Hyperspaces of CW-complexes

by

Bao-Lin Guo and Katsuro Sakai (Tsukuba)

Abstract

It is shown that the hyperspace of a connected CW-complex is an absolute retract for stratifiable spaces, where the hyperspace is the space of non-empty compact (connected) sets with the Vietoris topology.

0. Introduction. The class \mathcal{S} of stratifiable spaces (M_{3}-spaces) contains both metrizable spaces and CW-complexes and has many desirable properties (cf. [Ce] and $\left[\mathrm{Bo}_{1}\right]$). Moreover, any CW-complex is an $\operatorname{ANR}(\mathcal{S})$ (i.e., an absolute neighborhood retract for the class \mathcal{S}) $\left[\mathrm{Ca}_{4}\right]$. In $\left[\mathrm{Ca}_{5}\right]$, it was shown that the space of continuous maps from a compactum to a CW-complex with the compact-open topology is stratifiable, whence it is an $\operatorname{ANR}(\mathcal{S})\left(\right.$ cf. $\left[\mathrm{Bo}_{4}\right]$ or $\left.\left[\mathrm{Ca}_{2}\right]\right)$. It is interesting to find hyperspaces which are $\operatorname{ANR}(\mathcal{S})$'s (cf. [Wo], $[\mathrm{Ke}]$ and [Ta]). By $\mathfrak{K}(X)$, we denote the space of non-empty compact sets in a space X with the Vietoris topology, i.e., the topology generated by the sets

$$
\left\langle U_{1}, \ldots, U_{n}\right\rangle=\left\{A \in \mathfrak{K}(X) \mid A \subset U_{1} \cup \ldots \cup U_{n}, \forall i, A \cap U_{i} \neq \emptyset\right\}
$$

where $n \in \mathbb{N}$ and U_{1}, \ldots, U_{n} are open in X. Let $\mathfrak{C}(X)$ denote the subspace of $\mathfrak{K}(X)$ consisting of compact connected sets. In this paper, we show the following:

Main Theorem. For any connected $C W$-complex X, the hyperspaces $\mathfrak{K}(X)$ and $\mathfrak{C}(X)$ are $A R(\mathcal{S})$'s. Hence for any $C W$-complex $X, \mathfrak{K}(X)$ and $\mathfrak{C}(X)$ are $\operatorname{ANR}(\mathcal{S})$'s.

One should note that $\mathfrak{K}(X)$ is not stratifiable even if X is stratifiable (cf. [MK] and [Mi]). Although Mizokami [Mi] gave a sufficient condition on X for $\mathfrak{K}(X)$ to be stratifiable, this condition is not satisfied for any non-locally compact CW-complex (see $\S 3$). For a simplicial complex K, let $|K|$ denote

[^0]the polyhedron of K, i.e., $|K|=\bigcup K$ with the weak (Whitehead) topology. Since any connected CW-complex X can be embedded in $|K|$ as a retract for some connected simplicial complex K (cf. [Ca ${ }_{1}$, Corollaire 2]), $\mathfrak{K}(X)$ and $\mathfrak{C}(X)$ can be considered as retracts of $\mathfrak{K}(|K|)$ and $\mathfrak{C}(|K|)$, respectively. Thus the main theorem reduces to the case $X=|K|$ for a connected simplicial complex K. By the same reason, the main theorem is valid for a (connected) $\operatorname{ANR}(\mathcal{S}) X$ which can be embedded in a simplicial complex as a closed set. Throughout the paper, we simply write $\mathfrak{K}(|K|)=\mathfrak{K}(K)$ and $\mathfrak{C}(|K|)=\mathfrak{C}(K)$ for any simplicial complex K.

In the case where X is a separable CW-complex, it is easy to see that $\mathfrak{K}(X)$ is an $\operatorname{ANR}(\mathcal{S})$. In fact, let Δ^{∞} be the countable full simplicial complex. Since $\left|\Delta^{\infty}\right|$ is the direct limit of n-simplexes $\Delta^{n}, \mathfrak{K}\left(\Delta^{\infty}\right)$ is homeomorphic to the direct limit of Hilbert cubes by [CP, Corollary 3.1], whence it is an $\operatorname{AR}(\mathcal{S})$ by $\left[\mathrm{Ca}_{3}\right.$, Corollaire 4.2]. Since X can be embedded in $\left|\Delta^{\infty}\right|$ as a closed set, it can be considered a neighborhood retract of $\left|\Delta^{\infty}\right|$, whence $\mathfrak{K}(X)$ is a neighborhood retract of $\mathfrak{K}\left(\Delta^{\infty}\right)$. Therefore $\mathfrak{K}(X)$ is an $\operatorname{ANR}(\mathcal{S})$.

1. A particular base of neighborhoods of $A \in \mathfrak{K}(K)$. Let K be a simplicial complex. In this section, we construct a particular base of neighborhoods of $A \in \mathfrak{K}(K)$ in imitation of [Ca5]. For each $\sigma \in K$, the barycenter, the boundary and the interior of σ are denoted by $\widehat{\sigma}, \partial \sigma$ and $\stackrel{\circ}{\sigma}$, respectively. Moreover, $\tau \leq \sigma(\tau<\sigma)$ means that τ is a (proper) face of σ. The simplex with vertices v_{0}, \ldots, v_{n} is denoted by $\left\langle v_{0}, \ldots, v_{n}\right\rangle$. We abuse the notation $\langle\ldots\rangle$, but it can be recognized from the context to stand for a simplex or a basic open set of the Vietoris topology.

For each $x \in|K|$, let $(x(\widehat{\sigma}))_{\sigma \in K}$ denote the barycentric coordinates of x with respect to the barycentric subdivision $\operatorname{Sd} K$. Let d be the barycentric metric on $|\operatorname{Sd} K|(=|K|)$ defined by

$$
d(x, y)=\sum_{\sigma \in K}|x(\widehat{\sigma})-y(\widehat{\sigma})|
$$

and let $N_{d}(x, \varepsilon)$ denote the ε-neighborhood of $x \in|K|$ with respect to d. Let d_{H} be the Hausdorff metric on $\mathfrak{K}(K)$ induced by d, that is, for each $A, B \in \mathfrak{K}(K)$,

$$
d_{\mathrm{H}}(A, B)=\inf \left\{\varepsilon>0 \mid A \subset N_{d}(B, \varepsilon) \text { and } B \subset N_{d}(A, \varepsilon)\right\}
$$

where

$$
N_{d}(C, \varepsilon)=\bigcup_{x \in C} N_{d}(x, \varepsilon)=\left\{y \in|K| \mid \operatorname{dist}_{d}(y, C)<\varepsilon\right\}
$$

One should not confuse $N_{d_{\mathrm{H}}}(C, \varepsilon)$ with $N_{d}(C, \varepsilon)$, where $N_{d_{\mathrm{H}}}(C, \varepsilon)$ denotes the ε-neighborhood of $C \in \mathfrak{K}(K)$ with respect to d_{H}. Note that these metrics are continuous but they do not generate the topology of $|K|$ nor the

Vietoris topology of $\mathfrak{K}(K)$ if K is infinite. For each finite subcomplex L of K, they do.

For each $\sigma \in K$ and $0<t \leq 1$, let

$$
\sigma(t)=\{x \in \sigma \mid 0 \leq x(\widehat{\sigma})<t\} \quad \text { and } \quad \sigma[t]=\{x \in \sigma \mid 0 \leq x(\widehat{\sigma}) \leq t\}
$$

Then each $\sigma(t)$ is an open neighborhood of $\partial \sigma$ in σ and $\sigma[t]=\operatorname{cl}_{\sigma} \sigma(t)$. Each $x \in \sigma(1)=\sigma \backslash\{\widehat{\sigma}\}$ can be uniquely written as

$$
x=(1-x(\widehat{\sigma})) \pi_{\sigma}(x)+x(\widehat{\sigma}) \widehat{\sigma}, \quad \pi_{\sigma}(x) \in \partial \sigma
$$

Then for each $\sigma \in K$, we have a map $\pi_{\sigma}: \sigma(1) \rightarrow \partial \sigma$, called the radial projection.
1.1. Lemma. Let $\sigma_{0}<\ldots<\sigma_{n}=\sigma \in K$. For each $x \in\left\langle\widehat{\sigma}_{0}, \ldots, \widehat{\sigma}_{n}\right\rangle \cap$ $\sigma(1)$,

$$
\pi_{\sigma}(x)=\sum_{i=0}^{n-1} \frac{x\left(\widehat{\sigma}_{i}\right)}{1-x\left(\widehat{\sigma}_{n}\right)} \widehat{\sigma}_{i} \quad \text { and } \quad d\left(x, \pi_{\sigma}(x)\right)=2 x(\widehat{\sigma}) .
$$

Proof. The first equality follows from

$$
x=\left(1-x\left(\widehat{\sigma}_{n}\right)\right) \pi_{\sigma}(x)+x\left(\widehat{\sigma}_{n}\right) \widehat{\sigma}_{n}=\sum_{i=0}^{n} x\left(\widehat{\sigma}_{i}\right) \widehat{\sigma}_{i}
$$

Since $1-x\left(\widehat{\sigma}_{n}\right)=\sum_{i=0}^{n-1} x\left(\widehat{\sigma}_{i}\right)$, we have

$$
\begin{aligned}
d\left(x, \pi_{\sigma}(x)\right) & =\sum_{i=0}^{n-1}\left(\frac{x\left(\widehat{\sigma}_{i}\right)}{1-x\left(\widehat{\sigma}_{n}\right)}-x\left(\widehat{\sigma}_{i}\right)\right)+x\left(\widehat{\sigma}_{n}\right) \\
& =\frac{x\left(\widehat{\sigma}_{n}\right)}{1-x\left(\widehat{\sigma}_{n}\right)} \sum_{i=0}^{n-1} x\left(\widehat{\sigma}_{i}\right)+x\left(\widehat{\sigma}_{n}\right)=2 x\left(\widehat{\sigma}_{n}\right)=2 x(\widehat{\sigma}) .
\end{aligned}
$$

Let L be a subcomplex of K. Then

$$
W(L)=\{x \in|K| \mid \exists \sigma \in L \text { such that } x(\widehat{\sigma})>0\}
$$

is an open neighborhood of $|L|$ in $|K|$. For each $n \in \mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$, we write $K_{L}^{(n)}=L \cup K^{(n)}$, where $K^{(n)}$ denotes the n-skeleton of K. Let

$$
W_{n}(L)=W(L) \cap\left|K_{L}^{(n)}\right|=\left\{x \in W(L) \mid x(\widehat{\sigma})=0, \forall \sigma \in K \backslash K_{L}^{(n)}\right\}
$$

Thus we have a tower $|L|=W_{0}(L) \subset W_{1}(L) \subset \ldots$ with $W(L)=\bigcup_{n \in \mathbb{Z}_{+}} W_{n}(L)$. Since $W_{n}(L) \backslash W_{n-1}(L)$ is covered by

$$
S_{n}(L)=\left\{\sigma \in K_{L}^{(n)} \backslash K_{L}^{(n-1)}|\sigma \cap| L \mid \neq \emptyset\right\}
$$

we can define a retraction $p_{n}^{L}: W_{n}(L) \rightarrow W_{n-1}(L)$ by the radial projections, i.e., $p_{n}^{L}\left|\sigma \cap W_{n}(L)=\pi_{\sigma}\right| \sigma \cap W_{n}(L)$ for each $\sigma \in S_{n}(L)$. We define a retraction
$\pi^{L}: W(L) \rightarrow|L|$ by $\pi^{L} \mid W_{n}(L)=p_{1}^{L} \ldots p_{n}^{L}$ for each $n \in \mathbb{N}$. Let

$$
S(L)=\bigcup_{n \in \mathbb{N}} S_{n}(L)=\{\sigma \in K \backslash L|\sigma \cap| L \mid \neq \emptyset\}
$$

For each $\varepsilon \in(0,1)^{S(L)}$, we inductively define an open neighborhood $W(L, \varepsilon)$ $=\bigcup_{n \in \mathbb{Z}_{+}} W_{n}(L, \varepsilon)$ of $|L|$ in $|K|$ as follows: $W_{0}(L, \varepsilon)=|L|$ and

$$
\begin{aligned}
W_{n}(L, \varepsilon) & =|L| \cup \bigcup\left\{\sigma(\varepsilon(\sigma)) \cap\left(p_{n}^{L}\right)^{-1}\left(W_{n-1}(L, \varepsilon)\right) \mid \sigma \in S_{n}(L)\right\} \\
(& \left.=|L| \cup \bigcup\left\{\sigma(\varepsilon(\sigma)) \cap \pi_{\sigma}^{-1}\left(W_{n-1}(L, \varepsilon)\right) \mid \sigma \in S_{n}(L)\right\}\right)
\end{aligned}
$$

For each $m \in \mathbb{N}$, let

$$
\mathcal{E}_{m}^{L}=\left\{\varepsilon \in(0,1)^{S(L)} \mid \forall \sigma \in S(L), \varepsilon(\sigma)<2^{-(m+\operatorname{dim} \sigma+1)}\right\} .
$$

1.2. Lemma. Let $m \in \mathbb{N}$ and $\varepsilon \in \mathcal{E}_{m}^{L}$. Then $d_{\mathrm{H}}\left(A, \pi^{L}(A)\right)<2^{-m}$ for any $A \in \mathfrak{K}(W(L, \varepsilon))$.

Proof. From compactness of $A, A \subset W_{n}(L, \varepsilon)$ for some $n \in \mathbb{N}$. Each $x \in W_{n}(L, \varepsilon)$ is contained in $\sigma(\varepsilon(\sigma))$ for some $\sigma \in S_{n}(L)$, whence

$$
d\left(x, p_{n}^{L}(x)\right)=d\left(x, \pi_{\sigma}(x)\right)=2 x(\widehat{\sigma})<2 \varepsilon(\sigma)<2^{-(m+n)} .
$$

Then $d\left(x, p_{n}^{L}(x)\right)<2^{-(m+n)}$ for each $x \in A$, whence $d_{\mathrm{H}}\left(A, p_{n}^{L}(A)\right)<$ $2^{-(m+n)}=2^{-m} 2^{-n}$. Note $p_{n}^{L}(A) \subset W_{n-1}(L, \varepsilon)$. By induction, we have

$$
\begin{aligned}
d_{\mathrm{H}}\left(p_{1}^{L} \ldots p_{n}^{L}(A), A\right) & \leq d_{\mathrm{H}}\left(p_{1}^{L} \ldots p_{n-1}^{L}\left(p_{n}^{L}(A)\right), p_{n}^{L}(A)\right)+d_{\mathrm{H}}\left(p_{n}^{L}(A), A\right) \\
& <2^{-m} \sum_{i=1}^{n} 2^{-i}\left(<2^{-m}\right) .
\end{aligned}
$$

Let $A \in \mathfrak{K}(K)$. By $L(A)$, we denote the smallest subcomplex of K which contains A. Since A is compact, $L(A)$ is a finite subcomplex of K. For each $\delta>0$ and $\varepsilon \in(0,1)^{S(L(A))}$, we define

$$
V(A, \delta, \varepsilon)=\left\{B \in \mathfrak{K}(W(L(A), \varepsilon)) \mid d_{\mathrm{H}}\left(\pi^{L(A)}(B), A\right)<\delta\right\} .
$$

Since $\mathfrak{K}(W(L(A), \varepsilon))$ is an open neighborhood of A in $\mathfrak{K}(K)$ and $\pi^{L(A)}$ induces a map from $\mathfrak{K}(W(L(A), \varepsilon))$ to $\mathfrak{K}(L(A)), V(A, \delta, \varepsilon)$ is an open neighborhood of A in $\mathfrak{K}(K)$.
1.3. Lemma. For each $A \in \mathfrak{K}(K),\left\{V(A, \delta, \varepsilon) \mid \delta>0, \varepsilon \in(0,1)^{S(L(A))}\right\}$ is a neighborhood base of A in $\mathfrak{K}(K)$.

Proof. In the proof, we simply write $p_{n}=p_{n}^{L(A)}$. Let $\left\langle U_{1}, \ldots, U_{k}\right\rangle$ be a basic neighborhood of A in $\mathfrak{K}(K)$. For each $i=1, \ldots, k$, choose $x_{i} \in A \cap U_{i}$ and $\delta_{i}>0$ so that $\operatorname{cl} N_{d}\left(x_{i}, \delta_{i}\right) \cap|L(A)| \subset U_{i}$. Let $\eta>0$ be a Lebesgue number for the open cover $\left\{U_{i} \cap|L(A)| \mid i=1, \ldots, k\right\}$ of A in $|L(A)|$, that
is, each $B \subset|L(A)|$ is contained in some $U_{i} \cap|L(A)|$ if $\operatorname{diam}_{d} B<\eta$ and $B \cap A \neq \emptyset$. Let

$$
\delta_{0}=\min \left\{\eta / 3, \delta_{1}, \ldots, \delta_{k}\right\}>0 .
$$

By compactness, we can choose more points $x_{j} \in A, j=k+1, \ldots, m$, so that

$$
A \subset \bigcup_{j=1}^{m} N_{d}\left(x_{j}, \delta_{0}\right) \cap|L(A)|
$$

For each $j=1, \ldots, m$, let $V_{0}\left(x_{j}\right)=N_{d}\left(x_{j}, \delta_{0}\right) \cap|L(A)|$. Then for each $j \leq k$,

$$
\operatorname{cl} V_{0}\left(x_{j}\right) \subset \operatorname{cl} N_{d}\left(x_{j}, \delta_{j}\right) \cap|L(A)| \subset U_{j} .
$$

Let $i(j)=j$ for each $j \leq k$, while for each $j>k$, choose $i(j) \leq k$ so that

$$
\operatorname{cl} V_{0}\left(x_{j}\right) \subset \operatorname{cl} N_{d}\left(x_{j}, \eta / 3\right) \cap|L(A)| \subset U_{i(j)}
$$

By induction on dimension, we can choose $\varepsilon_{j}(\sigma) \in(0,1)$ for each $\sigma \in$ $S(L(A))$ so that

$$
C(j, \sigma)=\pi_{\sigma}^{-1}(C(j, \partial \sigma)) \cap \sigma\left[\varepsilon_{j}(\sigma)\right] \subset U_{i(j)}
$$

where

$$
C(j, \partial \sigma)=\left(\partial \sigma \cap \operatorname{cl} V_{0}\left(x_{j}\right)\right) \cup \bigcup\{C(j, \tau) \mid \tau \in S(L(A)), \tau<\sigma\}
$$

In the above, $C(j, \partial \sigma)=\partial \sigma \cap \mathrm{cl} V_{0}\left(x_{j}\right)$ if $\operatorname{dim} \sigma=1$. Thus we have $\varepsilon_{j} \in$ $(0,1)^{S(L(A))}$ for each $j=1, \ldots, m$. We define $\varepsilon \in(0,1)^{S(L(A))}$ by $\varepsilon(\sigma)=$ $\min _{1 \leq j \leq m} \varepsilon_{j}(\sigma)$. We inductively define

$$
\begin{aligned}
V_{n}\left(x_{j}\right) & =\left\{y \in W_{n}(L(A), \varepsilon) \mid p_{n}(y) \in V_{n-1}\left(x_{j}\right)\right\} \\
& =W_{n}(L(A), \varepsilon) \cap p_{n}^{-1}\left(V_{n-1}\left(x_{j}\right)\right)
\end{aligned}
$$

Then $V\left(x_{j}\right)=\bigcup_{n \in \mathbb{Z}_{+}} V_{n}\left(x_{j}\right)$ is an open neighborhood of x_{j} in $|K|$. Since

$$
V_{n}\left(x_{j}\right) \subset V_{0}\left(x_{j}\right) \cup \bigcup\{C(j, \sigma) \mid \sigma \in S(L(A))\} \subset U_{i(j)}
$$

we have $V\left(x_{j}\right) \subset U_{i(j)}$ for each $i=1, \ldots, m$. Hence

$$
A \in\left\langle V\left(x_{1}\right), \ldots, V\left(x_{m}\right)\right\rangle \subset\left\langle U_{1}, \ldots, U_{k}\right\rangle
$$

Let $\zeta>0$ be a Lebesgue number for the open cover $\left\{V_{0}\left(x_{i}\right) \mid i=\right.$ $1, \ldots, m\}$ of A in $|L(A)|$ and let $\delta=\min \left\{\delta_{0}, \zeta, 1\right\}>0$. We show that

$$
V(A, \delta, \varepsilon) \subset\left\langle V\left(x_{1}\right), \ldots, V\left(x_{m}\right)\right\rangle \subset\left\langle U_{1}, \ldots, U_{k}\right\rangle
$$

To this end, it suffices to show that for every $n \in \mathbb{Z}_{+}$,
$\left(*_{n}\right) \quad V(A, \delta, \varepsilon) \cap \mathfrak{K}\left(W_{n}(L(A), \varepsilon)\right) \subset\left\langle V\left(x_{1}\right), \ldots, V\left(x_{m}\right)\right\rangle$.
To see $\left(*_{0}\right)$, let $B \in V(A, \delta, \varepsilon) \cap \mathfrak{K}\left(W_{0}(L(A), \varepsilon)\right)$. Then $B \subset W_{0}(L(A), \varepsilon)$ $=|L(A)|$ and $d_{\mathrm{H}}(A, B)<\delta$. For any $y \in B$, we have $x \in A$ such that $d(x, y)<\delta \leq \zeta$, whence $\{x, y\} \subset V\left(x_{i}\right) \cap|L(A)|$ for some $i=1, \ldots, m$.

Therefore $B \subset \bigcup_{i=1}^{m} V\left(x_{i}\right)$. For each $i=1, \ldots, m$, there is a $y \in B$ such that $d\left(x_{i}, y\right)<\delta \leq \delta_{0}$. Then $y \in V_{0}\left(x_{i}\right) \subset V\left(x_{i}\right)$, whence $B \cap V\left(x_{i}\right) \neq \emptyset$. Therefore $B \in\left\langle V\left(x_{1}\right), \ldots, V\left(x_{m}\right)\right\rangle$. Thus we have $\left(*_{0}\right)$.

Next assume $\left(*_{n-1}\right)$ and let $B \in V(A, \delta, \varepsilon) \cap \mathfrak{K}\left(W_{n}(L(A), \varepsilon)\right)$. Since $B \subset W_{n}(L(A), \varepsilon)$, we have $p_{n}(B) \subset W_{n-1}(L(A), \varepsilon)$, whence

$$
p_{n}(B) \in V(A, \delta, \varepsilon) \cap \mathfrak{K}\left(W_{n-1}(L(A), \varepsilon)\right) \subset\left\langle V\left(x_{1}\right), \ldots, V\left(x_{m}\right)\right\rangle
$$

For each $y \in B \subset W_{n}(L(A), \varepsilon), p_{n}(y)$ is contained in some $V_{n-1}\left(x_{i}\right)$, since

$$
p_{n}(B) \subset \bigcup_{i=1}^{m} V\left(x_{i}\right) \cap W_{n-1}(L(A), \varepsilon)=\bigcup_{i=1}^{m} V_{n-1}\left(x_{i}\right)
$$

Then it follows that $y \in V_{n}\left(x_{i}\right)$. Therefore $B \subset \bigcup_{i=1}^{m} V\left(x_{i}\right)$. For each $i=1, \ldots, m$,

$$
p_{n}(B) \cap V_{n-1}\left(x_{i}\right)=p_{n}(B) \cap V\left(x_{i}\right) \neq \emptyset
$$

that is, $p_{n}(y) \in V_{n-1}\left(x_{i}\right)$ for some $y \in B \subset W_{n}(L(A), \varepsilon)$. Then $y \in V_{n}\left(x_{i}\right) \subset$ $V\left(x_{i}\right)$, whence $B \cap V\left(x_{i}\right) \neq \emptyset$. Therefore $B \in\left\langle V\left(x_{1}\right), \ldots, V\left(x_{m}\right)\right\rangle$. By induction, $\left(*_{n}\right)$ holds for every $n \in \mathbb{Z}_{+}$.
1.4. Lemma. Let $A_{0} \in \mathfrak{K}(K), \delta>0$ and $\varepsilon \in(0,1)^{S\left(L\left(A_{0}\right)\right)}$.
(1) If $\mathcal{A} \subset V\left(A_{0}, \delta, \varepsilon\right)$ and \mathcal{A} is compact, then $\bigcup \mathcal{A} \in V\left(A_{0}, \delta, \varepsilon\right)$.
(2) For each $A, B, C \in \mathfrak{K}(K)$, if $A \subset B \subset C$ and $A, C \in V\left(A_{0}, \delta, \varepsilon\right)$ then $B \in V\left(A_{0}, \delta, \varepsilon\right)$.
(3) If $\varepsilon \in \mathcal{E}_{m}^{L\left(A_{0}\right)}$ then $V\left(A_{0}, 2^{-m}, \varepsilon\right) \subset N_{d_{\mathrm{H}}}\left(A_{0}, 2^{-m+1}\right)$.

Proof. Since $\bigcup \mathcal{A}$ is compact, (1) follows from the definition. By the definition, (2) is also easily observed. Finally, (3) follows from Lemma 1.2.
2. A stratification of $\mathfrak{K}(K)$. Recall that a T_{1}-space X is stratifiable if each open set U in X can be assigned a sequence $\left(U_{n}\right)_{n \in \mathbb{N}}$ of open sets in X so that
(a) $\mathrm{cl} U_{n} \subset U$,
(b) $U=\bigcup_{n \in \mathbb{N}} U_{n}$,
(c) $U \subset V$ implies $U_{n} \subset V_{n}$ for all $n \in \mathbb{N}$,
where $\left(U_{n}\right)_{n \in \mathbb{N}}$ is called a stratification of U and the correspondence $U \rightarrow$ $\left(U_{n}\right)_{n \in \mathbb{N}}$ is a stratification of X. In this section, we prove the following:
2.1. Theorem. For any simplicial complex $K, \mathfrak{K}(K)$ is stratifiable.

Proof. For any $A \in \mathfrak{K}(K)$ and $\sigma \in K$ with $\circ \circ \cap A \neq \emptyset$, let

$$
\alpha(A, \sigma)=\sup \{x(\widehat{\sigma}) \mid x \in \sigma \cap A\} .
$$

Then $\alpha(A, \sigma)=x(\widehat{\sigma})>0$ for some $x \in \stackrel{\circ}{\sigma} \cap A$ because $\sigma \cap A$ is compact and $x(\widehat{\sigma})=0$ for all $x \in \partial \sigma \cap A$. We define

$$
\alpha(A)=\min \{\alpha(A, \sigma) \mid \sigma \in L(A), \stackrel{\circ}{\sigma} \cap A \neq \emptyset\}>0
$$

For each open set \mathcal{U} in $\mathfrak{K}(K)$ and $n \in \mathbb{N}$, let

$$
\mathcal{U}_{n}^{\prime}=\left\{A \in \mathcal{U} \mid \alpha(A)>2^{-n}, \exists \varepsilon \in \mathcal{E}_{n}^{L(A)} \text { such that } V\left(A, 2^{-n}, \varepsilon\right) \subset \mathcal{U}\right\}
$$

By Lemma 1.3, $\mathcal{U}=\bigcup_{n \in \mathbb{N}} \mathcal{U}_{n}^{\prime}$. For each $A \in \mathcal{U}_{n}^{\prime}$, let

$$
\mathcal{U}_{n}(A)=\bigcup\left\{V\left(A, 2^{-(n+2)}, 2^{-2} \varepsilon\right) \mid \varepsilon \in \mathcal{E}_{n}^{L(A)}, V\left(A, 2^{-n}, \varepsilon\right) \subset \mathcal{U}\right\}
$$

Then $\mathcal{U}_{n}(A) \subset N_{d_{\mathrm{H}}}\left(A, 2^{-(n+1)}\right)$ by Lemma 1.4(3). Thus we have open sets $\mathcal{U}_{n}=\bigcup_{A \in \mathcal{U}_{n}^{\prime}} \mathcal{U}_{n}(A)$ in $\mathfrak{K}(K)$ and $\mathcal{U}=\bigcup_{n \in \mathbb{N}} \mathcal{U}_{n}$. It follows from the definition that $\mathcal{U} \subset \mathcal{V}$ implies $\mathcal{U}_{n} \subset \mathcal{V}_{n}$ for any open sets \mathcal{U} and \mathcal{V} in $\mathfrak{K}(K)$. We will show that $\operatorname{cl} \mathcal{U}_{n} \subset \mathcal{U}$ for each $n \in \mathbb{N}$. Then $\mathcal{U} \rightarrow\left(\mathcal{U}_{n}\right)_{n \in \mathbb{N}}$ is a stratification.

Now let $n \in \mathbb{N}$ and $C \in \mathfrak{K}(K) \backslash \mathcal{U}$ be fixed. To see that $C \notin \operatorname{cl} \mathcal{U}_{n}$, it suffices to construct a neighborhood \mathcal{V}_{C} of C in $\mathfrak{K}(K)$ so that $\mathcal{V}_{C} \cap \mathcal{U}_{n}(A)=\emptyset$ for all $A \in \mathcal{U}_{n}^{\prime}$. Let \mathcal{L}_{C} be the collection of all subcomplexes L of $L(C)$ such that $L \neq L(C)$ and $C \subset W(L)$. First, we show that if $A \in \mathcal{U}_{n}^{\prime}$ and $L(A) \notin \mathcal{L}_{C}$ then

$$
N_{d_{\mathrm{H}}}\left(C, 2^{-(n+1)}\right) \cap \mathcal{U}_{n}(A)=\emptyset
$$

To this end, since $\mathcal{U}_{n}(A) \subset N_{d_{\mathrm{H}}}\left(A, 2^{-(n+1)}\right)$, it suffices to show that $d_{\mathrm{H}}(A, C) \geq 2^{-n}$. We consider three cases. In case $L(A) \not \subset L(C)$, we have $\sigma \in L(A) \backslash L(C)$ such that ${ }_{\sigma}^{\circ} \cap A \neq \emptyset$. Choose $x \in \stackrel{\circ}{\sigma} \cap A$ so that $x(\widehat{\sigma})=$ $\alpha(A, \sigma)$. Since $\sigma \notin L(C), y(\widehat{\sigma})=0$ for all $y \in C$. Then

$$
\begin{aligned}
d_{\mathrm{H}}(A, C) & \geq \operatorname{dist}_{d}(x, C)=\inf \{d(x, y) \mid y \in C\} \\
& \geq x(\widehat{\sigma})=\alpha(A, \sigma) \geq \alpha(A)>2^{-n}
\end{aligned}
$$

In case $L(A)=L(C)$, since $C \subset|L(A)|$ and $C \notin V\left(A, 2^{-n}, \varepsilon\right)$ for $\varepsilon \in \mathcal{E}_{n}^{L(A)}$ such that $V\left(A, 2^{-n}, \varepsilon\right) \subset \mathcal{U}$, it follows that $d_{\mathrm{H}}(A, C) \geq 2^{-n}$. In case $L(A) \varsubsetneqq$ $L(C)$ and $C \not \subset W(L(A))$, we have $x \in C$ such that $x(\widehat{\sigma})=0$ for all $\sigma \in L(A)$, whence

$$
\operatorname{dist}_{d}(x, A) \geq \operatorname{dist}_{d}(x,|L(A)|)=2
$$

which implies $d_{\mathrm{H}}(A, C) \geq 2$.
Next, we construct a neighborhood \mathcal{V}_{L} of C in $\mathfrak{K}(K)$ for each $L \in \mathcal{L}_{C}$ so that if $A \in \mathcal{U}_{n}^{\prime}$ and $L(A)=L$ then $\mathcal{V}_{L} \cap \mathcal{U}_{n}(A)=\emptyset$. Then, since \mathcal{L}_{C} is finite,

$$
\mathcal{V}_{C}=\bigcap_{L \in \mathcal{L}_{C}} \mathcal{V}_{L} \cap N_{d_{\mathrm{H}}}\left(C, 2^{-(n+1)}\right)
$$

is the desired neighborhood. (In case $\mathcal{L}_{C}=\emptyset, \mathcal{V}_{C}=N_{d_{\mathrm{H}}}\left(C, 2^{-(n+1)}\right)$.)
Now let $L \in \mathcal{L}_{C}$, that is, $L \nsubseteq L(C)$ and $C \subset W(L)$. Since π^{L} induces a map from $\mathfrak{K}(W(L))$ to $\mathfrak{K}(L), C$ has a neighborhood \mathcal{V}_{0} in $\mathfrak{K}(W(L))$ such
that $\pi^{L}(B) \in N_{d_{\mathrm{H}}}\left(\pi^{L}(C), 2^{-(n+1)}\right)$ for all $B \in \mathcal{V}_{0}$. For each $i \in \mathbb{N}$, define $\pi_{i}^{L}: W(L) \rightarrow W_{i}(L)$ by $\pi_{i}^{L} \mid W_{j}(L)=p_{i+1}^{L} \ldots p_{j}^{L}$ for each $j>i$. Since $L \varsubsetneqq L(C)$ and $C \subset W(L)$, we have $\sigma \in S(L)$ such that $\sigma^{\circ} \cap C \neq \emptyset$ and $\operatorname{dim} \sigma=\operatorname{dim}(L(C) \backslash L)$, whence $\pi_{\operatorname{dim} \sigma}^{L}(C)=C$. Let

$$
\left\{\sigma_{1}, \ldots, \sigma_{m}\right\}=\left\{\sigma \in S(L) \mid \stackrel{\circ}{\sigma} \cap \pi_{\operatorname{dim} \sigma}^{L}(C) \neq \emptyset\right\}
$$

For each $i=1, \ldots, m$, let $k_{i}=\operatorname{dim} \sigma_{i}$ and

$$
t_{i}=\inf \left\{t>0 \mid \pi_{k_{i}}^{L}(C) \cap \sigma_{i} \subset \sigma_{i}(t)\right\}>0
$$

Then $\mathcal{V}_{i}^{\prime}=\left\langle W_{k_{i}}(L), \sigma_{i} \backslash \sigma_{i}\left[\frac{1}{2} t_{i}\right]\right\rangle$ is a neighborhood of $\pi_{k_{i}}^{L}(C)$ in $\mathfrak{K}\left(W_{k_{i}}(L)\right)$, whence C has a neighborhood \mathcal{V}_{i} in $\mathfrak{K}(W(L))$ such that for each $B \in \mathcal{V}_{i}$, $\pi_{k_{i}}^{L}(B) \in \mathcal{V}_{i}^{\prime}$, that is, $\pi_{k_{i}}^{L}(B) \cap \sigma_{i} \not \subset \sigma_{i}\left[\frac{1}{2} t_{i}\right]$. Then $\mathcal{V}_{L}=\bigcap_{i=0}^{m} \mathcal{V}_{i}$ is the desired neighborhood of C.

In fact, let $A \in \mathcal{U}_{n}^{\prime}$ with $L(A)=L$ and $\varepsilon \in \mathcal{E}_{n}^{L}$ such that $V\left(A, 2^{-n}, \varepsilon\right) \subset$ \mathcal{U}. Then $C \notin V\left(A, 2^{-n}, \varepsilon\right)$ since $C \notin \mathcal{U}$. In case $d_{\mathrm{H}}\left(A, \pi^{L}(C)\right) \geq 2^{-n}$, it follows that for each $B \in \mathcal{V}_{L} \subset \mathcal{V}_{0}$,

$$
\begin{aligned}
d_{\mathrm{H}}\left(A, \pi^{L}(B)\right) & \geq d_{\mathrm{H}}\left(A, \pi^{L}(C)\right)-d_{\mathrm{H}}\left(\pi^{L}(B), \pi^{L}(C)\right) \\
& >2^{-n}-2^{-(n+1)}>2^{-(n+2)}
\end{aligned}
$$

which implies $B \notin V\left(A, 2^{-(n+2)}, 2^{-2} \varepsilon\right)$. In case $d_{\mathrm{H}}\left(A, \pi^{L}(C)\right)<2^{-n}$, we have $C \not \subset W(L, \varepsilon)$, whence $\pi_{i}^{L}(C) \not \subset W_{i}(L, \varepsilon)$ for some $i \in \mathbb{N}$. Let

$$
k=\min \left\{i \in \mathbb{N} \mid \pi_{i}^{L}(C) \not \subset W_{i}(L, \varepsilon)\right\}
$$

and choose $\sigma \in S_{k}(L)$ so that $\pi_{k}^{L}(C) \cap \sigma \not \subset \sigma(\varepsilon(\sigma))$. Then $\sigma=\sigma_{i}$ for some $i=1, \ldots, m$, whence $k=k_{i}$ and $t_{i} \geq \varepsilon\left(\sigma_{i}\right)$. For each $B \in \mathcal{V}_{L} \subset \mathcal{V}_{i}$, $\pi_{k_{i}}^{L}(B) \cap \sigma_{i} \not \subset \sigma_{i}\left(\frac{1}{2} t_{i}\right)$, whence $\pi_{k_{i}}^{L}(B) \not \subset W_{k_{i}}\left(L, 2^{-1} \varepsilon\right)$, so $B \not \subset W\left(L, 2^{-1} \varepsilon\right)$. Then $B \notin V\left(A, 2^{-(n+2)}, 2^{-2} \varepsilon\right)$. Therefore $\mathcal{V}_{L} \cap \mathcal{U}_{n}(A)=\emptyset$.
3. CW-complexes have no σ-CF quasi-base. In [Mi], Mizokami gave a condition for a stratifiable space X so that $\mathfrak{K}(X)$ is stratifiable. In this section, we show that non-locally compact CW-complexes do not satisfy this condition. Let \mathcal{A} be a family of subsets of a space X. Recall that \mathcal{A} is closure preserving in X if $\operatorname{cl} \bigcup \mathcal{B}=\bigcup\{\operatorname{cl} B \mid B \in \mathcal{B}\}$ for any subfamily $\mathcal{B} \subset \mathcal{A}$. Moreover, \mathcal{A} is σ-closure preserving in X if $\mathcal{A}=\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}$, where each \mathcal{A}_{n} is closure preserving in $X[\mathrm{Ce}]$. It was proved independently by Gruenhage $[\mathrm{Gr}]$ and Junnila [Ju] that a regular space X is stratifiable if and only if X has a σ-closure preserving quasi-base, where a quasi-base of X is a family \mathcal{B} of (not necessarily open) subsets of X such that for each $x \in X$, $\{B \in \mathcal{B} \mid x \in$ int $B\}$ is a neighborhood base of x in X. We say that \mathcal{A} is finite on compact sets (CF) in X if $\{A \cap C \mid A \in \mathcal{A}\}$ is finite for each compact set C in X [Mi]. Finally, \mathcal{A} is σ - $C F$ in X if $\mathcal{A}=\bigcup_{n \in \mathbb{N}} \mathcal{A}_{n}$, where each \mathcal{A}_{n} is CF in X [Mi].

The following is shown by Mizokami [Mi, Theorem 4.5]:
3.1. Theorem. Let X be regular. Then $\mathfrak{K}(X)$ is stratifiable if X has a quasi-base $\mathcal{B}=\bigcup_{n \in \mathbb{N}} \mathcal{B}_{n}$ consisting of closed sets such that each \mathcal{B}_{n} is $C F$ and closure preserving in X.

Note that if \mathcal{B} is a quasi-base for a regular space X then $\{\operatorname{cl} B \mid B \in \mathcal{B}\}$ is also a quasi-base for X. We show the following:
3.2. Proposition. Any non-locally compact $C W$-complex X has no $\sigma-C F$ quasi-base consisting of closed sets.

Proof. From non-local compactness, X contains the cone C of \mathbb{N} with vertex v, i.e., $C=(\mathbb{N} \times \mathbf{I}) /(\mathbb{N} \times\{0\})$ and $v=\mathbb{N} \times\{0\} \in C$. Thus it suffices to show that C has no σ-CF quasi-base consisting of closed sets.

Assume that C has a quasi-base $\mathcal{B}=\bigcup_{n \in \mathbb{N}} \mathcal{B}_{n}$ consisting of closed sets such that each \mathcal{B}_{n} is $C F$ in C. Let $q: \mathbb{N} \times \mathbf{I} \rightarrow C$ be the quotient map and set $\mathbf{I}_{n}=q(\{n\} \times \mathbf{I})$ for each $n \in \mathbb{N}$. Then each $\left\{B \cap \mathbf{I}_{n} \mid B \in \mathcal{B}_{n}\right\}$ is finite. Hence for each $n \in \mathbb{N}$, v has a neighborhood U_{n} in \mathbf{I}_{n} such that $B \cap \mathbf{I}_{n} \not \subset U_{n}$ for all $B \in \mathcal{B}_{n}$ with $v \in \operatorname{int} B$. Then $U=\bigcup_{n \in \mathbb{N}} U_{n}$ is a neighborhood of v in C. Since \mathcal{B} is a quasi-base for C, there exists $B \in \mathcal{B}$ such that $v \in B \subset U$. Then $B \in \mathcal{B}_{n}$ for some $n \in \mathbb{N}$, whence $B \cap \mathbf{I}_{n} \subset U \cap \mathbf{I}_{n}=U_{n}$. This is a contradiction.
4. Cauty's test space $Z(X)$. Let X be a stratifiable space. In [Ca $\left.{ }_{4}\right]$, Cauty constructed a space $Z(X)$ and showed that X is an $\operatorname{AR}(\mathcal{S})$ (resp. an $\operatorname{ANR}(\mathcal{S})$) if and only if X is a retract (resp. a neighborhood retract) of $Z(X)$. Let $F(X)$ denote the full simplicial complex with X the set of vertices (i.e., $\left.X=F(X)^{(0)}\right)$. Recall that $|F(X)|$ has the weak topology. The space $Z(X)$ is defined as the space $|F(X)|$ with the topology generated by open sets W in $|F(X)|$ such that

$$
\begin{equation*}
W \cap X \text { is open in } X \text { and }|F(W \cap X)| \subset W \tag{*}
\end{equation*}
$$

The second condition of $(*)$ means that each $\tau \in F(X)$ is contained in W if all vertices of τ are contained in $W \cap X$. For each $A \subset X, Z(A)$ is a subspace of $Z(X)$ and

$$
Z(X) \backslash Z(A)=\{(1-t) x+t y \mid x \in Z(X \backslash A), y \in Z(A), 0 \leq t<1\}
$$

whence if A is closed in X then $Z(A)$ is closed in $Z(X)$. Each map $f: X \rightarrow$ Y induces a map $\tilde{f}: Z(X) \rightarrow Z(Y)$ which is simplicial with respect to $F(X)$ and $F(Y)$. Observe that $\widetilde{f}(Z(X))=Z(f(X)), \widetilde{f}(Z(X) \backslash X) \subset Z(Y) \backslash Y$. For each $n \in \mathbb{Z}_{+}$, let $Z_{n}(X)=\left|F(X)^{(n)}\right|$, a subspace of $Z(X)$. Then $Z_{0}(X)=X$ and $Z(X)=\bigcup_{n \in \mathbb{Z}_{+}} Z_{n}(X)$.

For each $A \subset X, F(A)$ is a subcomplex of $F(X)$. Here using different notations, we write $W(F(A))=M(A), S(F(A))=T(A), W_{n}(F(A))=$
$M_{n}(A)$ and $S_{n}(F(A))=T_{n}(A)$ for each $n \in \mathbb{Z}_{+}$:

$$
\begin{aligned}
M(A) & =\{x \in Z(X) \mid \exists \tau \in F(A) \text { such that } x(\widehat{\tau})>0\}, \\
T(A) & =\{\tau \in F(X) \backslash F(A) \mid \tau \cap A \neq \emptyset\}, \\
M_{n}(A) & =Z(A) \cup\left(M(A) \cap Z_{n}(X)\right), \\
T_{n}(A) & =T(A) \cap F(X)^{(n)} \backslash F(X)^{(n-1)} .
\end{aligned}
$$

For each $\varepsilon \in(0,1)^{T(A)}$, we write

$$
M(A, \varepsilon)=\bigcup_{n \in \mathbb{Z}_{+}} M_{n}(A, \varepsilon)
$$

where $M_{0}(A, \varepsilon)=Z(A)=|F(A)|$ and

$$
M_{n}(A, \varepsilon)=Z(A) \cup \bigcup\left\{\tau(\varepsilon(\tau)) \cap \pi_{\tau}^{-1}\left(M_{n-1}(A, \varepsilon)\right) \mid \tau \in T_{n}(A)\right\}
$$

for each $n \in \mathbb{N}$. Then $M(A, \varepsilon) \cap X=A$. For any open set U in $X, M(U, \varepsilon)$ is an open set in $Z(X)$.
4.1. Lemma. Let $\mathcal{N}(x)$ be an open neighborhood base of x in X. Then

$$
\left\{M(U, \varepsilon) \mid U \in \mathcal{N}(x), \varepsilon \in(0,1)^{T(U)}\right\}
$$

is a neighborhood base of x in $Z(X)$.
Proof. As observed above, $M(U, \varepsilon)$ is an open neighborhood of x in $Z(X)$ for each $U \in \mathcal{N}(x)$ and $\varepsilon \in(0,1)^{T(U)}$. Let W be an open set in $|F(X)|$ satisfying $(*)$ and $x \in W$. Since $W \cap X$ is an open neighborhood of x in $X, W \cap X$ contains some $U \in \mathcal{N}(x)$. Then $Z(U) \subset Z(W \cap X) \subset W$. Let $C_{\tau}=\tau$ for all $\tau \in F(U)$ and $C_{\tau}=\emptyset$ for all $\tau \in F(X \backslash U)$. By induction on dimension, we can choose $\varepsilon(\tau) \in(0,1)$ for each $\tau \in T(U)$ so that

$$
C_{\tau}=\pi_{\tau}^{-1}\left(C_{\partial \tau}\right) \cap \tau[\varepsilon(\tau)] \subset W \cap \tau
$$

where $C_{\partial \tau}=\bigcup_{\tau^{\prime}<\tau} C_{\tau^{\prime}}$. Thus we have $\varepsilon \in(0,1)^{T(U)}$ such that

$$
M(U, \varepsilon) \subset Z(U) \cup \bigcup_{\tau \in T(U)} C_{\tau} \subset W
$$

Let $p_{n}=p_{n}^{A}: M_{n}(A) \rightarrow M_{n-1}(A)$ be the retraction defined by the radial projections and $\pi^{A}: M(A) \rightarrow Z(A)$ the retraction defined by $\pi^{A} \mid M_{n}(A)=$ $p_{1} \ldots p_{n}$ for each $n \in \mathbb{N}$. Consider $M_{n}(A)$'s and $M(A)$ as subspaces of $Z(X)$. Then it is easy to see that the retractions are continuous.
5. A retraction of $Z(\mathfrak{K}(K))$ onto $\mathfrak{K}(K)$. The main theorem implies the following:
5.1. Theorem. For any connected simplicial complex K, there exists a retraction $r: Z(\mathfrak{K}(K)) \rightarrow \mathfrak{K}(K)$ such that $r(Z(\mathfrak{C}(K)))=\mathfrak{C}(K)$. Hence $\mathfrak{K}(K)$ and $\mathfrak{C}(K)$ are $A R(\mathcal{S})$'s.

In the proof, we first construct a retraction $r_{1}: Z_{1}(\mathfrak{K}(K)) \rightarrow \mathfrak{K}(K)$ and then extend r_{1} to $r: Z(\mathfrak{K}(K)) \rightarrow \mathfrak{K}(K)$. To construct r_{1}, we introduce several notations. Let

$$
\mathcal{H}=\left\{\langle A, B\rangle \in F(\mathfrak{K}(K))^{(1)} \mid A \neq B, d_{\mathrm{H}}(A, B)<1 / 2\right\}
$$

For each $\langle A, B\rangle \in \mathcal{H}$, we define $C\langle A, B\rangle \in \mathfrak{K}(K)$ so that $A \cup B \subset C\langle A, B\rangle$ and each component of $C\langle A, B\rangle$ meets both A and B. Let $n=\operatorname{dim} L(A \cup B)$. By downward induction, we define $L_{i}, q_{i}^{n}(i=0,1, \ldots, n)$ and $R_{i}, q_{i}(i=$ $1, \ldots, n)$ as follows: $L_{n}=L(A \cup B), q_{n}^{n}=\mathrm{id}$ and

$$
\begin{gathered}
R_{i}=\left\{\sigma \in L_{i} \mid \operatorname{dim} \sigma=i, \forall \tau \in L_{i}, \sigma \nless \tau, \sigma \cap q_{i}^{n}(A \cup B) \subset \sigma\left[2^{-(i+2)}\right]\right\}, \\
q_{i}:\left|L_{i} \backslash R_{i}\right| \cup \bigcup_{\sigma \in R_{i}} \sigma\left[2^{-(i+2)}\right] \rightarrow\left|L_{i} \backslash R_{i}\right|
\end{gathered}
$$

is the retraction defined by

$$
\begin{gathered}
q_{i}\left|\sigma\left[2^{-(i+2)}\right]=\pi_{\sigma}\right| \sigma\left[2^{-(i+2)}\right] \quad \text { for each } \sigma \in R_{i}, \\
q_{i-1}^{n}=q_{i} \ldots q_{n} \mid A \cup B \quad \text { and } \quad L_{i-1}=L\left(q_{i-1}^{n}(A \cup B)\right) .
\end{gathered}
$$

Observe that $\stackrel{\circ}{\sigma} \cap q_{i}^{n}(A \cup B) \neq \emptyset$ for each $\sigma \in R_{i}$. Next we define η : $\bigcup_{i=1}^{n} R_{i} \rightarrow(0,1)$ by

$$
\eta(\sigma)=\inf \left\{t>0 \mid q_{i}^{n}(A \cup B) \cap \sigma \subset \sigma(t)\right\}>0 \quad \text { if } \sigma \in R_{i} .
$$

Now we inductively define $N_{i}(i=0,1, \ldots, n)$ as follows: $N_{0}=\left|L_{0}\right|$ and

$$
N_{i}=N_{i-1} \cup \bigcup_{\sigma \in R_{i}}\left(q_{i}^{-1}\left(N_{i-1}\right) \cap \sigma[\eta(\sigma)]\right)
$$

Finally, we define

$$
C\langle A, B\rangle=\bigcup\left\{C \in \mathfrak{C}\left(N_{n}\right) \mid \operatorname{diam}_{d} C \leq 2 d_{\mathrm{H}}(A, B), C \cap(A \cup B) \neq \emptyset\right\}
$$

5.2. Lemma. For each $\langle A, B\rangle \in \mathcal{H}$, each component C of $C\langle A, B\rangle$ meets both A and B.

Proof. Since C meets at least one of A and B, we may assume that $A \cap C \neq \emptyset$ and show that $B \cap C \neq \emptyset$. Let $x \in A \cap C$. Then we have $y \in B$ such that $d(x, y) \leq d_{\mathrm{H}}(A, B)<1 / 2$. Since $x, y \in\left|L_{n}\right|=\left|\operatorname{Sd} L_{n}\right|$, we have $\sigma_{0}<\ldots<\sigma_{m} \in L_{n}$ and $\sigma_{0}^{\prime}<\ldots<\sigma_{m^{\prime}}^{\prime} \in L_{n}$ such that $\operatorname{dim} \sigma_{i}=i$, $\operatorname{dim} \sigma_{j}^{\prime}=j$,

$$
x \in\left\langle\widehat{\sigma}_{0}, \ldots, \widehat{\sigma}_{m}\right\rangle \quad \text { and } \quad y \in\left\langle\widehat{\sigma}_{0}^{\prime}, \ldots, \widehat{\sigma}_{m^{\prime}}^{\prime}\right\rangle
$$

Let $k=\max \left\{i \mid \sigma_{i} \in L_{0}\right\} \geq 0$. Then $\left\langle\widehat{\sigma}_{0}, \ldots, \widehat{\sigma}_{k}\right\rangle \cap\left\langle\widehat{\sigma}_{0}^{\prime}, \ldots, \widehat{\sigma}_{m^{\prime}}^{\prime}\right\rangle \neq \emptyset$. In fact, if $k=m$, this follows from $d(x, y)<1 / 2$. If $k<m$, then $\sigma_{m} \in R_{m}$ and $x\left(\widehat{\sigma}_{m}\right) \leq \eta\left(\sigma_{m}\right)$ since $x \in N_{n} \backslash N_{0}$. For each $j=k+1, \ldots, m$, by using

Lemma 1.1 inductively, we have

$$
q_{j-1}^{m}(x)=q_{j} \ldots q_{m}(x)=\sum_{i=0}^{j-1} \frac{x\left(\widehat{\sigma}_{i}\right)}{1-\left(x\left(\widehat{\sigma}_{j}\right)+\ldots+x\left(\widehat{\sigma}_{m}\right)\right)} \widehat{\sigma}_{i} .
$$

Then for each $j=k+1, \ldots, m-1$,

$$
\frac{x\left(\widehat{\sigma}_{j}\right)}{1-\left(x\left(\widehat{\sigma}_{j+1}\right)+\ldots+x\left(\widehat{\sigma}_{m}\right)\right)} \leq \eta\left(\sigma_{j}\right) \leq 2^{-(j+2)}
$$

because $q_{j+1} \ldots q_{m}(x) \in \sigma_{j}\left(\eta\left(\sigma_{j}\right)\right)$. By Lemma 1.1,

$$
\begin{aligned}
d\left(x, q_{k}^{m}(x)\right) & =d\left(x, q_{k+1} \ldots q_{m}(x)\right) \\
& \leq d\left(x, q_{m}(x)\right)+\ldots+d\left(q_{k+2} \ldots q_{m}(x), q_{k+1} \ldots q_{m}(x)\right) \\
& \leq 2^{-(m+1)}+\ldots+2^{-(k+2)}<2^{-(k+1)} \leq 1 / 2
\end{aligned}
$$

Since $q_{k}^{m}(x) \in\left\langle\widehat{\sigma}_{0}, \ldots, \widehat{\sigma}_{k}\right\rangle \subset \sigma_{k}$ and

$$
d\left(q_{k}^{m}(x), y\right) \leq d(x, y)+d\left(x, q_{k}^{m}(x)\right)<1 / 2+1 / 2=1
$$

we have $\left\langle\widehat{\sigma}_{0}, \ldots, \widehat{\sigma}_{k}\right\rangle \cap\left\langle\widehat{\sigma}_{0}^{\prime}, \ldots, \widehat{\sigma}_{m^{\prime}}^{\prime}\right\rangle \neq \emptyset$.
Now we write

$$
\left\langle\widehat{\tau}_{0}, \ldots, \widehat{\tau}_{l}\right\rangle=\left\langle\widehat{\sigma}_{0}, \ldots, \widehat{\sigma}_{m}\right\rangle \cap\left\langle\widehat{\sigma}_{0}^{\prime}, \ldots, \widehat{\sigma}_{m^{\prime}}^{\prime}\right\rangle
$$

where $\tau_{0}<\ldots<\tau_{l}$. Then $\tau_{0} \in L_{0}$ since $\tau_{0} \leq \sigma_{k}$. We define $z \in\left\langle\widehat{\tau}_{0}, \ldots, \widehat{\tau}_{l}\right\rangle$ by

$$
\begin{aligned}
& z(\widehat{\sigma})=\min \{x(\widehat{\sigma}), y(\widehat{\sigma})\} \quad \text { for each } \sigma \in K \backslash\left\{\tau_{0}\right\} \\
& z\left(\widehat{\tau}_{0}\right)=1-\sum_{i=1}^{l} z\left(\widehat{\tau}_{i}\right)
\end{aligned}
$$

Then $\langle x, z\rangle \subset\left\langle\widehat{\sigma}_{0}, \ldots, \widehat{\sigma}_{m}\right\rangle$ and $\operatorname{diam}_{d}\langle x, z\rangle \leq 2 d_{\mathrm{H}}(A, B)$ because

$$
\begin{aligned}
d(x, z) & =\left|x\left(\widehat{\tau}_{0}\right)-z\left(\widehat{\tau}_{0}\right)\right|+\sum_{i=1}^{l}\left|x\left(\widehat{\tau}_{i}\right)-z\left(\widehat{\tau}_{i}\right)\right|+\sum_{\sigma_{i} \neq \tau_{0}, \ldots, \tau_{l}} x\left(\widehat{\sigma}_{i}\right) \\
& =\left|\sum_{\sigma_{i} \neq \tau_{0}} x\left(\widehat{\sigma}_{i}\right)-\sum_{i=1}^{l} z\left(\widehat{\tau}_{i}\right)\right|+\sum_{i=1}^{l}\left|x\left(\widehat{\tau}_{i}\right)-z\left(\widehat{\tau}_{i}\right)\right|+\sum_{\sigma_{i} \neq \tau_{0}, \ldots, \tau_{l}} x\left(\widehat{\sigma}_{i}\right) \\
& \leq 2\left(\sum_{i=1}^{l}\left|x\left(\widehat{\tau}_{i}\right)-z\left(\widehat{\tau}_{i}\right)\right|+\sum_{\sigma_{i} \neq \tau_{0}, \ldots, \tau_{l}} x\left(\widehat{\sigma}_{i}\right)\right) \\
& \leq 2\left(\sum_{i=1}^{l}\left|x\left(\widehat{\tau}_{i}\right)-y\left(\widehat{\tau}_{i}\right)\right|+\sum_{\sigma_{i} \neq \tau_{0}, \ldots, \tau_{l}} x\left(\widehat{\sigma}_{i}\right)+\sum_{\sigma_{i}^{\prime} \neq \tau_{0}, \ldots, \tau_{l}} y\left(\widehat{\sigma}_{i}^{\prime}\right)\right) \\
& =2 d(x, y) \leq 2 d_{\mathrm{H}}(A, B) .
\end{aligned}
$$

For each $t \in \mathbf{I}$, let $x_{t}=(1-t) x+t z$. Then

$$
x_{t}(\widehat{\sigma})=(1-t) x(\widehat{\sigma})+t z(\widehat{\sigma}) \leq x(\widehat{\sigma}) \quad \text { for each } \sigma \in K \backslash\left\{\tau_{0}\right\}
$$

Hence $x_{t}\left(\widehat{\sigma}_{m}\right) \leq \eta\left(\sigma_{m}\right)$. For each $j=k+1, \ldots, m$, by using Lemma 1.1 inductively, we have

$$
q_{j-1}^{m}\left(x_{t}\right)=\sum_{i=0}^{j-1} \frac{x_{t}\left(\widehat{\sigma}_{i}\right)}{1-\left(x_{t}\left(\widehat{\sigma}_{j}\right)+\ldots+x_{t}\left(\widehat{\sigma}_{m}\right)\right)} \widehat{\sigma}_{i}
$$

Then for each $j=k+1, \ldots, m-1$,

$$
\frac{x_{t}\left(\widehat{\sigma}_{j}\right)}{1-\left(x_{t}\left(\widehat{\sigma}_{j+1}\right)+\ldots+x_{t}\left(\widehat{\sigma}_{m}\right)\right)} \leq \frac{x\left(\widehat{\sigma}_{j}\right)}{1-\left(x\left(\widehat{\sigma}_{j+1}\right)+\ldots+x\left(\widehat{\sigma}_{m}\right)\right)} \leq \eta\left(\sigma_{j}\right)
$$

whence $q_{j}^{m}\left(x_{t}\right) \in \sigma_{j}\left(\eta\left(\sigma_{j}\right)\right)$. On the other hand, $q_{k}^{m}\left(x_{t}\right) \in \sigma_{k} \subset N_{0} \subset N_{k}$. By induction, $q_{j}^{m}\left(x_{t}\right) \in N_{j}$ for each $j>k$, so $x_{t} \in N_{m} \subset N_{n}$. Thus $\langle x, z\rangle \subset N_{n}$.

Similarly we have $\operatorname{diam}_{d}\langle y, z\rangle \leq 2 d_{\mathrm{H}}(A, B)$ and $\langle y, z\rangle \subset N_{n}$. Therefore $\langle x, z\rangle \cup\langle y, z\rangle \subset C\langle A, B\rangle$, whence $\langle x, z\rangle \cup\langle y, z\rangle \subset C$, which implies $B \cap C$ $\neq \emptyset$.

By the definition of $C\langle A, B\rangle$ and the above lemma, $d_{\mathrm{H}}(A, C\langle A, B\rangle) \leq$ $4 d_{\mathrm{H}}(A, B)$ and $d_{\mathrm{H}}(B, C\langle A, B\rangle) \leq 4 d_{\mathrm{H}}(A, B)$ for each $A, B \in \mathcal{H}$.
5.3. Lemma. Let $A_{0} \in \mathfrak{K}(K)$ and $\varepsilon \in \mathcal{E}_{m}^{L\left(A_{0}\right)}$. If $A, B \in V\left(A_{0}, 2^{-(m+5)}\right.$, $\left.2^{-5} \varepsilon\right)$ and $A \neq B$, then $\langle A, B\rangle \in \mathcal{H}$ and $C\langle A, B\rangle \in V\left(A_{0}, 2^{m}, \varepsilon\right)$.

Proof. Since $2^{-5} \varepsilon \in \mathcal{E}_{m+5}^{L\left(A_{0}\right)}$, we have $V\left(A_{0}, 2^{-(m+5)}, 2^{-5} \varepsilon\right) \subset N_{d_{\mathrm{H}}}\left(A_{0}\right.$, $\left.2^{-(m+4)}\right)$ by Lemma 1.4(3). Then

$$
d_{\mathrm{H}}(A, B) \leq d_{\mathrm{H}}\left(A, A_{0}\right)+d_{\mathrm{H}}\left(B, A_{0}\right)<2^{-(m+3)}<1 / 2
$$

whence $\langle A, B\rangle \in \mathcal{H}$ and $d_{\mathrm{H}}(A, C\langle A, B\rangle) \leq 4 d_{\mathrm{H}}(A, B)<2^{-(m+1)}$.
Let $\operatorname{dim} L(A \cup B)=n$. We use the notations from the definition of $C\langle A, B\rangle$ and simply write $p_{i}^{L\left(A_{0}\right)}=p_{i}$ and $p_{i}^{n}=p_{i+1} \ldots p_{n}\left(p_{n}^{n}=\mathrm{id}\right)$. Then $L_{n}=L(A \cup B) \subset K_{L\left(A_{0}\right)}^{(n)}$ and $A, B \subset C\langle A, B\rangle \subset\left|L_{n}\right| \subset\left|K_{L\left(A_{0}\right)}^{(n)}\right|$. Since $A, B \in V\left(A_{0}, 2^{-(m+5)}, 2^{-5} \varepsilon\right)$, we have $p_{i}^{n}(A \cup B) \subset W_{i}\left(L\left(A_{0}\right), 2^{-5} \varepsilon\right)$. First note that

$$
p_{n}^{n}|(A \cup B) \backslash| L\left(A_{0}\right)\left|=\mathrm{id}=q_{n}^{n}\right|(A \cup B) \backslash\left|L\left(A_{0}\right)\right| .
$$

Moreover, $S_{n}\left(L\left(A_{0}\right)\right)=R_{n} \backslash L\left(A_{0}\right)$. In fact, for each $\sigma \in S_{n}\left(L\left(A_{0}\right)\right)$, we have $\sigma \notin L\left(A_{0}\right)$ and

$$
(A \cup B) \cap \sigma \subset \sigma\left(2^{-5} \varepsilon(\sigma)\right) \subset \sigma\left(2^{-(m+n+6)}\right) \subset \sigma\left[2^{-(n+2)}\right]
$$

whence $\sigma \in R_{n} \backslash L\left(A_{0}\right)$. Conversely, for each $\sigma \in R_{n} \backslash L\left(A_{0}\right)$, we have $(A \cup B) \cap{ }_{\sigma}^{\circ} \neq \emptyset$ and $A \cup B \subset W\left(L\left(A_{0}\right)\right)$, whence $\sigma \cap\left|L\left(A_{0}\right)\right| \neq \emptyset$, that is, $\sigma \in S_{n}\left(L\left(A_{0}\right)\right)$.

Assume that

$$
p_{i}^{n}|(A \cup B) \backslash| L\left(A_{0}\right)\left|=q_{i}^{n}\right|(A \cup B) \backslash\left|L\left(A_{0}\right)\right|
$$

and $S_{i}\left(L\left(A_{0}\right)\right)=R_{i} \backslash L\left(A_{0}\right)$. Then

$$
p_{i}^{n}\left((A \cup B) \backslash\left|L\left(A_{0}\right)\right|\right)=q_{i}^{n}\left((A \cup B) \backslash\left|L\left(A_{0}\right)\right|\right) \subset\left|L_{i}\right|,
$$

whence it follows that

$$
p_{i}\left|p_{i}^{n}\left((A \cup B) \backslash\left|L\left(A_{0}\right)\right|\right)=q_{i}\right| q_{i}^{n}\left((A \cup B) \backslash\left|L\left(A_{0}\right)\right|\right) .
$$

Since $p_{i-1}^{n}=p_{i} p_{i}^{n}$ and $q_{i-1}^{n}=q_{i} q_{i}^{n}$, we have

$$
p_{i-1}^{n}|(A \cup B) \backslash| L\left(A_{0}\right)\left|=q_{i-1}^{n}\right|(A \cup B) \backslash\left|L\left(A_{0}\right)\right|
$$

Since $q_{i-1}^{n}\left((A \cup B) \cap\left|L\left(A_{0}\right)\right|\right) \subset\left|L\left(A_{0}\right)\right|$, it follows that

$$
q_{i-1}^{n}(A \cup B) \subset p_{i-1}^{n}(A \cup B) \cup\left|L\left(A_{0}\right)\right| \subset W_{i-1}\left(L\left(A_{0}\right), 2^{-5} \varepsilon\right)
$$

Then for each $\sigma \in S_{i-1}\left(L\left(A_{0}\right)\right)$, we have $\sigma \notin L\left(A_{0}\right)$ and

$$
q_{i-1}^{n}(A \cup B) \cap \sigma \subset \sigma\left(2^{-5} \varepsilon(\sigma)\right) \subset \sigma\left(2^{-(m+i+5)}\right) \subset \sigma\left[2^{-(i+1)}\right]
$$

whence $\sigma \in R_{i-1} \backslash L\left(A_{0}\right)$. Conversely, for each $\sigma \in R_{i-1} \backslash L\left(A_{0}\right)$, $q_{i-1}^{n}(A \cup B) \cap{ }_{\sigma}^{\circ} \neq \emptyset$ and $q_{i-1}^{n}(A \cup B) \subset W\left(L\left(A_{0}\right)\right)$, whence $\sigma \cap\left|L\left(A_{0}\right)\right| \neq \emptyset$, that is, $\sigma \in S_{i-1}\left(L\left(A_{0}\right)\right)$. Hence $S_{i-1}\left(L\left(A_{0}\right)\right)=R_{i-1} \backslash L\left(A_{0}\right)$.

By induction, we have

$$
p_{i}^{n}|(A \cup B) \backslash| L\left(A_{0}\right)\left|=q_{i}^{n}\right|(A \cup B) \backslash\left|L\left(A_{0}\right)\right|
$$

and $S_{i}\left(L\left(A_{0}\right)\right)=R_{i} \backslash L\left(A_{0}\right)$ for each $i=1, \ldots, n$. It follows that

$$
L_{0}=L_{n} \backslash \bigcup_{i=1}^{n} R_{i} \subset L_{n} \backslash \bigcup_{i=1}^{n} S_{i}\left(L\left(A_{0}\right)\right)=L\left(A_{0}\right)
$$

Moreover, for each $\sigma \in S_{i}\left(L\left(A_{0}\right)\right)=R_{i} \backslash L\left(A_{0}\right)$,

$$
q_{i}^{n}(A \cup B) \cap \sigma=p_{i}^{n}(A \cup B) \cap \sigma \subset \sigma\left(2^{-5} \varepsilon(\sigma)\right)
$$

which implies $\eta(\sigma) \leq 2^{-5} \varepsilon(\sigma)<2^{-4} \varepsilon(\sigma)$. It follows that

$$
C\langle A, B\rangle \subset N_{n} \subset W\left(L\left(A_{0}\right), 2^{-4} \varepsilon\right),
$$

that is, $C\langle A, B\rangle \in \mathfrak{K}\left(W\left(L\left(A_{0}\right), 2^{-4} \varepsilon\right)\right) \subset \mathfrak{K}\left(W\left(L\left(A_{0}\right), \varepsilon\right)\right)$. Since $2^{-4} \varepsilon \in$ $\mathcal{E}_{m+4}^{L\left(A_{0}\right)}$, we obtain

$$
d_{\mathrm{H}}\left(\pi^{L\left(A_{0}\right)}(C\langle A, B\rangle), C\langle A, B\rangle\right)<2^{-(m+4)}
$$

by Lemma 1.2. Thus we have

$$
\begin{aligned}
d_{\mathrm{H}}\left(A_{0}, \pi^{L\left(A_{0}\right)}(C\langle A, B\rangle)\right) \leq & d_{\mathrm{H}}\left(A_{0}, A\right)+d_{\mathrm{H}}(A, C\langle A, B\rangle) \\
& +d_{\mathrm{H}}\left(C\langle A, B\rangle, \pi^{L\left(A_{0}\right)}(C\langle A, B\rangle)\right) \\
\leq & 2^{-(m+4)}+2^{-(m+1)}+2^{-(m+4)}<2^{-m}
\end{aligned}
$$

Therefore $C\langle A, B\rangle \in V\left(A_{0}, 2^{-m}, \varepsilon\right)$.

Since each compact set in $|K|$ is contained in a metrizable continuum, the following is a consequence of $[\mathrm{Ke}$, Lemma 2.3].
5.4. Lemma. Let $A, C \in \mathfrak{K}(K)$ and $A \subset C$. If each component of C meets A, then there exists a map $\varphi_{A, C}: \mathbf{I} \rightarrow \mathfrak{K}(K)$ such that $\varphi_{A, C}(0)=A$, $\varphi_{A, C}(1)=C$ and for each $t \in \mathbf{I}, A \subset \varphi_{A, C}(t) \subset C$ and each component of $\varphi_{A, C}(t)$ meets A.
5.5. Lemma. Let $n>1$ and τ be an n-simplex. Then each map $f: \partial \tau \rightarrow$ $\mathfrak{K}(K)$ extends to a map $\widetilde{f}: \tau \rightarrow \mathfrak{K}(K)$ such that

$$
f\left(\pi_{\tau}(x)\right) \subset \widetilde{f}(x) \subset \widetilde{f}(\widehat{\tau})=\bigcup f(\partial \tau)=\bigcup_{y \in \partial \tau} f(y)
$$

for each $x \in \tau(1)=\tau \backslash\{\widehat{\tau}\}$. Moreover, if $f(\partial \tau) \subset \mathfrak{C}(K)$ then $\widetilde{f}(\tau) \subset \mathfrak{C}(K)$.
Proof. Let $X=f(\partial \tau) \subset \mathfrak{K}(K)$. Then X is a Peano continuum and $\mathfrak{C}(X) \subset \mathfrak{C}(\mathfrak{K}(K)) \subset \mathfrak{K}(\mathfrak{K}(K))$. As is shown in the proof of $[\mathrm{Ke}$, Theorem 3.3], X has a homotopy $h: X \times \mathbf{I} \rightarrow \mathfrak{C}(X)$ such that

$$
h_{0}(x)=\{x\} \subset h_{t}(x) \subset h_{1}(x)=X \quad \text { for each } x \in X \text { and } t \in \mathbf{I} .
$$

On the other hand, we have the map $\varsigma: \mathfrak{K}(\mathfrak{K}(K)) \rightarrow \mathfrak{K}(K)$ defined by $\varsigma(\mathcal{A})=\bigcup \mathcal{A}=\bigcup_{A \in \mathcal{A}} A$ (cf. [Ke]). Then $\widetilde{f}: \tau \rightarrow \mathfrak{K}(K)$ can be defined by

$$
\widetilde{f}(x)= \begin{cases}\varsigma(f(\partial \tau)) & \text { if } x=\widehat{\tau} \\ \varsigma \circ h\left(f\left(\pi_{\tau}(x)\right), x(\widehat{\tau})\right) & \text { otherwise }\end{cases}
$$

Since $\varsigma(\mathcal{A}) \in \mathfrak{C}(K)$ for any $\mathcal{A} \in \mathfrak{C}(\mathfrak{K}(K))$ with $\mathcal{A} \cap \mathfrak{C}(K) \neq \emptyset$ by [Ke, Lemma 1.2], we have the additional statement.

Now we prove Theorem 5.1.
Proof of Theorem 5.1. For simplicity, we write $Z(\mathfrak{K}(K))=Z$, $Z_{1}(\mathfrak{K}(K))=Z_{1}$ and $F(\mathfrak{K}(K))=F$. First, we construct a retraction r_{1} : $Z_{1} \rightarrow \mathfrak{K}(K)$. For each $\langle A, B\rangle \in \mathcal{H}$, we have defined $C\langle A, B\rangle \in \mathfrak{K}(K)$. For each $\langle A, B\rangle \in F^{(1)} \backslash \mathcal{H}$, choose $C\langle A, B\rangle \in \mathfrak{C}(K)$ so that $A \cup B \subset C\langle A, B\rangle$. By using Lemma 5.4, we can define r_{1} as follows: $r_{1} \mid \mathfrak{K}(K)=$ id and

$$
r_{1}((1-t) A+t B)= \begin{cases}A & \text { if } 0 \leq t \leq 1 / 4 \\ \varphi_{A, C\langle A, B\rangle}(4 t-1) & \text { if } 1 / 4 \leq t \leq 1 / 2 \\ \varphi_{B, C\langle A, B\rangle}(3-4 t) & \text { if } 1 / 2 \leq t \leq 3 / 4 \\ B & \text { if } 3 / 4 \leq t \leq 1\end{cases}
$$

for each 1-simplex $\langle A, B\rangle \in F$. If A and B are connected, each $r_{1}((1-t) A+$ $t B)$ is also connected. Thus $r_{1}\left(Z_{1}(\mathfrak{C}(K))\right)=\mathfrak{C}(K)$.

We have to show that r_{1} is continuous. Since $Z_{1} \backslash \mathfrak{K}(K)$ is a subspace of $\left|F^{(1)}\right|$ and $r_{1} \mid\langle A, B\rangle$ is continuous for each $\langle A, B\rangle \in F^{(1)}, r_{1} \mid Z_{1} \backslash \mathfrak{K}(K)$ is continuous. Since $Z_{1} \backslash \mathfrak{K}(K)$ is open in Z_{1}, r_{1} is continuous at each point of $Z_{1} \backslash \mathfrak{K}(K)$.

To see the continuity of r_{1} at each point $A_{0} \in \mathfrak{K}(K)$, let \mathcal{V} be a neighborhood of A_{0} in $\mathfrak{K}(K)$. Choose $m \in \mathbb{N}$ and $\varepsilon \in \mathcal{E}_{m}^{L\left(A_{0}\right)}$ so that $V\left(A_{0}, 2^{-m}, \varepsilon\right)$ $\subset \mathcal{V}$. Then

$$
r_{1}\left(M_{1}\left(V\left(A_{0}, 2^{-(m+5)}, 2^{-5} \varepsilon\right), 1 / 2\right)\right) \subset \mathcal{V}
$$

In fact, let $\langle A, B\rangle \in F^{(1)}, A \neq B$ and $A \in V\left(A_{0}, 2^{-(m+5)}, 2^{-5} \varepsilon\right)$. In case $B \in V\left(A_{0}, 2^{-(m+5)}, 2^{-5} \varepsilon\right),\langle A, B\rangle \in \mathcal{H}$ and $C\langle A, B\rangle \in V\left(A_{0}, 2^{-m}, \varepsilon\right)$ by Lemma 5.3. By Lemma 1.4(2), we have $\varphi_{A, C\langle A, B\rangle}(t) \in V\left(A_{0}, 2^{-m}, \varepsilon\right)$ and $\varphi_{B, C\langle A, B\rangle}(t) \in V\left(A_{0}, 2^{-m}, \varepsilon\right)$ for $t \in \mathbf{I}$. Then $r_{1}(\langle A, B\rangle) \subset V\left(A_{0}, 2^{-m}, \varepsilon\right)$. In case $B \notin V\left(A_{0}, 2^{-(m+5)}, 2^{-5} \varepsilon\right)$, let $\tau=\langle A, B\rangle$. Then $r_{1}((1-t) A+t \widehat{\tau})=$ $r_{1}((1-t / 2) A+(t / 2) B)=A \in \mathcal{V}$ for each $t \in[0,1 / 2]$.

Next, by the skeletonwise induction applying Lemma 5.5 at each step, we can extend r_{1} to $r: Z \rightarrow \mathfrak{K}(K)$ such that

$$
r\left(\pi_{\tau}(x)\right) \subset r(x) \subset r(\widehat{\tau})=\bigcup r(\partial \tau)=\bigcup_{y \in \partial \tau} r(y)
$$

if $x \in \tau(1) \subset \tau \in F$. Since $r_{1}\left(Z_{1}(\mathfrak{C}(K))\right)=\mathfrak{C}(K)$, it follows that $r(Z(\mathfrak{C}(K)))$ $=\mathfrak{C}(K)$.

We have to show that $r: Z \rightarrow \mathfrak{K}(K)$ is continuous. Since $Z \backslash \mathfrak{K}(K)$ is a subspace of $|F|$ and $r \mid \tau$ is continuous for each $\tau \in F, r \mid Z \backslash \mathfrak{K}(K)$ is continuous. Since $Z \backslash \mathfrak{K}(K)$ is open in Z, r is continuous at each point of $Z \backslash \mathfrak{K}(K)$.

To see the continuity of r at each $A \in \mathfrak{K}(K)$, let \mathcal{V} be a neighborhood of A in $\mathfrak{K}(K)$. We may assume that $\mathcal{V}=V(A, \delta, \varepsilon)$ for some $\delta>0$ and $\varepsilon \in$ $(0,1)^{S(L(A))}$. Then $r(\partial \tau) \subset \mathcal{V}$ implies $r(\tau) \subset \mathcal{V}$ for each $\tau \in F$ by Lemma 1.4. By the continuity of $r_{1}, r^{-1}(\mathcal{V}) \cap Z_{1}=r_{1}^{-1}(\mathcal{V})$ is a neighborhood of A in Z_{1}. By the topologization of Z, there is an open set \mathcal{W} in $|F|$ such that $\mathcal{W} \cap \mathfrak{K}(K)$ is open in $\mathfrak{K}(K),|F(\mathcal{W} \cap \mathfrak{K}(K))| \subset \mathcal{W}$ and $A \in \mathcal{W} \cap Z_{1} \subset r^{-1}(\mathcal{V}) \cap Z_{1}$.

Let $\mathcal{U}=\mathcal{W} \cap \mathfrak{K}(K)$. Then $|F(\mathcal{U})| \subset r^{-1}(\mathcal{V})$, that is, $r(\tau) \subset \mathcal{V}$ for each $\tau \in F(\mathcal{U})$. In fact, this can be shown by induction on $\operatorname{dim} \tau$ since $r(\partial \tau) \subset \mathcal{V}$ implies $r(\tau) \subset \mathcal{V}$ and if $\operatorname{dim} \tau=1$ then $\tau \subset \mathcal{W} \cap Z_{1} \subset r^{-1}(\mathcal{V})$, i.e., $r(\tau) \subset \mathcal{V}$. On the other hand, $r^{-1}(\mathcal{V}) \cap \tau=(r \mid \tau)^{-1}(\mathcal{V})$ is open in τ for any $\tau \in F \backslash F_{F(\mathcal{U})}^{(0)}$. Let $V_{\tau}=\tau$ for all $\tau \in F(\mathcal{U})$ and $V_{\tau}=\emptyset$ for all $\tau \in F^{(0)} \backslash F(\mathcal{U})$. Similarly to the proof of Lemma 4.1, we can define $\eta \in(0,1)^{T(\mathcal{U})}$ so that

$$
V_{\tau}=\pi_{\tau}^{-1}\left(V_{\partial \tau}\right) \cap \mathrm{cl} \tau(\eta(\tau)) \subset r^{-1}(\mathcal{V}) \cap \tau
$$

where $V_{\partial \tau}=\bigcup_{\tau^{\prime}<\tau} V_{\tau^{\prime}}$. Thus we have a neighborhood $M(\mathcal{U}, \eta)$ of A in Z such that

$$
M(\mathcal{U}, \eta) \subset|F(\mathcal{U})| \cup \bigcup\left\{V_{\tau} \mid \tau \in T(\mathcal{U})\right\} \subset r^{-1}(\mathcal{V})
$$

Therefore $r: Z \rightarrow \mathfrak{K}(K)$ is continuous at $A \in \mathfrak{K}(K)$.

Appendix. Let \mathcal{K} be the class of compact Hausdorff spaces. Here we show the following:

Proposition. For any connected $C W$-complex $X, \mathfrak{K}(X)$ and $\mathfrak{C}(X)$ are $A E(\mathcal{K})$'s. Hence for any $C W$-complex $X, \mathfrak{K}(X)$ and $\mathfrak{C}(X)$ are $A N E(\mathcal{K})$'s.

Proof. Let $Z \in \mathcal{K}$ and $f: A \rightarrow \mathfrak{K}(X)$ a map from a closed set A in Z. Since $\varsigma(f(A))=\bigcup f(A)$ is a compact set in X, we have $f(A) \subset \mathfrak{K}(Y)$ for some compact connected subcomplex Y of X, whence Y is a Peano continuum. Since $\mathfrak{K}(Y)$ is an AE for normal spaces (in fact, $\mathfrak{K}(Y)$ is homeomorphic to the Hilbert cube $\left(\left[\mathrm{CS}_{1}\right]\right.$ or $\left.\left[\mathrm{CS}_{2}\right]\right)$), f extends to a map $\tilde{f}: Z \rightarrow \mathfrak{K}(Y) \subset$ $\mathfrak{K}(X)$. Hence $\mathfrak{K}(X)$ is an $\operatorname{AE}(\mathcal{K})$.

References

[Bo1] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16.
[Bo_{2}] -, A study of absolute extensor spaces, ibid. 31 (1969), 609-617.
[Bo_{3}] -, Absolute extensor spaces: A correction and an answer, ibid. 50 (1974), 29-30.
$\left[\mathrm{Bo}_{4}\right]$-, Connectivity of function spaces, Canad. J. Math. 5 (1971), 759-763.
[Ca1] R. Cauty, Sur les sous-espaces des complexes simpliciaux, Bull. Soc. Math. France 100 (1972), 129-155.
$\left[\mathrm{Ca}_{2}\right]$-, Sur le prolongement des fonctions continues à valeurs dans $C W$-complexes, C. R. Acad. Sci. Paris Sér. A 274 (1972), 35-37.
$\left[\mathrm{Ca}_{3}\right]$-, Convexité topologique et prolongement des fonctions continues, Compositio Math. 27 (1973), 133-271.
[Ca4] -, Rétraction dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129-149.
[Ca5] -, Sur les espaces d'applications dans les CW-complexes, Arch. Math. (Basel) 27 (1976), 306-311.
[Ce] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-126.
[CP] D. W. Curtis and D. S. Patching, Hyperspaces of direct limits of locally compact metric spaces, Topology Appl. 29 (1988), 55-60.
$\left[\mathrm{CS}_{1}\right]$ D. W. Curtis and R. M. Schori, Hyperspaces of polyhedra are Hilbert cubes, Fund. Math. 99 (1978), 189-197.
$\left[\mathrm{CS}_{2}\right]$-, Hyperspaces of Peano continua are Hilbert cubes, ibid. 101 (1978), 19-38.
[Gr] G. Gruenhage, Stratifiable spaces are M_{2}, Topology Proc. 1 (1976), 221-226.
[Ju] H. J. K. Junnila, Neighbornets, Pacific J. Math. 76 (1978), 83-108.
[Ke] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
[Mi] T. Mizokami, On CF families and hyperspaces of compact subsets, Topology Appl. 35 (1990), 75-92.
[MK] T. Mizokami and K. Koiwa, On hyperspaces of compact and finite subsets, Bull. Joetsu Univ. of Education 6 (1987), 1-14.
[Ta] U. Tašmetov, On the connectedness of hyperspaces, Dokl. Akad. Nauk SSSR 215 (1974), 286-288 (in Russian); English transl.: Soviet Math. Dokl. 15 (1974), 502-504.
[Wo] M. Wojdysławski, Rétractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184-192.

InStitute of mathematics
UNIVERSITY OF TSUKUBA
TSUKUBA-CITY 305, JAPAN
E-mail: SAKAIKTR@SAKURA.CC.TSUKUBA.AC.JP

Received 29 June 1992;
in revised form 30 November 1992

[^0]: 1991 Mathematics Subject Classification: 54B20, 54C55, 54E20, 57Q05.
 Key words and phrases: CW-complex, hyperspace, the Vietoris topology, stratifiable space, $\operatorname{AR}(\mathcal{S}), \operatorname{ANR}(\mathcal{S})$.

