Hyperspaces of CW-complexes

 $\mathbf{b}\mathbf{y}$

Bao-Lin Guo and Katsuro Sakai (Tsukuba)

Abstract. It is shown that the hyperspace of a connected CW-complex is an absolute retract for stratifiable spaces, where the hyperspace is the space of non-empty compact (connected) sets with the Vietoris topology.

0. Introduction. The class S of stratifiable spaces (M_3 -spaces) contains both metrizable spaces and CW-complexes and has many desirable properties (cf. [Ce] and [Bo₁]). Moreover, any CW-complex is an ANR(S) (i.e., an absolute neighborhood retract for the class S) [Ca₄]. In [Ca₅], it was shown that the space of continuous maps from a compactum to a CW-complex with the compact-open topology is stratifiable, whence it is an ANR(S) (cf. [Bo₄] or [Ca₂]). It is interesting to find hyperspaces which are ANR(S)'s (cf. [Wo], [Ke] and [Ta]). By $\Re(X)$, we denote the space of non-empty compact sets in a space X with the Vietoris topology, i.e., the topology generated by the sets

 $\langle U_1, \ldots, U_n \rangle = \{ A \in \mathfrak{K}(X) \mid A \subset U_1 \cup \ldots \cup U_n, \forall i, A \cap U_i \neq \emptyset \},\$

where $n \in \mathbb{N}$ and U_1, \ldots, U_n are open in X. Let $\mathfrak{C}(X)$ denote the subspace of $\mathfrak{K}(X)$ consisting of compact connected sets. In this paper, we show the following:

MAIN THEOREM. For any connected CW-complex X, the hyperspaces $\mathfrak{K}(X)$ and $\mathfrak{C}(X)$ are $AR(\mathcal{S})$'s. Hence for any CW-complex X, $\mathfrak{K}(X)$ and $\mathfrak{C}(X)$ are $ANR(\mathcal{S})$'s.

One should note that $\mathfrak{K}(X)$ is not stratifiable even if X is stratifiable (cf. [MK] and [Mi]). Although Mizokami [Mi] gave a sufficient condition on X for $\mathfrak{K}(X)$ to be stratifiable, this condition is not satisfied for any non-locally compact CW-complex (see §3). For a simplicial complex K, let |K| denote

¹⁹⁹¹ Mathematics Subject Classification: 54B20, 54C55, 54E20, 57Q05.

Key words and phrases: CW-complex, hyperspace, the Vietoris topology, stratifiable space, AR(S), ANR(S).

the polyhedron of K, i.e., $|K| = \bigcup K$ with the weak (Whitehead) topology. Since any connected CW-complex X can be embedded in |K| as a retract for some connected simplicial complex K (cf. [Ca₁, Corollaire 2]), $\mathfrak{K}(X)$ and $\mathfrak{C}(X)$ can be considered as retracts of $\mathfrak{K}(|K|)$ and $\mathfrak{C}(|K|)$, respectively. Thus the main theorem reduces to the case X = |K| for a connected simplicial complex K. By the same reason, the main theorem is valid for a (connected) ANR(\mathcal{S}) X which can be embedded in a simplicial complex as a closed set. Throughout the paper, we simply write $\mathfrak{K}(|K|) = \mathfrak{K}(K)$ and $\mathfrak{C}(|K|) = \mathfrak{C}(K)$ for any simplicial complex K.

In the case where X is a separable CW-complex, it is easy to see that $\mathfrak{K}(X)$ is an ANR(\mathcal{S}). In fact, let Δ^{∞} be the countable full simplicial complex. Since $|\Delta^{\infty}|$ is the direct limit of *n*-simplexes Δ^n , $\mathfrak{K}(\Delta^{\infty})$ is homeomorphic to the direct limit of Hilbert cubes by [CP, Corollary 3.1], whence it is an AR(\mathcal{S}) by [Ca₃, Corollaire 4.2]. Since X can be embedded in $|\Delta^{\infty}|$ as a closed set, it can be considered a neighborhood retract of $|\Delta^{\infty}|$, whence $\mathfrak{K}(X)$ is a neighborhood retract of $\mathfrak{K}(\Delta^{\infty})$. Therefore $\mathfrak{K}(X)$ is an ANR(\mathcal{S}).

1. A particular base of neighborhoods of $A \in \mathfrak{K}(K)$. Let K be a simplicial complex. In this section, we construct a particular base of neighborhoods of $A \in \mathfrak{K}(K)$ in imitation of $[\operatorname{Ca}_5]$. For each $\sigma \in K$, the barycenter, the boundary and the interior of σ are denoted by $\hat{\sigma}, \partial \sigma$ and $\hat{\sigma}$, respectively. Moreover, $\tau \leq \sigma$ ($\tau < \sigma$) means that τ is a (proper) face of σ . The simplex with vertices v_0, \ldots, v_n is denoted by $\langle v_0, \ldots, v_n \rangle$. We abuse the notation $\langle \ldots \rangle$, but it can be recognized from the context to stand for a simplex or a basic open set of the Vietoris topology.

For each $x \in |K|$, let $(x(\hat{\sigma}))_{\sigma \in K}$ denote the barycentric coordinates of x with respect to the barycentric subdivision Sd K. Let d be the barycentric metric on $|\text{Sd }K| \ (= |K|)$ defined by

$$d(x,y) = \sum_{\sigma \in K} \left| x(\widehat{\sigma}) - y(\widehat{\sigma}) \right|,$$

and let $N_d(x,\varepsilon)$ denote the ε -neighborhood of $x \in |K|$ with respect to d. Let d_H be the Hausdorff metric on $\mathfrak{K}(K)$ induced by d, that is, for each $A, B \in \mathfrak{K}(K)$,

$$d_{\mathrm{H}}(A,B) = \inf\{\varepsilon > 0 \mid A \subset N_d(B,\varepsilon) \text{ and } B \subset N_d(A,\varepsilon)\},\$$

where

$$N_d(C,\varepsilon) = \bigcup_{x \in C} N_d(x,\varepsilon) = \{y \in |K| \mid \operatorname{dist}_d(y,C) < \varepsilon\}.$$

One should not confuse $N_{d_{\mathrm{H}}}(C,\varepsilon)$ with $N_d(C,\varepsilon)$, where $N_{d_{\mathrm{H}}}(C,\varepsilon)$ denotes the ε -neighborhood of $C \in \mathfrak{K}(K)$ with respect to d_{H} . Note that these metrics are continuous but they do not generate the topology of |K| nor the Vietoris topology of $\mathfrak{K}(K)$ if K is infinite. For each finite subcomplex L of K, they do.

For each $\sigma \in K$ and $0 < t \leq 1$, let

$$\sigma(t) = \{ x \in \sigma \mid 0 \le x(\widehat{\sigma}) < t \} \text{ and } \sigma[t] = \{ x \in \sigma \mid 0 \le x(\widehat{\sigma}) \le t \}$$

Then each $\sigma(t)$ is an open neighborhood of $\partial \sigma$ in σ and $\sigma[t] = cl_{\sigma} \sigma(t)$. Each $x \in \sigma(1) = \sigma \setminus \{\widehat{\sigma}\}$ can be uniquely written as

$$x = (1 - x(\widehat{\sigma}))\pi_{\sigma}(x) + x(\widehat{\sigma})\widehat{\sigma}, \quad \pi_{\sigma}(x) \in \partial\sigma.$$

Then for each $\sigma \in K$, we have a map $\pi_{\sigma} : \sigma(1) \to \partial \sigma$, called the *radial projection*.

1.1. LEMMA. Let $\sigma_0 < \ldots < \sigma_n = \sigma \in K$. For each $x \in \langle \hat{\sigma}_0, \ldots, \hat{\sigma}_n \rangle \cap \sigma(1)$,

$$\pi_{\sigma}(x) = \sum_{i=0}^{n-1} \frac{x(\widehat{\sigma}_i)}{1 - x(\widehat{\sigma}_n)} \widehat{\sigma}_i \quad and \quad d(x, \pi_{\sigma}(x)) = 2x(\widehat{\sigma}) \,.$$

Proof. The first equality follows from

$$x = (1 - x(\widehat{\sigma}_n))\pi_{\sigma}(x) + x(\widehat{\sigma}_n)\widehat{\sigma}_n = \sum_{i=0}^n x(\widehat{\sigma}_i)\widehat{\sigma}_i.$$

Since $1 - x(\widehat{\sigma}_n) = \sum_{i=0}^{n-1} x(\widehat{\sigma}_i)$, we have

$$d(x, \pi_{\sigma}(x)) = \sum_{i=0}^{n-1} \left(\frac{x(\widehat{\sigma}_i)}{1 - x(\widehat{\sigma}_n)} - x(\widehat{\sigma}_i) \right) + x(\widehat{\sigma}_n)$$
$$= \frac{x(\widehat{\sigma}_n)}{1 - x(\widehat{\sigma}_n)} \sum_{i=0}^{n-1} x(\widehat{\sigma}_i) + x(\widehat{\sigma}_n) = 2x(\widehat{\sigma}_n) = 2x(\widehat{\sigma}). \quad \bullet$$

Let L be a subcomplex of K. Then

$$W(L) = \{ x \in |K| \mid \exists \sigma \in L \text{ such that } x(\widehat{\sigma}) > 0 \}$$

is an open neighborhood of |L| in |K|. For each $n \in \mathbb{Z}_+ = \mathbb{N} \cup \{0\}$, we write $K_L^{(n)} = L \cup K^{(n)}$, where $K^{(n)}$ denotes the *n*-skeleton of *K*. Let

$$W_n(L) = W(L) \cap |K_L^{(n)}| = \{ x \in W(L) \mid x(\widehat{\sigma}) = 0, \ \forall \sigma \in K \setminus K_L^{(n)} \}$$

Thus we have a tower $|L| = W_0(L) \subset W_1(L) \subset \ldots$ with $W(L) = \bigcup_{n \in \mathbb{Z}_+} W_n(L)$. Since $W_n(L) \setminus W_{n-1}(L)$ is covered by

$$S_n(L) = \{ \sigma \in K_L^{(n)} \setminus K_L^{(n-1)} \mid \sigma \cap |L| \neq \emptyset \}$$

we can define a retraction $p_n^L : W_n(L) \to W_{n-1}(L)$ by the radial projections, i.e., $p_n^L | \sigma \cap W_n(L) = \pi_\sigma | \sigma \cap W_n(L)$ for each $\sigma \in S_n(L)$. We define a retraction $\pi^{L}: W(L) \to |L| \text{ by } \pi^{L} |W_{n}(L) = p_{1}^{L} \dots p_{n}^{L} \text{ for each } n \in \mathbb{N}. \text{ Let}$ $S(L) = \bigcup_{n \in \mathbb{N}} S_{n}(L) = \{ \sigma \in K \setminus L \mid \sigma \cap |L| \neq \emptyset \}.$

For each $\varepsilon \in (0,1)^{S(L)}$, we inductively define an open neighborhood $W(L,\varepsilon) = \bigcup_{n \in \mathbb{Z}_+} W_n(L,\varepsilon)$ of |L| in |K| as follows: $W_0(L,\varepsilon) = |L|$ and

$$W_n(L,\varepsilon) = |L| \cup \bigcup \{ \sigma(\varepsilon(\sigma)) \cap (p_n^L)^{-1}(W_{n-1}(L,\varepsilon)) \mid \sigma \in S_n(L) \}$$
$$\left(= |L| \cup \bigcup \{ \sigma(\varepsilon(\sigma)) \cap \pi_{\sigma}^{-1}(W_{n-1}(L,\varepsilon)) \mid \sigma \in S_n(L) \} \right).$$

For each $m \in \mathbb{N}$, let

$$\mathcal{E}_m^L = \left\{ \varepsilon \in (0,1)^{S(L)} \mid \forall \sigma \in S(L), \ \varepsilon(\sigma) < 2^{-(m + \dim \sigma + 1)} \right\}.$$

1.2. LEMMA. Let $m \in \mathbb{N}$ and $\varepsilon \in \mathcal{E}_m^L$. Then $d_{\mathrm{H}}(A, \pi^L(A)) < 2^{-m}$ for any $A \in \mathfrak{K}(W(L, \varepsilon))$.

Proof. From compactness of $A, A \subset W_n(L,\varepsilon)$ for some $n \in \mathbb{N}$. Each $x \in W_n(L,\varepsilon)$ is contained in $\sigma(\varepsilon(\sigma))$ for some $\sigma \in S_n(L)$, whence

$$d(x, p_n^L(x)) = d(x, \pi_\sigma(x)) = 2x(\widehat{\sigma}) < 2\varepsilon(\sigma) < 2^{-(m+n)}$$

Then $d(x, p_n^L(x)) < 2^{-(m+n)}$ for each $x \in A$, whence $d_H(A, p_n^L(A)) < 2^{-(m+n)} = 2^{-m}2^{-n}$. Note $p_n^L(A) \subset W_{n-1}(L, \varepsilon)$. By induction, we have

$$\begin{aligned} d_{\mathcal{H}}(p_{1}^{L} \dots p_{n}^{L}(A), A) &\leq d_{\mathcal{H}}(p_{1}^{L} \dots p_{n-1}^{L}(p_{n}^{L}(A)), p_{n}^{L}(A)) + d_{\mathcal{H}}(p_{n}^{L}(A), A) \\ &< 2^{-m} \sum_{i=1}^{n} 2^{-i} \ (< 2^{-m}) \,. \quad \bullet \end{aligned}$$

Let $A \in \mathfrak{K}(K)$. By L(A), we denote the smallest subcomplex of K which contains A. Since A is compact, L(A) is a finite subcomplex of K. For each $\delta > 0$ and $\varepsilon \in (0, 1)^{S(L(A))}$, we define

$$V(A, \delta, \varepsilon) = \{ B \in \mathfrak{K}(W(L(A), \varepsilon)) \mid d_{\mathrm{H}}(\pi^{L(A)}(B), A) < \delta \}.$$

Since $\mathfrak{K}(W(L(A),\varepsilon))$ is an open neighborhood of A in $\mathfrak{K}(K)$ and $\pi^{L(A)}$ induces a map from $\mathfrak{K}(W(L(A),\varepsilon))$ to $\mathfrak{K}(L(A))$, $V(A,\delta,\varepsilon)$ is an open neighborhood of A in $\mathfrak{K}(K)$.

1.3. LEMMA. For each $A \in \mathfrak{K}(K)$, $\{V(A, \delta, \varepsilon) \mid \delta > 0, \varepsilon \in (0, 1)^{S(L(A))}\}$ is a neighborhood base of A in $\mathfrak{K}(K)$.

Proof. In the proof, we simply write $p_n = p_n^{L(A)}$. Let $\langle U_1, \ldots, U_k \rangle$ be a basic neighborhood of A in $\mathfrak{K}(K)$. For each $i = 1, \ldots, k$, choose $x_i \in A \cap U_i$ and $\delta_i > 0$ so that $\operatorname{cl} N_d(x_i, \delta_i) \cap |L(A)| \subset U_i$. Let $\eta > 0$ be a Lebesgue number for the open cover $\{U_i \cap |L(A)| \mid i = 1, \ldots, k\}$ of A in |L(A)|, that

is, each $B \subset |L(A)|$ is contained in some $U_i \cap |L(A)|$ if diam_d $B < \eta$ and $B \cap A \neq \emptyset$. Let

$$\delta_0 = \min\{\eta/3, \delta_1, \dots, \delta_k\} > 0$$

By compactness, we can choose more points $x_j \in A$, j = k + 1, ..., m, so that

$$A \subset \bigcup_{j=1}^{m} N_d(x_j, \delta_0) \cap |L(A)|$$

For each j = 1, ..., m, let $V_0(x_j) = N_d(x_j, \delta_0) \cap |L(A)|$. Then for each $j \leq k$,

$$\operatorname{cl} V_0(x_j) \subset \operatorname{cl} N_d(x_j, \delta_j) \cap |L(A)| \subset U_j.$$

Let i(j) = j for each $j \le k$, while for each j > k, choose $i(j) \le k$ so that

$$\operatorname{cl} V_0(x_j) \subset \operatorname{cl} N_d(x_j, \eta/3) \cap |L(A)| \subset U_{i(j)}.$$

By induction on dimension, we can choose $\varepsilon_j(\sigma) \in (0,1)$ for each $\sigma \in S(L(A))$ so that

$$C(j,\sigma) = \pi_{\sigma}^{-1}(C(j,\partial\sigma)) \cap \sigma[\varepsilon_j(\sigma)] \subset U_{i(j)},$$

where

$$C(j, \partial \sigma) = (\partial \sigma \cap \operatorname{cl} V_0(x_j)) \cup \bigcup \{ C(j, \tau) \mid \tau \in S(L(A)), \ \tau < \sigma \}.$$

In the above, $C(j, \partial \sigma) = \partial \sigma \cap \operatorname{cl} V_0(x_j)$ if dim $\sigma = 1$. Thus we have $\varepsilon_j \in (0, 1)^{S(L(A))}$ for each $j = 1, \ldots, m$. We define $\varepsilon \in (0, 1)^{S(L(A))}$ by $\varepsilon(\sigma) = \min_{1 \leq j \leq m} \varepsilon_j(\sigma)$. We inductively define

$$V_n(x_j) = \{ y \in W_n(L(A), \varepsilon) \mid p_n(y) \in V_{n-1}(x_j) \}$$
$$= W_n(L(A), \varepsilon) \cap p_n^{-1}(V_{n-1}(x_j)) .$$

Then $V(x_j) = \bigcup_{n \in \mathbb{Z}_+} V_n(x_j)$ is an open neighborhood of x_j in |K|. Since

$$V_n(x_j) \subset V_0(x_j) \cup \bigcup \{ C(j,\sigma) \mid \sigma \in S(L(A)) \} \subset U_{i(j)}$$

we have $V(x_i) \subset U_{i(i)}$ for each $i = 1, \ldots, m$. Hence

$$A \in \langle V(x_1), \dots, V(x_m) \rangle \subset \langle U_1, \dots, U_k \rangle$$

Let $\zeta > 0$ be a Lebesgue number for the open cover $\{V_0(x_i) \mid i = 1, \ldots, m\}$ of A in |L(A)| and let $\delta = \min\{\delta_0, \zeta, 1\} > 0$. We show that

$$V(A, \delta, \varepsilon) \subset \langle V(x_1), \dots, V(x_m) \rangle \subset \langle U_1, \dots, U_k \rangle.$$

To this end, it suffices to show that for every $n \in \mathbb{Z}_+$,

$$(*_n) \qquad \qquad V(A,\delta,\varepsilon) \cap \mathfrak{K}(W_n(L(A),\varepsilon)) \subset \langle V(x_1),\ldots,V(x_m) \rangle.$$

To see $(*_0)$, let $B \in V(A, \delta, \varepsilon) \cap \mathfrak{K}(W_0(L(A), \varepsilon))$. Then $B \subset W_0(L(A), \varepsilon)$ = |L(A)| and $d_H(A, B) < \delta$. For any $y \in B$, we have $x \in A$ such that $d(x, y) < \delta \leq \zeta$, whence $\{x, y\} \subset V(x_i) \cap |L(A)|$ for some $i = 1, \ldots, m$. Therefore $B \subset \bigcup_{i=1}^{m} V(x_i)$. For each $i = 1, \ldots, m$, there is a $y \in B$ such that $d(x_i, y) < \delta \leq \delta_0$. Then $y \in V_0(x_i) \subset V(x_i)$, whence $B \cap V(x_i) \neq \emptyset$. Therefore $B \in \langle V(x_1), \ldots, V(x_m) \rangle$. Thus we have $(*_0)$.

Next assume $(*_{n-1})$ and let $B \in V(A, \delta, \varepsilon) \cap \mathfrak{K}(W_n(L(A), \varepsilon))$. Since $B \subset W_n(L(A), \varepsilon)$, we have $p_n(B) \subset W_{n-1}(L(A), \varepsilon)$, whence

$$p_n(B) \in V(A, \delta, \varepsilon) \cap \mathfrak{K}(W_{n-1}(L(A), \varepsilon)) \subset \langle V(x_1), \dots, V(x_m) \rangle$$

For each $y \in B \subset W_n(L(A), \varepsilon)$, $p_n(y)$ is contained in some $V_{n-1}(x_i)$, since

$$p_n(B) \subset \bigcup_{i=1}^m V(x_i) \cap W_{n-1}(L(A),\varepsilon) = \bigcup_{i=1}^m V_{n-1}(x_i)$$

Then it follows that $y \in V_n(x_i)$. Therefore $B \subset \bigcup_{i=1}^m V(x_i)$. For each $i = 1, \ldots, m$,

$$p_n(B) \cap V_{n-1}(x_i) = p_n(B) \cap V(x_i) \neq \emptyset$$
,

that is, $p_n(y) \in V_{n-1}(x_i)$ for some $y \in B \subset W_n(L(A), \varepsilon)$. Then $y \in V_n(x_i) \subset V(x_i)$, whence $B \cap V(x_i) \neq \emptyset$. Therefore $B \in \langle V(x_1), \ldots, V(x_m) \rangle$. By induction, $(*_n)$ holds for every $n \in \mathbb{Z}_+$.

1.4. LEMMA. Let $A_0 \in \mathfrak{K}(K)$, $\delta > 0$ and $\varepsilon \in (0,1)^{S(L(A_0))}$.

(1) If $\mathcal{A} \subset V(A_0, \delta, \varepsilon)$ and \mathcal{A} is compact, then $\bigcup \mathcal{A} \in V(A_0, \delta, \varepsilon)$.

(2) For each $A, B, C \in \mathfrak{K}(K)$, if $A \subset B \subset C$ and $A, C \in V(A_0, \delta, \varepsilon)$ then $B \in V(A_0, \delta, \varepsilon)$.

(3) If $\varepsilon \in \mathcal{E}_m^{L(A_0)}$ then $V(A_0, 2^{-m}, \varepsilon) \subset N_{d_{\mathrm{H}}}(A_0, 2^{-m+1}).$

Proof. Since $\bigcup A$ is compact, (1) follows from the definition. By the definition, (2) is also easily observed. Finally, (3) follows from Lemma 1.2. ■

2. A stratification of $\mathfrak{K}(K)$. Recall that a T_1 -space X is *stratifiable* if each open set U in X can be assigned a sequence $(U_n)_{n \in \mathbb{N}}$ of open sets in X so that

(a) $\operatorname{cl} U_n \subset U$,

(b) $U = \bigcup_{n \in \mathbb{N}} U_n$,

(c) $U \subset V$ implies $U_n \subset V_n$ for all $n \in \mathbb{N}$,

where $(U_n)_{n\in\mathbb{N}}$ is called a *stratification* of U and the correspondence $U \to (U_n)_{n\in\mathbb{N}}$ is a *stratification* of X. In this section, we prove the following:

2.1. THEOREM. For any simplicial complex K, $\Re(K)$ is stratifiable.

Proof. For any $A \in \mathfrak{K}(K)$ and $\sigma \in K$ with $\overset{\circ}{\sigma} \cap A \neq \emptyset$, let

$$\alpha(A,\sigma) = \sup\{x(\widehat{\sigma}) \mid x \in \sigma \cap A\}.$$

Then $\alpha(A, \sigma) = x(\widehat{\sigma}) > 0$ for some $x \in \widehat{\sigma} \cap A$ because $\sigma \cap A$ is compact and $x(\widehat{\sigma}) = 0$ for all $x \in \partial \sigma \cap A$. We define

$$\alpha(A) = \min\{\alpha(A,\sigma) \mid \sigma \in L(A), \ \hat{\sigma} \cap A \neq \emptyset\} > 0$$

For each open set \mathcal{U} in $\mathfrak{K}(K)$ and $n \in \mathbb{N}$, let

 $\mathcal{U}'_n = \left\{ A \in \mathcal{U} \mid \alpha(A) > 2^{-n}, \ \exists \varepsilon \in \mathcal{E}_n^{L(A)} \text{ such that } V(A, 2^{-n}, \varepsilon) \subset \mathcal{U} \right\}.$

By Lemma 1.3, $\mathcal{U} = \bigcup_{n \in \mathbb{N}} \mathcal{U}'_n$. For each $A \in \mathcal{U}'_n$, let

$$\mathcal{U}_n(A) = \bigcup \{ V(A, 2^{-(n+2)}, 2^{-2}\varepsilon) \mid \varepsilon \in \mathcal{E}_n^{L(A)}, \ V(A, 2^{-n}, \varepsilon) \subset \mathcal{U} \}.$$

Then $\mathcal{U}_n(A) \subset N_{d_{\mathrm{H}}}(A, 2^{-(n+1)})$ by Lemma 1.4(3). Thus we have open sets $\mathcal{U}_n = \bigcup_{A \in \mathcal{U}'_n} \mathcal{U}_n(A)$ in $\mathfrak{K}(K)$ and $\mathcal{U} = \bigcup_{n \in \mathbb{N}} \mathcal{U}_n$. It follows from the definition that $\mathcal{U} \subset \mathcal{V}$ implies $\mathcal{U}_n \subset \mathcal{V}_n$ for any open sets \mathcal{U} and \mathcal{V} in $\mathfrak{K}(K)$. We will show that $\mathrm{cl}\mathcal{U}_n \subset \mathcal{U}$ for each $n \in \mathbb{N}$. Then $\mathcal{U} \to (\mathcal{U}_n)_{n \in \mathbb{N}}$ is a stratification.

Now let $n \in \mathbb{N}$ and $C \in \mathfrak{K}(K) \setminus \mathcal{U}$ be fixed. To see that $C \notin \operatorname{cl}\mathcal{U}_n$, it suffices to construct a neighborhood \mathcal{V}_C of C in $\mathfrak{K}(K)$ so that $\mathcal{V}_C \cap \mathcal{U}_n(A) = \emptyset$ for all $A \in \mathcal{U}'_n$. Let \mathcal{L}_C be the collection of all subcomplexes L of L(C)such that $L \neq L(C)$ and $C \subset W(L)$. First, we show that if $A \in \mathcal{U}'_n$ and $L(A) \notin \mathcal{L}_C$ then

$$N_{d_{\mathrm{H}}}(C, 2^{-(n+1)}) \cap \mathcal{U}_n(A) = \emptyset$$

To this end, since $\mathcal{U}_n(A) \subset N_{d_{\mathrm{H}}}(A, 2^{-(n+1)})$, it suffices to show that $d_{\mathrm{H}}(A, C) \geq 2^{-n}$. We consider three cases. In case $L(A) \not\subset L(C)$, we have $\sigma \in L(A) \setminus L(C)$ such that $\mathring{\sigma} \cap A \neq \emptyset$. Choose $x \in \mathring{\sigma} \cap A$ so that $x(\widehat{\sigma}) = \alpha(A, \sigma)$. Since $\sigma \notin L(C), y(\widehat{\sigma}) = 0$ for all $y \in C$. Then

$$d_{\mathrm{H}}(A,C) \ge \operatorname{dist}_{d}(x,C) = \inf\{d(x,y) \mid y \in C\}$$
$$\ge x(\widehat{\sigma}) = \alpha(A,\sigma) \ge \alpha(A) > 2^{-n}.$$

In case L(A) = L(C), since $C \subset |L(A)|$ and $C \notin V(A, 2^{-n}, \varepsilon)$ for $\varepsilon \in \mathcal{E}_n^{L(A)}$ such that $V(A, 2^{-n}, \varepsilon) \subset \mathcal{U}$, it follows that $d_{\mathrm{H}}(A, C) \geq 2^{-n}$. In case $L(A) \subsetneq L(C)$ and $C \not\subset W(L(A))$, we have $x \in C$ such that $x(\widehat{\sigma}) = 0$ for all $\sigma \in L(A)$, whence

$$\operatorname{dist}_d(x, A) \ge \operatorname{dist}_d(x, |L(A)|) = 2,$$

which implies $d_{\rm H}(A, C) \ge 2$.

Next, we construct a neighborhood \mathcal{V}_L of C in $\mathfrak{K}(K)$ for each $L \in \mathcal{L}_C$ so that if $A \in \mathcal{U}'_n$ and L(A) = L then $\mathcal{V}_L \cap \mathcal{U}_n(A) = \emptyset$. Then, since \mathcal{L}_C is finite,

$$\mathcal{V}_C = \bigcap_{L \in \mathcal{L}_C} \mathcal{V}_L \cap N_{d_{\mathrm{H}}}(C, 2^{-(n+1)})$$

is the desired neighborhood. (In case $\mathcal{L}_C = \emptyset$, $\mathcal{V}_C = N_{d_H}(C, 2^{-(n+1)})$.)

Now let $L \in \mathcal{L}_C$, that is, $L \subsetneq L(C)$ and $C \subset W(L)$. Since π^L induces a map from $\mathfrak{K}(W(L))$ to $\mathfrak{K}(L)$, C has a neighborhood \mathcal{V}_0 in $\mathfrak{K}(W(L))$ such that $\pi^{L}(B) \in N_{d_{\mathrm{H}}}(\pi^{L}(C), 2^{-(n+1)})$ for all $B \in \mathcal{V}_{0}$. For each $i \in \mathbb{N}$, define $\pi_{i}^{L} : W(L) \to W_{i}(L)$ by $\pi_{i}^{L}|W_{j}(L) = p_{i+1}^{L} \dots p_{j}^{L}$ for each j > i. Since $L \subsetneq L(C)$ and $C \subset W(L)$, we have $\sigma \in S(L)$ such that $\mathring{\sigma} \cap C \neq \emptyset$ and $\dim \sigma = \dim(L(C) \setminus L)$, whence $\pi^{L}_{\dim \sigma}(C) = C$. Let

$$[\sigma_1, \dots, \sigma_m] = \{ \sigma \in S(L) \mid \mathring{\sigma} \cap \pi^L_{\dim \sigma}(C) \neq \emptyset \}.$$

For each $i = 1, \ldots, m$, let $k_i = \dim \sigma_i$ and

$$t_i = \inf\{t > 0 \mid \pi_{k_i}^L(C) \cap \sigma_i \subset \sigma_i(t)\} > 0.$$

Then $\mathcal{V}'_i = \langle W_{k_i}(L), \sigma_i \setminus \sigma_i[\frac{1}{2}t_i] \rangle$ is a neighborhood of $\pi_{k_i}^L(C)$ in $\mathfrak{K}(W_{k_i}(L))$, whence C has a neighborhood \mathcal{V}_i in $\mathfrak{K}(W(L))$ such that for each $B \in \mathcal{V}_i$, $\pi_{k_i}^L(B) \in \mathcal{V}'_i$, that is, $\pi_{k_i}^L(B) \cap \sigma_i \not\subset \sigma_i[\frac{1}{2}t_i]$. Then $\mathcal{V}_L = \bigcap_{i=0}^m \mathcal{V}_i$ is the desired neighborhood of C.

In fact, let $A \in \mathcal{U}'_n$ with L(A) = L and $\varepsilon \in \mathcal{E}^L_n$ such that $V(A, 2^{-n}, \varepsilon) \subset \mathcal{U}$. Then $C \notin V(A, 2^{-n}, \varepsilon)$ since $C \notin \mathcal{U}$. In case $d_{\mathrm{H}}(A, \pi^L(C)) \geq 2^{-n}$, it follows that for each $B \in \mathcal{V}_L \subset \mathcal{V}_0$,

$$d_{\rm H}(A, \pi^L(B)) \ge d_{\rm H}(A, \pi^L(C)) - d_{\rm H}(\pi^L(B), \pi^L(C))$$

> 2⁻ⁿ - 2⁻⁽ⁿ⁺¹⁾ > 2⁻⁽ⁿ⁺²⁾,

which implies $B \notin V(A, 2^{-(n+2)}, 2^{-2}\varepsilon)$. In case $d_{\mathrm{H}}(A, \pi^{L}(C)) < 2^{-n}$, we have $C \notin W(L, \varepsilon)$, whence $\pi_{i}^{L}(C) \notin W_{i}(L, \varepsilon)$ for some $i \in \mathbb{N}$. Let

$$k = \min\{i \in \mathbb{N} \mid \pi_i^L(C) \not\subset W_i(L,\varepsilon)\}$$

and choose $\sigma \in S_k(L)$ so that $\pi_k^L(C) \cap \sigma \not\subset \sigma(\varepsilon(\sigma))$. Then $\sigma = \sigma_i$ for some $i = 1, \ldots, m$, whence $k = k_i$ and $t_i \geq \varepsilon(\sigma_i)$. For each $B \in \mathcal{V}_L \subset \mathcal{V}_i$, $\pi_{k_i}^L(B) \cap \sigma_i \not\subset \sigma_i(\frac{1}{2}t_i)$, whence $\pi_{k_i}^L(B) \not\subset W_{k_i}(L, 2^{-1}\varepsilon)$, so $B \not\subset W(L, 2^{-1}\varepsilon)$. Then $B \notin V(A, 2^{-(n+2)}, 2^{-2}\varepsilon)$. Therefore $\mathcal{V}_L \cap \mathcal{U}_n(A) = \emptyset$.

3. CW-complexes have no σ -CF quasi-base. In [Mi], Mizokami gave a condition for a stratifiable space X so that $\Re(X)$ is stratifiable. In this section, we show that non-locally compact CW-complexes do not satisfy this condition. Let \mathcal{A} be a family of subsets of a space X. Recall that \mathcal{A} is *closure preserving* in X if $cl \bigcup \mathcal{B} = \bigcup \{cl B \mid B \in \mathcal{B}\}$ for any subfamily $\mathcal{B} \subset \mathcal{A}$. Moreover, \mathcal{A} is σ -closure preserving in X if $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{A}_n$, where each \mathcal{A}_n is closure preserving in X [Ce]. It was proved independently by Gruenhage [Gr] and Junnila [Ju] that a regular space X is stratifiable if and only if X has a σ -closure preserving quasi-base, where a quasi-base of X is a family \mathcal{B} of (not necessarily open) subsets of X such that for each $x \in X$, $\{B \in \mathcal{B} \mid x \in \text{int } B\}$ is a neighborhood base of x in X. We say that \mathcal{A} is *finite on compact sets* (CF) in X if $\{A \cap C \mid A \in \mathcal{A}\}$ is finite for each compact set C in X [Mi]. Finally, \mathcal{A} is σ -CF in X if $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{A}_n$, where each \mathcal{A}_n is CF in X [Mi].

The following is shown by Mizokami [Mi, Theorem 4.5]:

3.1. THEOREM. Let X be regular. Then $\mathfrak{K}(X)$ is stratifiable if X has a quasi-base $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ consisting of closed sets such that each \mathcal{B}_n is CF and closure preserving in X.

Note that if \mathcal{B} is a quasi-base for a regular space X then $\{\operatorname{cl} B \mid B \in \mathcal{B}\}$ is also a quasi-base for X. We show the following:

3.2. PROPOSITION. Any non-locally compact CW-complex X has no σ -CF quasi-base consisting of closed sets.

Proof. From non-local compactness, X contains the cone C of \mathbb{N} with vertex v, i.e., $C = (\mathbb{N} \times \mathbf{I})/(\mathbb{N} \times \{0\})$ and $v = \mathbb{N} \times \{0\} \in C$. Thus it suffices to show that C has no σ -CF quasi-base consisting of closed sets.

Assume that *C* has a quasi-base $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ consisting of closed sets such that each \mathcal{B}_n is CF in *C*. Let $q : \mathbb{N} \times \mathbf{I} \to C$ be the quotient map and set $\mathbf{I}_n = q(\{n\} \times \mathbf{I})$ for each $n \in \mathbb{N}$. Then each $\{B \cap \mathbf{I}_n | B \in \mathcal{B}_n\}$ is finite. Hence for each $n \in \mathbb{N}$, *v* has a neighborhood U_n in \mathbf{I}_n such that $B \cap \mathbf{I}_n \not\subset U_n$ for all $B \in \mathcal{B}_n$ with $v \in \text{int } B$. Then $U = \bigcup_{n \in \mathbb{N}} U_n$ is a neighborhood of *v* in *C*. Since \mathcal{B} is a quasi-base for *C*, there exists $B \in \mathcal{B}$ such that $v \in B \subset U$. Then $B \in \mathcal{B}_n$ for some $n \in \mathbb{N}$, whence $B \cap \mathbf{I}_n \subset U \cap \mathbf{I}_n = U_n$. This is a contradiction.

4. Cauty's test space Z(X). Let X be a stratifiable space. In [Ca₄], Cauty constructed a space Z(X) and showed that X is an AR(S) (resp. an ANR(S)) if and only if X is a retract (resp. a neighborhood retract) of Z(X). Let F(X) denote the full simplicial complex with X the set of vertices (i.e., $X = F(X)^{(0)}$). Recall that |F(X)| has the *weak topology*. The space Z(X) is defined as the space |F(X)| with the topology generated by open sets W in |F(X)| such that

(*) $W \cap X$ is open in X and $|F(W \cap X)| \subset W$.

The second condition of (*) means that each $\tau \in F(X)$ is contained in W if all vertices of τ are contained in $W \cap X$. For each $A \subset X$, Z(A) is a subspace of Z(X) and

$$Z(X) \setminus Z(A) = \{ (1-t)x + ty \mid x \in Z(X \setminus A), y \in Z(A), 0 \le t < 1 \},\$$

whence if A is closed in X then Z(A) is closed in Z(X). Each map $f: X \to Y$ induces a map $\tilde{f}: Z(X) \to Z(Y)$ which is simplicial with respect to F(X) and F(Y). Observe that $\tilde{f}(Z(X)) = Z(f(X)), \tilde{f}(Z(X) \setminus X) \subset Z(Y) \setminus Y$. For each $n \in \mathbb{Z}_+$, let $Z_n(X) = |F(X)^{(n)}|$, a subspace of Z(X). Then $Z_0(X) = X$ and $Z(X) = \bigcup_{n \in \mathbb{Z}_+} Z_n(X)$.

For each $A \subset X$, F(A) is a subcomplex of F(X). Here using different notations, we write W(F(A)) = M(A), S(F(A)) = T(A), $W_n(F(A)) =$

 $M_n(A)$ and $S_n(F(A)) = T_n(A)$ for each $n \in \mathbb{Z}_+$:

$$M(A) = \{x \in Z(X) \mid \exists \tau \in F(A) \text{ such that } x(\widehat{\tau}) > 0\},\$$

$$T(A) = \{\tau \in F(X) \setminus F(A) \mid \tau \cap A \neq \emptyset\},\$$

$$M_n(A) = Z(A) \cup (M(A) \cap Z_n(X)),\$$

$$T_n(A) = T(A) \cap F(X)^{(n)} \setminus F(X)^{(n-1)}.$$

For each $\varepsilon \in (0,1)^{T(A)}$, we write

$$M(A,\varepsilon) = \bigcup_{n \in \mathbb{Z}_+} M_n(A,\varepsilon),$$

where $M_0(A, \varepsilon) = Z(A) = |F(A)|$ and

$$M_n(A,\varepsilon) = Z(A) \cup \bigcup \{ \tau(\varepsilon(\tau)) \cap \pi_\tau^{-1}(M_{n-1}(A,\varepsilon)) \mid \tau \in T_n(A) \}$$

for each $n \in \mathbb{N}$. Then $M(A, \varepsilon) \cap X = A$. For any open set U in X, $M(U, \varepsilon)$ is an open set in Z(X).

4.1. LEMMA. Let $\mathcal{N}(x)$ be an open neighborhood base of x in X. Then $\{M(U,\varepsilon) \mid U \in \mathcal{N}(x), \varepsilon \in (0,1)^{T(U)}\}$

is a neighborhood base of x in Z(X).

Proof. As observed above, $M(U,\varepsilon)$ is an open neighborhood of x in Z(X) for each $U \in \mathcal{N}(x)$ and $\varepsilon \in (0,1)^{T(U)}$. Let W be an open set in |F(X)| satisfying (*) and $x \in W$. Since $W \cap X$ is an open neighborhood of x in $X, W \cap X$ contains some $U \in \mathcal{N}(x)$. Then $Z(U) \subset Z(W \cap X) \subset W$. Let $C_{\tau} = \tau$ for all $\tau \in F(U)$ and $C_{\tau} = \emptyset$ for all $\tau \in F(X \setminus U)$. By induction on dimension, we can choose $\varepsilon(\tau) \in (0,1)$ for each $\tau \in T(U)$ so that

$$C_{\tau} = \pi_{\tau}^{-1}(C_{\partial \tau}) \cap \tau[\varepsilon(\tau)] \subset W \cap \tau,$$

where $C_{\partial \tau} = \bigcup_{\tau' < \tau} C_{\tau'}$. Thus we have $\varepsilon \in (0, 1)^{T(U)}$ such that

$$M(U,\varepsilon) \subset Z(U) \cup \bigcup_{\tau \in T(U)} C_{\tau} \subset W$$
.

Let $p_n = p_n^A : M_n(A) \to M_{n-1}(A)$ be the retraction defined by the radial projections and $\pi^A : M(A) \to Z(A)$ the retraction defined by $\pi^A | M_n(A) = p_1 \dots p_n$ for each $n \in \mathbb{N}$. Consider $M_n(A)$'s and M(A) as subspaces of Z(X). Then it is easy to see that the retractions are continuous.

5. A retraction of $Z(\mathfrak{K}(K))$ onto $\mathfrak{K}(K)$. The main theorem implies the following:

5.1. THEOREM. For any connected simplicial complex K, there exists a retraction $r : Z(\mathfrak{K}(K)) \to \mathfrak{K}(K)$ such that $r(Z(\mathfrak{C}(K))) = \mathfrak{C}(K)$. Hence $\mathfrak{K}(K)$ and $\mathfrak{C}(K)$ are AR(S)'s.

In the proof, we first construct a retraction $r_1 : Z_1(\mathfrak{K}(K)) \to \mathfrak{K}(K)$ and then extend r_1 to $r : Z(\mathfrak{K}(K)) \to \mathfrak{K}(K)$. To construct r_1 , we introduce several notations. Let

$$\mathcal{H} = \{ \langle A, B \rangle \in F(\mathfrak{K}(K))^{(1)} \mid A \neq B, \ d_{\mathrm{H}}(A, B) < 1/2 \}.$$

For each $\langle A, B \rangle \in \mathcal{H}$, we define $C\langle A, B \rangle \in \mathfrak{K}(K)$ so that $A \cup B \subset C\langle A, B \rangle$ and each component of $C\langle A, B \rangle$ meets both A and B. Let $n = \dim L(A \cup B)$. By downward induction, we define L_i , q_i^n (i = 0, 1, ..., n) and R_i , q_i (i = 1, ..., n) as follows: $L_n = L(A \cup B)$, $q_n^n = \operatorname{id}$ and

$$R_{i} = \{ \sigma \in L_{i} \mid \dim \sigma = i, \forall \tau \in L_{i}, \sigma \not< \tau, \sigma \cap q_{i}^{n}(A \cup B) \subset \sigma[2^{-(i+2)}] \},$$
$$q_{i} : |L_{i} \setminus R_{i}| \cup \bigcup_{\sigma \in R_{i}} \sigma[2^{-(i+2)}] \to |L_{i} \setminus R_{i}|$$

is the retraction defined by

$$q_{i}|\sigma[2^{-(i+2)}] = \pi_{\sigma}|\sigma[2^{-(i+2)}] \quad \text{for each } \sigma \in R_{i},$$

$$q_{i-1}^{n} = q_{i} \dots q_{n}|A \cup B \quad \text{and} \quad L_{i-1} = L(q_{i-1}^{n}(A \cup B)).$$

Observe that $\overset{\circ}{\sigma} \cap q_i^n(A \cup B) \neq \emptyset$ for each $\sigma \in R_i$. Next we define $\eta : \bigcup_{i=1}^n R_i \to (0,1)$ by

$$\eta(\sigma) = \inf\{t > 0 \mid q_i^n(A \cup B) \cap \sigma \subset \sigma(t)\} > 0 \quad \text{ if } \sigma \in R_i \,.$$

Now we inductively define N_i (i = 0, 1, ..., n) as follows: $N_0 = |L_0|$ and

$$N_i = N_{i-1} \cup \bigcup_{\sigma \in R_i} (q_i^{-1}(N_{i-1}) \cap \sigma[\eta(\sigma)])$$

Finally, we define

$$C\langle A, B \rangle = \bigcup \{ C \in \mathfrak{C}(N_n) \mid \operatorname{diam}_d C \le 2d_{\mathrm{H}}(A, B), \ C \cap (A \cup B) \neq \emptyset \}.$$

5.2. LEMMA. For each $\langle A, B \rangle \in \mathcal{H}$, each component C of $C \langle A, B \rangle$ meets both A and B.

Proof. Since C meets at least one of A and B, we may assume that $A \cap C \neq \emptyset$ and show that $B \cap C \neq \emptyset$. Let $x \in A \cap C$. Then we have $y \in B$ such that $d(x,y) \leq d_{\mathrm{H}}(A,B) < 1/2$. Since $x, y \in |L_n| = |\mathrm{Sd} L_n|$, we have $\sigma_0 < \ldots < \sigma_m \in L_n$ and $\sigma'_0 < \ldots < \sigma'_{m'} \in L_n$ such that $\dim \sigma_i = i$, $\dim \sigma'_i = j$,

$$x \in \langle \widehat{\sigma}_0, \dots, \widehat{\sigma}_m \rangle$$
 and $y \in \langle \widehat{\sigma}'_0, \dots, \widehat{\sigma}'_{m'} \rangle$.

Let $k = \max\{i \mid \sigma_i \in L_0\} \ge 0$. Then $\langle \hat{\sigma}_0, \ldots, \hat{\sigma}_k \rangle \cap \langle \hat{\sigma}'_0, \ldots, \hat{\sigma}'_{m'} \rangle \ne \emptyset$. In fact, if k = m, this follows from d(x, y) < 1/2. If k < m, then $\sigma_m \in R_m$ and $x(\hat{\sigma}_m) \le \eta(\sigma_m)$ since $x \in N_n \setminus N_0$. For each $j = k + 1, \ldots, m$, by using

Lemma 1.1 inductively, we have

$$q_{j-1}^m(x) = q_j \dots q_m(x) = \sum_{i=0}^{j-1} \frac{x(\widehat{\sigma}_i)}{1 - (x(\widehat{\sigma}_j) + \dots + x(\widehat{\sigma}_m))} \widehat{\sigma}_i$$

Then for each $j = k + 1, \ldots, m - 1$,

$$\frac{x(\widehat{\sigma}_j)}{1 - (x(\widehat{\sigma}_{j+1}) + \ldots + x(\widehat{\sigma}_m))} \le \eta(\sigma_j) \le 2^{-(j+2)}$$

because $q_{j+1} \dots q_m(x) \in \sigma_j(\eta(\sigma_j))$. By Lemma 1.1,

$$d(x, q_k^m(x)) = d(x, q_{k+1} \dots q_m(x))$$

$$\leq d(x, q_m(x)) + \dots + d(q_{k+2} \dots q_m(x), q_{k+1} \dots q_m(x))$$

$$\leq 2^{-(m+1)} + \dots + 2^{-(k+2)} < 2^{-(k+1)} \leq 1/2.$$

Since $q_k^m(x) \in \langle \hat{\sigma}_0, \dots, \hat{\sigma}_k \rangle \subset \sigma_k$ and

$$d(q_k^m(x), y) \le d(x, y) + d(x, q_k^m(x)) < 1/2 + 1/2 = 1,$$

we have $\langle \widehat{\sigma}_0, \ldots, \widehat{\sigma}_k \rangle \cap \langle \widehat{\sigma}'_0, \ldots, \widehat{\sigma}'_{m'} \rangle \neq \emptyset$. Now we write

$$\langle \widehat{\tau}_0, \dots, \widehat{\tau}_l \rangle = \langle \widehat{\sigma}_0, \dots, \widehat{\sigma}_m \rangle \cap \langle \widehat{\sigma}'_0, \dots, \widehat{\sigma}'_{m'} \rangle,$$

where $\tau_0 < \ldots < \tau_l$. Then $\tau_0 \in L_0$ since $\tau_0 \leq \sigma_k$. We define $z \in \langle \hat{\tau}_0, \ldots, \hat{\tau}_l \rangle$ by

$$z(\widehat{\sigma}) = \min\{x(\widehat{\sigma}), y(\widehat{\sigma})\} \quad \text{for each } \sigma \in K \setminus \{\tau_0\},$$
$$z(\widehat{\tau}_0) = 1 - \sum_{i=1}^l z(\widehat{\tau}_i).$$

Then $\langle x, z \rangle \subset \langle \widehat{\sigma}_0, \dots, \widehat{\sigma}_m \rangle$ and $\operatorname{diam}_d \langle x, z \rangle \leq 2d_{\mathrm{H}}(A, B)$ because

,

$$d(x,z) = |x(\widehat{\tau}_0) - z(\widehat{\tau}_0)| + \sum_{i=1}^l |x(\widehat{\tau}_i) - z(\widehat{\tau}_i)| + \sum_{\sigma_i \neq \tau_0, \dots, \tau_l} x(\widehat{\sigma}_i)$$

$$= \left| \sum_{\sigma_i \neq \tau_0} x(\widehat{\sigma}_i) - \sum_{i=1}^l z(\widehat{\tau}_i) \right| + \sum_{i=1}^l |x(\widehat{\tau}_i) - z(\widehat{\tau}_i)| + \sum_{\sigma_i \neq \tau_0, \dots, \tau_l} x(\widehat{\sigma}_i)$$

$$\leq 2 \left(\sum_{i=1}^l |x(\widehat{\tau}_i) - z(\widehat{\tau}_i)| + \sum_{\sigma_i \neq \tau_0, \dots, \tau_l} x(\widehat{\sigma}_i) \right)$$

$$\leq 2 \left(\sum_{i=1}^l |x(\widehat{\tau}_i) - y(\widehat{\tau}_i)| + \sum_{\sigma_i \neq \tau_0, \dots, \tau_l} x(\widehat{\sigma}_i) + \sum_{\sigma'_i \neq \tau_0, \dots, \tau_l} y(\widehat{\sigma}'_i) \right)$$

$$= 2d(x, y) \leq 2d_{\mathrm{H}}(A, B) .$$

For each $t \in \mathbf{I}$, let $x_t = (1 - t)x + tz$. Then

$$x_t(\widehat{\sigma}) = (1-t)x(\widehat{\sigma}) + tz(\widehat{\sigma}) \le x(\widehat{\sigma}) \quad \text{ for each } \sigma \in K \setminus \{\tau_0\}$$

Hence $x_t(\widehat{\sigma}_m) \leq \eta(\sigma_m)$. For each $j = k + 1, \ldots, m$, by using Lemma 1.1 inductively, we have

$$q_{j-1}^m(x_t) = \sum_{i=0}^{j-1} \frac{x_t(\widehat{\sigma}_i)}{1 - (x_t(\widehat{\sigma}_j) + \ldots + x_t(\widehat{\sigma}_m))} \widehat{\sigma}_i$$

Then for each $j = k + 1, \ldots, m - 1$,

$$\frac{x_t(\widehat{\sigma}_j)}{1 - (x_t(\widehat{\sigma}_{j+1}) + \ldots + x_t(\widehat{\sigma}_m))} \le \frac{x(\widehat{\sigma}_j)}{1 - (x(\widehat{\sigma}_{j+1}) + \ldots + x(\widehat{\sigma}_m))} \le \eta(\sigma_j),$$

whence $q_j^m(x_t) \in \sigma_j(\eta(\sigma_j))$. On the other hand, $q_k^m(x_t) \in \sigma_k \subset N_0 \subset N_k$. By induction, $q_j^m(x_t) \in N_j$ for each j > k, so $x_t \in N_m \subset N_n$. Thus $\langle x, z \rangle \subset N_n$.

Similarly we have diam_d $\langle y, z \rangle \leq 2d_{\mathrm{H}}(A, B)$ and $\langle y, z \rangle \subset N_n$. Therefore $\langle x, z \rangle \cup \langle y, z \rangle \subset C \langle A, B \rangle$, whence $\langle x, z \rangle \cup \langle y, z \rangle \subset C$, which implies $B \cap C \neq \emptyset$.

By the definition of $C\langle A, B \rangle$ and the above lemma, $d_{\mathrm{H}}(A, C\langle A, B \rangle) \leq 4d_{\mathrm{H}}(A, B)$ and $d_{\mathrm{H}}(B, C\langle A, B \rangle) \leq 4d_{\mathrm{H}}(A, B)$ for each $A, B \in \mathcal{H}$.

5.3. LEMMA. Let $A_0 \in \mathfrak{K}(K)$ and $\varepsilon \in \mathcal{E}_m^{L(A_0)}$. If $A, B \in V(A_0, 2^{-(m+5)}, 2^{-5}\varepsilon)$ and $A \neq B$, then $\langle A, B \rangle \in \mathcal{H}$ and $C \langle A, B \rangle \in V(A_0, 2^m, \varepsilon)$.

Proof. Since $2^{-5}\varepsilon \in \mathcal{E}_{m+5}^{L(A_0)}$, we have $V(A_0, 2^{-(m+5)}, 2^{-5}\varepsilon) \subset N_{d_{\mathrm{H}}}(A_0, 2^{-(m+4)})$ by Lemma 1.4(3). Then

$$d_{\rm H}(A,B) \le d_{\rm H}(A,A_0) + d_{\rm H}(B,A_0) < 2^{-(m+3)} < 1/2$$

whence $\langle A, B \rangle \in \mathcal{H}$ and $d_{\mathrm{H}}(A, C \langle A, B \rangle) \leq 4d_{\mathrm{H}}(A, B) < 2^{-(m+1)}$.

Let dim $L(A \cup B) = n$. We use the notations from the definition of $C\langle A, B \rangle$ and simply write $p_i^{L(A_0)} = p_i$ and $p_i^n = p_{i+1} \dots p_n$ $(p_n^n = \text{id})$. Then $L_n = L(A \cup B) \subset K_{L(A_0)}^{(n)}$ and $A, B \subset C\langle A, B \rangle \subset |L_n| \subset |K_{L(A_0)}^{(n)}|$. Since $A, B \in V(A_0, 2^{-(m+5)}, 2^{-5}\varepsilon)$, we have $p_i^n(A \cup B) \subset W_i(L(A_0), 2^{-5}\varepsilon)$. First note that

$$p_n^n | (A \cup B) \setminus |L(A_0)| = \mathrm{id} = q_n^n | (A \cup B) \setminus |L(A_0)|.$$

Moreover, $S_n(L(A_0)) = R_n \setminus L(A_0)$. In fact, for each $\sigma \in S_n(L(A_0))$, we have $\sigma \notin L(A_0)$ and

$$(A \cup B) \cap \sigma \subset \sigma(2^{-5}\varepsilon(\sigma)) \subset \sigma(2^{-(m+n+6)}) \subset \sigma[2^{-(n+2)}],$$

whence $\sigma \in R_n \setminus L(A_0)$. Conversely, for each $\sigma \in R_n \setminus L(A_0)$, we have $(A \cup B) \cap \mathring{\sigma} \neq \emptyset$ and $A \cup B \subset W(L(A_0))$, whence $\sigma \cap |L(A_0)| \neq \emptyset$, that is, $\sigma \in S_n(L(A_0))$.

Assume that

$$p_i^n | (A \cup B) \setminus |L(A_0)| = q_i^n | (A \cup B) \setminus |L(A_0)|$$

and $S_i(L(A_0)) = R_i \setminus L(A_0)$. Then

$$p_i^n((A \cup B) \setminus |L(A_0)|) = q_i^n((A \cup B) \setminus |L(A_0)|) \subset |L_i|,$$

whence it follows that

$$p_i|p_i^n((A\cup B)\setminus |L(A_0)|) = q_i|q_i^n((A\cup B)\setminus |L(A_0)|).$$

Since $p_{i-1}^n = p_i p_i^n$ and $q_{i-1}^n = q_i q_i^n$, we have

$$p_{i-1}^n | (A \cup B) \setminus |L(A_0)| = q_{i-1}^n | (A \cup B) \setminus |L(A_0)|.$$

Since $q_{i-1}^n((A \cup B) \cap |L(A_0)|) \subset |L(A_0)|$, it follows that

$$q_{i-1}^n(A \cup B) \subset p_{i-1}^n(A \cup B) \cup |L(A_0)| \subset W_{i-1}(L(A_0), 2^{-5}\varepsilon)$$

Then for each $\sigma \in S_{i-1}(L(A_0))$, we have $\sigma \notin L(A_0)$ and

$$q_{i-1}^n(A\cup B)\cap \sigma\subset \sigma(2^{-5}\varepsilon(\sigma))\subset \sigma(2^{-(m+i+5)})\subset \sigma[2^{-(i+1)}],$$

whence $\sigma \in R_{i-1} \setminus L(A_0)$. Conversely, for each $\sigma \in R_{i-1} \setminus L(A_0)$, $q_{i-1}^n(A \cup B) \cap \mathring{\sigma} \neq \emptyset$ and $q_{i-1}^n(A \cup B) \subset W(L(A_0))$, whence $\sigma \cap |L(A_0)| \neq \emptyset$, that is, $\sigma \in S_{i-1}(L(A_0))$. Hence $S_{i-1}(L(A_0)) = R_{i-1} \setminus L(A_0)$.

By induction, we have

$$p_i^n | (A \cup B) \setminus |L(A_0)| = q_i^n | (A \cup B) \setminus |L(A_0)|$$

and $S_i(L(A_0)) = R_i \setminus L(A_0)$ for each i = 1, ..., n. It follows that

$$L_0 = L_n \setminus \bigcup_{i=1}^n R_i \subset L_n \setminus \bigcup_{i=1}^n S_i(L(A_0)) = L(A_0)$$

Moreover, for each $\sigma \in S_i(L(A_0)) = R_i \setminus L(A_0)$,

$$q_i^n(A \cup B) \cap \sigma = p_i^n(A \cup B) \cap \sigma \subset \sigma(2^{-5}\varepsilon(\sigma)),$$

which implies $\eta(\sigma) \leq 2^{-5} \varepsilon(\sigma) < 2^{-4} \varepsilon(\sigma)$. It follows that

$$C\langle A, B \rangle \subset N_n \subset W(L(A_0), 2^{-4}\varepsilon)$$

that is, $C\langle A, B \rangle \in \mathfrak{K}(W(L(A_0), 2^{-4}\varepsilon)) \subset \mathfrak{K}(W(L(A_0), \varepsilon))$. Since $2^{-4}\varepsilon \in \mathcal{E}_{m+4}^{L(A_0)}$, we obtain

$$d_{\mathrm{H}}(\pi^{L(A_0)}(C\langle A, B\rangle), C\langle A, B\rangle) < 2^{-(m+4)}$$

by Lemma 1.2. Thus we have

$$d_{\mathrm{H}}(A_{0}, \pi^{L(A_{0})}(C\langle A, B \rangle)) \leq d_{\mathrm{H}}(A_{0}, A) + d_{\mathrm{H}}(A, C\langle A, B \rangle) + d_{\mathrm{H}}(C\langle A, B \rangle, \pi^{L(A_{0})}(C\langle A, B \rangle)) \leq 2^{-(m+4)} + 2^{-(m+1)} + 2^{-(m+4)} < 2^{-m}.$$

Therefore $C\langle A, B \rangle \in V(A_0, 2^{-m}, \varepsilon)$.

Since each compact set in |K| is contained in a metrizable continuum, the following is a consequence of [Ke, Lemma 2.3].

5.4. LEMMA. Let $A, C \in \mathfrak{K}(K)$ and $A \subset C$. If each component of C meets A, then there exists a map $\varphi_{A,C} : \mathbf{I} \to \mathfrak{K}(K)$ such that $\varphi_{A,C}(0) = A$, $\varphi_{A,C}(1) = C$ and for each $t \in \mathbf{I}$, $A \subset \varphi_{A,C}(t) \subset C$ and each component of $\varphi_{A,C}(t)$ meets A.

5.5. LEMMA. Let n > 1 and τ be an n-simplex. Then each map $f : \partial \tau \to \mathfrak{K}(K)$ extends to a map $\tilde{f} : \tau \to \mathfrak{K}(K)$ such that

$$f(\pi_{\tau}(x)) \subset \widetilde{f}(x) \subset \widetilde{f}(\widehat{\tau}) = \bigcup f(\partial \tau) = \bigcup_{y \in \partial \tau} f(y)$$

for each $x \in \tau(1) = \tau \setminus \{\widehat{\tau}\}$. Moreover, if $f(\partial \tau) \subset \mathfrak{C}(K)$ then $\widetilde{f}(\tau) \subset \mathfrak{C}(K)$.

Proof. Let $X = f(\partial \tau) \subset \mathfrak{K}(K)$. Then X is a Peano continuum and $\mathfrak{C}(X) \subset \mathfrak{C}(\mathfrak{K}(K)) \subset \mathfrak{K}(\mathfrak{K}(K))$. As is shown in the proof of [Ke, Theorem 3.3], X has a homotopy $h: X \times \mathbf{I} \to \mathfrak{C}(X)$ such that

$$h_0(x) = \{x\} \subset h_t(x) \subset h_1(x) = X$$
 for each $x \in X$ and $t \in \mathbf{I}$.

On the other hand, we have the map $\varsigma : \mathfrak{K}(\mathfrak{K}(K)) \to \mathfrak{K}(K)$ defined by $\varsigma(\mathcal{A}) = \bigcup \mathcal{A} = \bigcup_{A \in \mathcal{A}} A$ (cf. [Ke]). Then $\tilde{f} : \tau \to \mathfrak{K}(K)$ can be defined by

$$\widetilde{f}(x) = \begin{cases} \varsigma(f(\partial \tau)) & \text{if } x = \widehat{\tau}, \\ \varsigma \circ h(f(\pi_{\tau}(x)), x(\widehat{\tau})) & \text{otherwise.} \end{cases}$$

Since $\varsigma(\mathcal{A}) \in \mathfrak{C}(K)$ for any $\mathcal{A} \in \mathfrak{C}(\mathfrak{K}(K))$ with $\mathcal{A} \cap \mathfrak{C}(K) \neq \emptyset$ by [Ke, Lemma 1.2], we have the additional statement.

Now we prove Theorem 5.1.

Proof of Theorem 5.1. For simplicity, we write $Z(\mathfrak{K}(K)) = Z$, $Z_1(\mathfrak{K}(K)) = Z_1$ and $F(\mathfrak{K}(K)) = F$. First, we construct a retraction $r_1 : Z_1 \to \mathfrak{K}(K)$. For each $\langle A, B \rangle \in \mathcal{H}$, we have defined $C\langle A, B \rangle \in \mathfrak{K}(K)$. For each $\langle A, B \rangle \in \mathcal{F}^{(1)} \setminus \mathcal{H}$, choose $C\langle A, B \rangle \in \mathfrak{C}(K)$ so that $A \cup B \subset C\langle A, B \rangle$. By using Lemma 5.4, we can define r_1 as follows: $r_1|\mathfrak{K}(K) = \text{id and}$

$$r_1((1-t)A + tB) = \begin{cases} A & \text{if } 0 \le t \le 1/4, \\ \varphi_{A,C\langle A,B \rangle}(4t-1) & \text{if } 1/4 \le t \le 1/2, \\ \varphi_{B,C\langle A,B \rangle}(3-4t) & \text{if } 1/2 \le t \le 3/4, \\ B & \text{if } 3/4 \le t \le 1, \end{cases}$$

for each 1-simplex $\langle A, B \rangle \in F$. If A and B are connected, each $r_1((1-t)A + tB)$ is also connected. Thus $r_1(Z_1(\mathfrak{C}(K))) = \mathfrak{C}(K)$.

We have to show that r_1 is continuous. Since $Z_1 \setminus \mathfrak{K}(K)$ is a subspace of $|F^{(1)}|$ and $r_1|\langle A, B \rangle$ is continuous for each $\langle A, B \rangle \in F^{(1)}, r_1|Z_1 \setminus \mathfrak{K}(K)$ is continuous. Since $Z_1 \setminus \mathfrak{K}(K)$ is open in Z_1, r_1 is continuous at each point of $Z_1 \setminus \mathfrak{K}(K)$. To see the continuity of r_1 at each point $A_0 \in \mathfrak{K}(K)$, let \mathcal{V} be a neighborhood of A_0 in $\mathfrak{K}(K)$. Choose $m \in \mathbb{N}$ and $\varepsilon \in \mathcal{E}_m^{L(A_0)}$ so that $V(A_0, 2^{-m}, \varepsilon) \subset \mathcal{V}$. Then

$$r_1(M_1(V(A_0, 2^{-(m+5)}, 2^{-5}\varepsilon), 1/2)) \subset \mathcal{V}.$$

In fact, let $\langle A, B \rangle \in F^{(1)}$, $A \neq B$ and $A \in V(A_0, 2^{-(m+5)}, 2^{-5}\varepsilon)$. In case $B \in V(A_0, 2^{-(m+5)}, 2^{-5}\varepsilon)$, $\langle A, B \rangle \in \mathcal{H}$ and $C\langle A, B \rangle \in V(A_0, 2^{-m}, \varepsilon)$ by Lemma 5.3. By Lemma 1.4(2), we have $\varphi_{A,C\langle A,B \rangle}(t) \in V(A_0, 2^{-m}, \varepsilon)$ and $\varphi_{B,C\langle A,B \rangle}(t) \in V(A_0, 2^{-m}, \varepsilon)$ for $t \in \mathbf{I}$. Then $r_1(\langle A, B \rangle) \subset V(A_0, 2^{-m}, \varepsilon)$. In case $B \notin V(A_0, 2^{-(m+5)}, 2^{-5}\varepsilon)$, let $\tau = \langle A, B \rangle$. Then $r_1((1-t)A + t\hat{\tau}) = r_1((1-t/2)A + (t/2)B) = A \in \mathcal{V}$ for each $t \in [0, 1/2]$.

Next, by the skeletonwise induction applying Lemma 5.5 at each step, we can extend r_1 to $r: \mathbb{Z} \to \mathfrak{K}(K)$ such that

$$r(\pi_{\tau}(x)) \subset r(x) \subset r(\widehat{\tau}) = \bigcup r(\partial \tau) = \bigcup_{y \in \partial \tau} r(y)$$

if $x \in \tau(1) \subset \tau \in F$. Since $r_1(Z_1(\mathfrak{C}(K))) = \mathfrak{C}(K)$, it follows that $r(Z(\mathfrak{C}(K))) = \mathfrak{C}(K)$.

We have to show that $r : Z \to \mathfrak{K}(K)$ is continuous. Since $Z \setminus \mathfrak{K}(K)$ is a subspace of |F| and $r|\tau$ is continuous for each $\tau \in F$, $r|Z \setminus \mathfrak{K}(K)$ is continuous. Since $Z \setminus \mathfrak{K}(K)$ is open in Z, r is continuous at each point of $Z \setminus \mathfrak{K}(K)$.

To see the continuity of r at each $A \in \mathfrak{K}(K)$, let \mathcal{V} be a neighborhood of A in $\mathfrak{K}(K)$. We may assume that $\mathcal{V} = V(A, \delta, \varepsilon)$ for some $\delta > 0$ and $\varepsilon \in$ $(0,1)^{S(L(A))}$. Then $r(\partial \tau) \subset \mathcal{V}$ implies $r(\tau) \subset \mathcal{V}$ for each $\tau \in F$ by Lemma 1.4. By the continuity of r_1 , $r^{-1}(\mathcal{V}) \cap Z_1 = r_1^{-1}(\mathcal{V})$ is a neighborhood of Ain Z_1 . By the topologization of Z, there is an open set \mathcal{W} in |F| such that $\mathcal{W} \cap \mathfrak{K}(K)$ is open in $\mathfrak{K}(K)$, $|F(\mathcal{W} \cap \mathfrak{K}(K))| \subset \mathcal{W}$ and $A \in \mathcal{W} \cap Z_1 \subset r^{-1}(\mathcal{V}) \cap Z_1$.

Let $\mathcal{U} = \mathcal{W} \cap \mathfrak{K}(K)$. Then $|F(\mathcal{U})| \subset r^{-1}(\mathcal{V})$, that is, $r(\tau) \subset \mathcal{V}$ for each $\tau \in F(\mathcal{U})$. In fact, this can be shown by induction on dim τ since $r(\partial \tau) \subset \mathcal{V}$ implies $r(\tau) \subset \mathcal{V}$ and if dim $\tau = 1$ then $\tau \subset \mathcal{W} \cap Z_1 \subset r^{-1}(\mathcal{V})$, i.e., $r(\tau) \subset \mathcal{V}$. On the other hand, $r^{-1}(\mathcal{V}) \cap \tau = (r|\tau)^{-1}(\mathcal{V})$ is open in τ for any $\tau \in F \setminus F_{F(\mathcal{U})}^{(0)}$. Let $V_{\tau} = \tau$ for all $\tau \in F(\mathcal{U})$ and $V_{\tau} = \emptyset$ for all $\tau \in F^{(0)} \setminus F(\mathcal{U})$. Similarly to the proof of Lemma 4.1, we can define $\eta \in (0, 1)^{T(\mathcal{U})}$ so that

$$V_{\tau} = \pi_{\tau}^{-1}(V_{\partial \tau}) \cap \operatorname{cl} \tau(\eta(\tau)) \subset r^{-1}(\mathcal{V}) \cap \tau$$

where $V_{\partial \tau} = \bigcup_{\tau' < \tau} V_{\tau'}$. Thus we have a neighborhood $M(\mathcal{U}, \eta)$ of A in Z such that

$$M(\mathcal{U},\eta) \subset |F(\mathcal{U})| \cup \bigcup \{V_{\tau} \mid \tau \in T(\mathcal{U})\} \subset r^{-1}(\mathcal{V}).$$

Therefore $r: Z \to \mathfrak{K}(K)$ is continuous at $A \in \mathfrak{K}(K)$.

Appendix. Let \mathcal{K} be the class of compact Hausdorff spaces. Here we show the following:

PROPOSITION. For any connected CW-complex X, $\mathfrak{K}(X)$ and $\mathfrak{C}(X)$ are $AE(\mathcal{K})$'s. Hence for any CW-complex X, $\mathfrak{K}(X)$ and $\mathfrak{C}(X)$ are $ANE(\mathcal{K})$'s.

Proof. Let $Z \in \mathcal{K}$ and $f : A \to \mathfrak{K}(X)$ a map from a closed set A in Z. Since $\varsigma(f(A)) = \bigcup f(A)$ is a compact set in X, we have $f(A) \subset \mathfrak{K}(Y)$ for some compact connected subcomplex Y of X, whence Y is a Peano continuum. Since $\mathfrak{K}(Y)$ is an AE for normal spaces (in fact, $\mathfrak{K}(Y)$ is homeomorphic to the Hilbert cube ([CS₁] or [CS₂])), f extends to a map $\tilde{f} : Z \to \mathfrak{K}(Y) \subset \mathfrak{K}(X)$. Hence $\mathfrak{K}(X)$ is an AE(\mathcal{K}).

References

- [Bo₁] C. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1–16.
- [Bo₂] —, A study of absolute extensor spaces, ibid. 31 (1969), 609–617.
- [Bo₃] —, Absolute extensor spaces: A correction and an answer, ibid. 50 (1974), 29–30.
- [Bo₄] —, Connectivity of function spaces, Canad. J. Math. 5 (1971), 759–763.
- [Ca1] R. Cauty, Sur les sous-espaces des complexes simpliciaux, Bull. Soc. Math. France 100 (1972), 129–155.
- [Ca₂] —, Sur le prolongement des fonctions continues à valeurs dans CW-complexes,
 C. R. Acad. Sci. Paris Sér. A 274 (1972), 35–37.
- [Ca₃] —, Convexité topologique et prolongement des fonctions continues, Compositio Math. 27 (1973), 133–271.
- [Ca4] —, Rétraction dans les espaces stratifiables, Bull. Soc. Math. France 102 (1974), 129–149.
- [Ca5] —, Sur les espaces d'applications dans les CW-complexes, Arch. Math. (Basel) 27 (1976), 306–311.
- [Ce] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105–126.
- [CP] D. W. Curtis and D. S. Patching, Hyperspaces of direct limits of locally compact metric spaces, Topology Appl. 29 (1988), 55–60.
- [CS1] D. W. Curtis and R. M. Schori, Hyperspaces of polyhedra are Hilbert cubes, Fund. Math. 99 (1978), 189–197.
- $[CS_2]$ —, Hyperspaces of Peano continua are Hilbert cubes, ibid. 101 (1978), 19–38.
- [Gr] G. Gruenhage, Stratifiable spaces are M₂, Topology Proc. 1 (1976), 221–226.
- [Ju] H. J. K. Junnila, Neighbornets, Pacific J. Math. 76 (1978), 83–108.
- [Ke] J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36.
- [Mi] T. Mizokami, On CF families and hyperspaces of compact subsets, Topology Appl. 35 (1990), 75–92.
- [MK] T. Mizokami and K. Koiwa, On hyperspaces of compact and finite subsets, Bull. Joetsu Univ. of Education 6 (1987), 1–14.
- [Ta] U. Tašmetov, On the connectedness of hyperspaces, Dokl. Akad. Nauk SSSR 215 (1974), 286–288 (in Russian); English transl.: Soviet Math. Dokl. 15 (1974), 502–504.

[Wo] M. Wojdysławski, Rétractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), 184–192.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA TSUKUBA-CITY 305, JAPAN E-mail: SAKAIKTR@SAKURA.CC.TSUKUBA.AC.JP

> Received 29 June 1992; in revised form 30 November 1992