vdash_P {}^{"}T$ has the c.c.c.", we know $\Vdash_P {}^{"}\forall t \in T$ t is $(T, N[\dot{G}_P])$ -generic". For any $(q, t) \in P \times T$, (q, t) is $(P \times T, N)$ -generic iff q is (P, N)-generic and $q \Vdash_P {}^{"}t$ is $(T, N[\dot{G}_P])$ -generic". So for any $(q, t) \in$ $P \times T$, if q is (P, N)-generic, then (q, t) is $(P \times T, N)$ -generic.

(2) implies (3): By assumption $(P, \leq, 1)$ is proper. So for all sufficiently large regular cardinals θ and all countable elementary substructures N of H_{θ} with $(P, \leq, 1), (T, <_T) \in N$, given $p \in P \cap N$ there is a $q \leq p$ such that q is (P, N)-generic. Now by (2) for any $t \in T_{\delta}, (q, t)$ is $(P \times T, N)$ -generic.

(3) implies (1): Suppose $|\!|_P$ " \dot{A} is a maximal antichain of T" and $p \in P$. Let $B = \{(x, s) \in P \times T \mid x \mid\!|_P$ " $\check{s} \in \dot{A}$ "}. Then B is a predense subset of $P \times T$. Fix a sufficiently large regular cardinal θ and a countable elementary substructure N of H_{θ} with $p, B, (P, \leq, 1), (T, <_T) \in N$. By (3), we have a $q \leq p$ such that for all $t \in T_{\delta}, (q, t)$ is $(P \times T, N)$ -generic. So $B \cap N$ is predense below (q, t) for all $t \in T_{\delta}$. We conclude $q \mid\!|_P$ " $\forall t \in T_{\delta} \exists s <_T t$ $s \in \dot{A}$ ". Hence $q \mid\!|_P$ " $\dot{A} \subseteq T \lceil \delta$ ".

(1.2) LEMMA. Let $((P_{\alpha}, \leq_{\alpha}, 1_{\alpha})_{\alpha \leq \nu}, (\dot{Q}_{\alpha}, \leq_{\alpha}, \dot{1}_{\alpha})_{\alpha < \nu})$ be a countable support iteration and $(T, <_T)$ be a Souslin tree. If ν is a limit ordinal and for all $\alpha < \nu$, $\Vdash_{P_{\alpha}}$ " $(T, <_T)$ remains a Souslin tree and $(\dot{Q}_{\alpha}, \leq_{\alpha}, \dot{1}_{\alpha})$ is proper", then $\Vdash_{P_{\nu}}$ " $(T, <_T)$ remains a Souslin tree".

Proof. Suppose $p \in P_{\nu}$ and $||_{-P_{\nu}}$ " \dot{A} is a maximal antichain of T". Let $B = \{(x,s) \in P_{\nu} \times T \mid x \mid|_{-}$ " $\check{s} \in \dot{A}$ "}. Fix a sufficiently large regular cardinal θ and a countable elementary substructure N of H_{θ} with $p, (P_{\nu}, \leq_{\nu}, 1_{\nu}), (T, <_T), B \in N$. Fix $\langle \alpha_n \mid n < \omega \rangle$ such that $\alpha_0 = 0$, $\alpha_n \in \nu \cap N$ and $\alpha_n < \alpha_{n+1}$ for all $n < \omega$ and $\sup\{\alpha_n \mid n < \omega\} = \sup(\nu \cap N)$. Let $\delta = N \cap \omega_1 < \omega_1$ and $\langle t_n \mid n < \omega \rangle$ enumerate T_{δ} . We construct $\langle \dot{x}_n \mid n < \omega \rangle$ and $\langle q_n \mid n < \omega \rangle$ such that for all $n < \omega$

- (1) \dot{x}_0 is the P_0 -name \check{p} .
- $(2) \quad q_0 = \emptyset \in P_0.$
- (3) \dot{x}_n is a P_{α_n} -name.
- (4) q_n is (P_{α_n}, N) -generic.
- (5) $q_n \Vdash_{P_{\alpha_n}} ``\dot{x}_n \in P_{\nu} \cap N \text{ and } \dot{x}_n \lceil \alpha_n \in \dot{G}_{\alpha_n} ".$
- (6) $q_{n+1} \lceil \alpha_n = q_n.$
- (7) $q_{n+1} \models_{P_{\alpha_{n+1}}} ``\dot{x}_{n+1} \leq_{\nu} \dot{x}_n [\dot{G}_{\alpha_{n+1}} \lceil \alpha_n] \text{ and } \exists s <_T t_n (\dot{x}_{n+1}, s) \in \check{B}".$

The construction is by recursion on $n < \omega$. For n = 0, let \dot{x}_0, q_0 be as specified. Now suppose we have \dot{x}_n and q_n . Since (4) and (5) hold, we have

a $q_{n+1} \in P_{\alpha_{n+1}}$ such that $q_{n+1} \lceil \alpha_n = q_n, q_{n+1}$ is $(P_{\alpha_{n+1}}, N)$ -generic and $q_{n+1} \models_{P_{\alpha_{n+1}}} ``\dot{x}_n [\dot{G}_{\alpha_{n+1}} \lceil \alpha_n] \lceil \alpha_{n+1} \in \dot{G}_{\alpha_{n+1}} "$ by iteration lemma (0.2) for proper. Since $\models_{P_{\alpha_{n+1}}} ``(T, <_T)$ remains a Souslin tree", we know (q_{n+1}, t_n) is $(P_{\alpha_{n+1}} \times T, N)$ -generic by Proposition (1.1).

Now in order to get a $P_{\alpha_{n+1}}$ -name \dot{x}_{n+1} , let us fix an arbitrary $P_{\alpha_{n+1}}$ generic filter $G_{\alpha_{n+1}}$ over V with $q_{n+1} \in G_{\alpha_{n+1}}$. Let $G_{\alpha_n} = G_{\alpha_{n+1}} \lceil \alpha_n$. We
know G_{α_n} is a P_{α_n} -generic filter over V with $q_n \in G_{\alpha_n}$. Let $x_n = \dot{x}_n [G_{\alpha_n}]$.
Then $x_n \in P_{\nu} \cap N$ and $x_n \lceil \alpha_{n+1} \in G_{\alpha_{n+1}}$. Let $D = \{(a, s) \in P_{\alpha_{n+1}} \times T \mid a$ and $x_n \lceil \alpha_{n+1} \text{ are incompatible in } P_{\alpha_{n+1}} \} \cup \{(a, s) \in P_{\alpha_{n+1}} \times T \mid \exists x \in P_{\nu} (x \leq_{\nu} x_n, (x, s) \in B \text{ and } x \lceil \alpha_{n+1} = a \rangle\}$. Then D is a predense subset of $P_{\alpha_{n+1}} \times T$ and $D \in N$. Hence $D \cap N$ is predense below (q_{n+1}, t_n) . For convenience
sake, let us fix a T-generic filter G_T over $V[G_{\alpha_{n+1}}]$ with $t_n \in G_T$. Then there
is an $(a, s) \in D \cap N \cap (G_{\alpha_{n+1}} \times G_T)$. Since $a \in G_{\alpha_{n+1}}$ and $x_n \lceil \alpha_{n+1} \in G_{\alpha_{n+1}}$,
there must be an $x \in P_{\nu}$ such that $x \leq_{\nu} x_n, (x, s) \in B$ and $x \lceil \alpha_{n+1} = a$.
Since $(P_{\nu}, \leq_{\nu}, 1_{\nu}), x_n, s, B, \alpha_{n+1}$ and a are all in N, we may assume $x \in N$.
Since $s \in N \cap G_T$ and $t_n \in G_T$, we have $s <_T t_n$. Let \dot{x}_{n+1} be a $P_{\alpha_{n+1}}$ -name
of this x. This completes the construction.

Let $q = \bigcup \{q_n \mid n < \omega\} \cap 1_{\nu} \lceil [\sup(\nu \cap N), \nu)$. Then $q \in P_{\nu}$. We claim $q \models_{P_{\nu}} ``\forall n < \omega \exists s \in A \ s <_T t_n"$ and so $q \models ``A \subseteq T \lceil \delta"$. To see this, let G_{ν} be an arbitrary P_{ν} -generic filter over V with $q \in G_{\nu}$. Put $G_{\alpha_n} = G_{\nu} \lceil \alpha_n$ and $x_n = \dot{x}_n \lceil G_{\alpha_n} \rceil$ for each $n < \omega$.

Since $q_n \in G_{\alpha_n}$ holds for all $n < \omega$, we have

- $(8) x_0 = p.$
- (9) $x_n \in P_{\nu} \cap N \text{ and } x_n \lceil \alpha_n \in G_{\alpha_n}.$
- (10) $x_{n+1} \leq_{\nu} x_n \text{ and } \exists s <_T t_n \ (x_{n+1}, s) \in B.$

Since $x_n \in P_{\nu} \cap N$, we know $\operatorname{supp}(x_n) \subseteq \nu \cap N$ for all $n < \omega$. We conclude $x_n \in G_{\nu}$ for all $n < \omega$. Therefore for all $n < \omega$ there is an $s \in \dot{A}[G_{\nu}]$ with $s <_T t_n$. Since G_{ν} is an arbitrary P_{ν} -generic filter over V with $q \in G_{\nu}$, we have $q \leq_{\nu} p$.

(1.3) THEOREM. Let $((P_{\alpha}, \leq_{\alpha}, 1_{\alpha})_{\alpha \leq \nu}, (\dot{Q}_{\alpha}, \dot{\leq}_{\alpha}, \dot{1}_{\alpha})_{\alpha < \nu})$ be a countable support iteration of arbitrary length ν . If for all $\alpha < \nu$, $\Vdash_{P_{\alpha}} "(\dot{Q}_{\alpha}, \dot{\leq}_{\alpha}, \dot{1}_{\alpha})$ is proper and preserves every ω_1 -Souslin tree", then $(P_{\nu}, \leq_{\nu}, 1_{\nu})$ is proper and preserves every ω_1 -Souslin tree.

Proof. Immediate from Lemma (1.2). ■

(1.4) Remark. Since the preorders which appear in the forcing axiom SAD are proper and preserve every ω_1 -Souslin tree, countable support iterations for getting SAD preserve every ω_1 -Souslin tree in L.

$Souslin\ trees$

References

- U. Avraham, K. Devlin and S. Shelah, The consistency with CH of some consequences of Martin's Axiom plus 2^{ℵ0} > ℵ₁, Israel J. Math. 31 (1978), 19–33.
 S. Shelah, Proper Forcing, Lecture Notes in Math. 940, Springer, 1982.

DEPARTMENT OF INFORMATION SYSTEMS AND QUANTITATIVE SCIENCES NANZAN UNIVERSITY 18, YAMAZATO-CHO, SHOWA-KU NAGOYA 466, JAPAN

> Received 19 May 1992; in revised form 23 October 1992