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On generalized Peano and Peano derivatives

by

Hajrudin Fejzi ć (San Bernardino, Calif.)

Abstract. A function F is said to have a generalized Peano derivative at x if F is
continuous in a neighborhood of x and if there exists a positive integer q such that a qth
primitive of F in the neighborhood has the (q+n)th Peano derivative at x; in this case the
latter is called the generalized nth Peano derivative of F at x and denoted by F[n](x). We
show that generalized Peano derivatives belong to the class [∆′]. Also we show that they
are path derivatives with a nonporous system of paths satisfying the I.I.C. condition as
defined in [3]. This gives a new approach to studying generalized Peano and Peano deriva-
tives since all their known properties can be obtained from the corresponding properties
of path derivatives. Moreover, generalized Peano derivatives are selective derivatives.

Introduction. There have been, in recent years, numerous articles
showing that certain generalized derivatives, which can often substitute for
the ordinary derivative when the latter is not known to exist, share many
properties of the ordinary derivative. For example, the nth Peano derivative
has the Darboux property, is in the first class of Baire, possesses the Denjoy
property and is in Zahorski’s classes M2 and M3 and in Weil’s class Z. Each
Peano derivative can be represented in the form f = g′+hk′ where g, h and
k are differentiable; the restriction of such a function f to a nowhere dense
set can be extended so as to be a derivative on all of R. Furthermore, the
(n − 1)th Peano derivative shares many properties of ordinary primitives:
it is of generalized absolute continuity [ACG], is differentiable on a dense
open set and is determined by its values on a dense set.

In order to explain behavior of generalized derivatives some authors were
looking for a framework within which most of these derivatives can be ex-
pressed. One such task was done by four authors, Agronsky, Biskner, Bruck-
ner and Mař́ık [1]. They introduced a class [∆′] of functions which behave
“almost” like derivatives. For every f ∈ [∆′] there is a derivative g′ such
that f−g′ = hk′ where h and k are differentiable. Since the product hk′
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is a derivative when we impose some additional restriction on h or k, we
can better understand why functions from this class behave like deriva-
tives.

The other attempt in trying to better understand the behavior of gener-
alized derivatives was done by Bruckner, O’Malley and Thomson [3]. The
perspective they chose is to consider those derivatives for which the deriva-
tive of a function f at a point x can be viewed as

(1) lim
y∈Ex, y→x

f(y)− f(x)
y − x

for appropriate choices of sets Ex. One generalized derivative, then, differs
from another only in the choice of the family {Ex : x ∈ R} of sets through
which the difference quotient passes to its limit. This framework includes
any generalized derivative for which the derivative at a point is a derived
number of the function at that point. The authors showed that much of the
information concerning the behavior of a generalized derivative is contained
in the geometry of the collection E = {Ex : x ∈ R}. They imposed certain
conditions on the sets Ex related to “thickness” of the Ex and the way
they intersect. Those functions f to which such system E of sets can be
assigned are said to be path differentiable and the limit in (1) is called a path
derivative.

The main goal of this paper is to show that every nth generalized Peano
derivative belongs to the class [∆′] and that it is the path derivative of
the (n − 1)th generalized Peano derivative with respect to a system E of
paths satisfying some thickness and intersection conditions introduced in
[3]. This will give a new approach to studying generalized Peano and Peano
derivatives. We will be able to get all their known properties from the
corresponding properties of path derivatives. As a consequence of this we
show that the nth generalized Peano derivative is a selective derivative of
the (n− 1)th one. In particular, Peano derivatives are selective derivatives.
(See Definition 51.)

Preliminaries. The definition of the kth derivative of a real-valued
function is iterative in nature and thus easily comprehended if one initially
understands what a first derivative is. This nice feature can present a prob-
lem, however, because in order to find the kth derivative of a function f at
a point x, one must know all the previous derivatives, not only at x, but
at every point in the neighborhood of x. One type of generalized kth order
differentiation, having Taylor’s theorem as its motivation, attempts to skirt
this drawback. This kind of differentiation is called Peano differentiation.

Definition 1. A function f is said to have a k-th Peano derivative at
x if there exist numbers f1(x), . . . , fk(x) such that
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(2) f(x+ h) = f(x) + hf1(x) + . . .+
hk

k!
fk(x) + εk(x, h)

where εk(x, h) → 0 as h → 0. The number fk(x) is called the kth Peano
derivative of f at x.

The kth Peano derivative is a true generalization of the ordinary kth
derivative although obviously there is no difference for k = 1. For properties
of Peano derivatives see [4], [5], [10], [12], [13], [15]–[19].

In [7] Laczkovich generalized the notion of Peano derivatives. He intro-
duced so-called absolute Peano derivatives.

Definition 2. Let f be defined in a neighborhood of x. We say that the
absolute Peano derivative of f at x exists and is A (in symbols f∗(x) = A)
if there is a function g, a nonnegative integer k, and a δ > 0 such that

(i) gk = f on (x− δ, x+ δ) and (ii) gk+1(x) = A .

Laczkovich showed that this concept is unambiguously defined, that if
f∗ exists on an interval it is a function of Baire class one, that it has the
Darboux property, and if f∗ is bounded above or below on an interval,
then f∗ = f ′ on that interval. He also provided an example of an absolute
Peano derivative on a compact interval that is not a Peano derivative of
any order. Therefore absolute Peano derivatives are true generalization of
Peano derivatives.

An even more general Peano derivative was introduced by M. Lee [9].

Definition 3. Let F be a continuous function defined on R, and let
n ∈ N. We say that F is n times generalized Peano differentiable at x ∈ R if
there is a positive integer q, and coefficients F[i](x), i = 1, . . . , n, such that

F (−q)(x+ h) =
q−1∑
j=0

hj F
(−q+j)(x)
j!

(3)

+
n∑

j=0

hq+j F[j](x)
(q + j)!

+ hq+nε
[q]
q+n(x, h)

where limh→0 ε
[q]
q+n(x, h) = 0.

Here F[0](x) = F (x) = F (0)(x) and F (−j)(x) =
∫ x

F (−j+1)(t) dt; i.e.
F (−j) is an indefinite Riemann integral of the continuous function F (−j+1)

for j = 1, . . . , q.

R e m a r k. Note that the definitions of F[i](x), i = 0, 1, . . . , n, and of
ε
[q]
q+n(x, h) do not depend on which q-fold indefinite Riemann integral F (−q)

of the continuous function F is taken, because any two differ by a polynomial
of degree less than q. The above definition is the same as the definition of
the (q + n)th Peano derivative of F (−q) at x. Therefore by Lemma 7 of
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[6], the coefficients F[i](x), i = 1, . . . , n, do not depend on q either. The
coefficient F[n](x) is called the nth generalized Peano derivative of F at x.

M. Lee showed that every absolute Peano derivative on a compact in-
terval is a generalized Peano derivative. He obtained many properties for
generalized Peano derivatives using similar techniques to those used by var-
ious authors in establishing corresponding properties for Peano derivatives.
As mentioned in the introduction we will show that we can get many of
these properties for generalized Peano derivatives by showing that they be-
long to the class [∆′] and that they are path derivatives with the system
of paths satisfying suitable properties. This is a new approach to studying
both generalized Peano and Peano derivatives. Also, we will obtain some
new properties for generalized Peano and Peano derivatives. The class [∆′]
and path derivatives will be described briefly below. For more details the
reader is referred to [1] and [3].

Definition 4. Let C be the family of all continuous functions on R,
∆ the family of all differentiable functions on R and ∆′ the family of all
derivatives on R. If Γ is a family of functions defined on R, then we denote
by [Γ ] the family of all functions f on R with the following property: there
exist vn ∈ Γ and closed sets An such that

⋃∞
n=1An = R and f = vn on An

for every n = 1, 2, . . .

In [1] (Theorem 2) it is shown that the following four conditions are
equivalent:

(i) There are g, h and k in ∆ such that h′, k′ ∈ [C] and f = g′ + hk′.
(ii) There are ϕ ∈ ∆′ and ψ ∈ [C] such that f = ϕ+ ψ.
(iii) f ∈ [∆′].
(iv) There is a dense open set T and a function k ∈ ∆ such that f is a

derivative on T and f = k′ on R \ T .

Definition 5. Let x ∈ R. A path leading to x is a set Ex ⊂ R such
that x ∈ Ex and x is a point of accumulation of Ex. A system of paths is a
collection E = {Ex : x ∈ R} such that each Ex is a path leading to x.

Definition 6. Let f : R → R and let E = {Ex : x ∈ R} be a system of
paths. If

lim
y∈Ex, y→x

f(y)− f(x)
y − x

= g(x)

is finite then we say that f is E-differentiable at x and write f ′E(x) = g(x).
If f is E-differentiable at every point x then we say simply that f is E-
differentiable; we call f an E-primitive and g an E-derivative.

Definition 7. Let E = {Ex : x ∈ R} be a system of paths. Then E is
said to be bilateral at x if x is a bilateral point of accumulation of Ex, and
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it is nonporous at x if Ex has left and right porosity 0 at x. (If E has any
of these properties at each point, then we say that E has that property.)

The porosity of a set E at x from the right (left) is the value
lim supr→0+ l(x, r, E)/r, where l(x, r, E) denotes the length of the largest
open interval contained in (x, x + r) ∩ (R \ E) (resp. (x − r, x) ∩ (R \ E)).
Porosity 0 at x means both right and left porosity 0. Note that a nonporous
system is necessarily bilateral.

Definition 8. Let E = {Ex : x ∈ R} be a system of paths. E will
be said to satisfy one of the conditions listed below if there is a positive
function δ on R so that whenever 0 < y − x < min{δ(x), δ(y)}, the sets Ex

and Ey intersect in the stated fashion:

(i) intersection condition (I.C.): Ex ∩ Ey ∩ [x, y] 6= ∅;
(ii) internal intersection condition (I.I.C.): Ex ∩ Ey ∩ (x, y) 6= ∅;
(iii) external intersection condition (E.I.C.):

Ex ∩ Ey ∩ (y, y − 2x) 6= ∅ and Ex ∩ Ey ∩ (2x− y, x) 6= ∅ .

Generalized Peano derivatives and the class [∆′]. From now on n
will be a fixed positive integer, and F will be a continuous function defined
on R so that F[n] exists on R.

Definition 9. For q ∈ N, let Aq be the set of all x ∈ R so that (3)
holds, and for ε > 0, δ > 0 let

(4) Pq = Pq(ε, δ) = {x ∈ Aq : |ε[q]q+n(x, h)| < ε for |h| < δ} .

Note that if x ∈ Aq, then x ∈ Ap for every p ≥ q. Also x ∈ Aq iff F (−q)

has a (q + n)th Peano derivative at x with (F (−q))q+n(x) = F[n](x).

Lemma 10. For q ≤ p,

Pq(ε, δ) ⊂ Pp

(
ε
(q + n)!
(p+ n)!

, δ

)
.

P r o o f. Let x ∈ Pq(ε, δ). Then x ∈ Aq and for t ∈ R,

F (−q)(x+ t) =
q−1∑
j=0

tj
F (−q+j)(x)

j!
(5)

+
n∑

j=0

tq+j F[j](x)
(q + j)!

+ tq+nε
[q]
q+n(x, t) .
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Integrating both sides of (5) from 0 to h we get

F (−q−1)(x+ h)− F (−q−1)(x)

=
q−1∑
j=0

hj+1F
(−q+j)(x)
(j + 1)!

+
n∑

j=0

hq+1+j F[j](x)
(q + 1 + j)!

+
h∫

0

tq+nε
[q]
q+n(x, t) dt .

Thus x ∈ Aq+1. By the remark after Definition 3, we have

(6) hq+1+nε
[q+1]
q+n+1(x, h) =

h∫
0

tq+nε
[q]
q+n(x, t) dt

and since x ∈ Pq(ε, δ), for 0 6= |h| < δ from (6) we have

|h|q+1+n|ε[q+1]
q+n+1(x, h)| <

|h|∫
0

tq+nε dt = ε
|h|q+1+n

q + 1 + n
.

Hence |ε[q+1]
q+n+1(x, h)| < ε/(q + n+ 1) whenever |h| < δ. Therefore

Pq(ε, δ) ⊂ Pq+1

(
ε

(q + n)!
(q + n+ 1)!

, δ

)
.

The general result follows by induction.

Definition 11. For x ∈ Aq and for i = 1, . . . , n, define ε[q]q+i(x, h) by

F (−q)(x+ h) =
q−1∑
j=0

hj F
(−q+j)(x)
j!

(7)

+
i∑

j=0

hq+j F[j](x)
(q + j)!

+ hq+iε
[q]
q+i(x, h) .

Note that ε[q]q+i(x, h) does not depend on which q-fold indefinite Riemann
integral, F (−q), of F is taken.

The following formula follows directly from Definition 11.

Formula 12. Let x ∈ Aq. Then for i ∈ N with 2 ≤ i ≤ n we have

ε
[q]
q+i−1(x, t) = t

F[i](x)
(q + i)!

+ tε
[q]
q+i(x, t) .

Definition 13. For any function f defined on R the Riemann difference
∆m

t f(x) at a point x of order m is defined by

∆m
t f(x) =

m∑
j=0

(−1)m−j

(
m

j

)
f(x+ jt) .

The relations among the ∆m
t are given by the following simple assertion.
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Lemma 14. For any function f defined on R, for any m ∈ N and t ∈ R
we have

∆m+1
t f(x) = ∆m

t f(x+ t)−∆m
t f(x) .

Lemma 15. Let x ∈ Aq. Then for each i = 1, . . . , n,

∆q+m
t F (−q)(x)

=


tq+mF[m](x) + tq+m

q+m∑
j=0

(−1)q+m−j
(
q+m

j

)
jq+mε

[q]
q+m(x, jt) if m = i,

tq+i

q+m∑
j=0

(−1)q+m−j
(
q+m

j

)
jq+iε

[q]
q+i(x, jt) if m > i.

P r o o f.

∆q+m
t F (−q)(x) =

q+m∑
j=0

(−1)q+m−j

(
q +m

j

)
F (−q)(x+ jt)

=
q+m∑
j=0

(−1)q+m−j

(
q +m

j

)( q−1∑
l=0

(jt)lF
(−q+l)(x)
l!

+
i∑

l=0

(jt)q+l F[l](x)
(q + l)!

+ (jt)q+iε
[q]
q+i(x, jt)

)

=
q−1∑
l=0

tl
F (−q+l)(x)

l!

q+m∑
j=0

(−1)q+m−j

(
q +m

j

)
jl

+
i∑

l=0

tq+l F[l](x)
(q + l)!

q+m∑
j=0

(−1)q+m−j

(
q +m

j

)
jq+l

+ tq+i

q+m∑
j=0

(−1)q+m−j

(
q +m

j

)
jq+iε

[q]
q+i(x, jt)

and by Lemma 1 of [6] this is equal to the desired expression.

The next formula is very useful in the proof of Theorem 17 below.

Formula 16. Suppose x, x+ t ∈ Aq and i ∈ N with 1 ≤ i ≤ n. Then

F[i](x+ t)− F[i](x) =
q+i+1∑
j=0

(−1)q+i+1−j

(
q + i+ 1

j

)
jq+iε

[q]
q+i(x, jt)

+
q+i∑
j=0

(−1)q+i−j

(
q + i

j

)
jq+iε

[q]
q+i(x, jt)
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−
q+i∑
j=0

(−1)q+i−j

(
q + i

j

)
jq+iε

[q]
q+i(x+ t, jt) .

P r o o f. By Lemma 14,

(8) ∆q+i+1
t F (−q)(x) = ∆q+i

t F (−q)(x+ t)−∆q+i
t F (−q)(x) .

Applying Lemma 15 with m = i + 1 to the left hand side and with m = i
to the right hand side of (8) we get

tq+i

q+i+1∑
j=0

(−1)q+i+1−j

(
q + i+ 1

j

)
jq+iε

[q]
q+i(x, jt)

= tq+iF[i](x+ t) + tq+i

q+i∑
j=0

(−1)q+i−j

(
q + i

j

)
jq+iε

[q]
q+i(x+ t, jt)

− tq+iF[i](x)− tq+i

q+i∑
j=0

(−1)q+i−j

(
q + i

j

)
jq+iε

[q]
q+i(x, jt) .

Dividing both sides by tq+i gives the above formula.

Theorem 17. For any interval [a, b], F[n] is bounded on Pq(ε, δ) ∩ [a, b].

P r o o f. Let x, y ∈ Pq(ε, δ) ∩ [a, b] so that for t = y − x we have |t| <
δ/(q + n+ 1), and let B =

∑q+n+1
j=1

(
q+n+1

j

)
jq+n. Then the right hand side

of Formula 16 applied with i = n is bounded by 3Bε. It follows that F[n]

is bounded on Pq(ε, δ) ∩ [a, b]. From Formula 12 (applied with i = n) it
follows that for |h| < δ, |ε[q]q+n−1( · , h)| is bounded on Pq(ε, δ) ∩ [a, b]. Now
from Formula 16 (applied with i = n − 1) we see that F[n−1] is bounded
on Pq(ε, δ) ∩ [a, b], and again going back to Formula 12 (applied with i =
n− 1) we see that for |h| < δ, |ε[q]q+n−2( · , h)| is bounded on Pq(ε, δ)∩ [a, b].
Continuing we can deduce that there is a constant C so that |F[i](x)| ≤ C
for 1 ≤ i ≤ n, for x ∈ Pq(ε, δ) ∩ [a, b].

Let x ∈ Pq, and let {xm} be a sequence in Pq(ε, δ) such that limm→∞ xm

= x. Choose p ≥ q such that x ∈ Ap. Let [a, b] be such that {xm} ⊂
Pq(ε, δ) ∩ [a, b]. From the first part of the proof we see that for 1 ≤ i ≤ n,
F[i] is bounded on Pq(ε, δ) ∩ [a, b]. Therefore we can choose a subsequence
{xmj} converging to x such that {F[i](xmj )} converges for each 1 ≤ i ≤ n.
Let these sequences converge to Gi(x), i = 1, . . . , n, respectively.

Let |h| < δ, and, as we may, suppose that |h + x − xmj | < δ for every
j ∈ N. Since xmj ∈ Pq(ε, δ), by Lemma 10 we have

|ε[p]
p+n(xmj

, h+ x− xmj
)| < ε

(q + n)!
(p+ n)!

.
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Thus we may also suppose that the sequence ε[p]
p+n(xmj , h + x − xmj ) con-

verges. Denote its limit by E(h). Now letting j →∞ in the formula

F (−p)(x+ h) = F (−p)(xmj ) + (h+ x− xmj )F
(−p+1)(xmj ) + . . .

+
(h+ x− xmj )

p

p!
F[0](xmj ) + . . .+

(h+ x− xmj )
p+n−1

(p+ n− 1)!
F[n−1](xmj )

+ (h+ x− xmj
)p+n

(
F[n](xmj )
(p+ n)!

+ ε
[p]
p+n(xmj

, h+ x− xmj
)
)

we get

F (−p)(x+ h) =
p−1∑
j=0

hj

j!
F (−p+j)(x) +

hp

p!
F[0](x) +

hp+1

(p+ 1)!
G1(x) + . . .(9)

+
hp+n−1

(p+ n− 1)!
Gn−1(x) + hp+n

(
Gn(x)

(p+ n)!
+ E(h)

)
.

Since Gn(x)/(p + n)! + E(h) is bounded, by the uniqueness of Peano
derivatives from (9) we have Gi(x) = F[i](x) for 1 ≤ i ≤ n− 1 and

(10)
F[n](x)
(p+ n)!

+ ε
[p]
p+n(x, h) =

Gn(x)
(p+ n)!

+ E(h) .

Since |E(h)| ≤ ε(q + n)!/(p+ n)!, from (10) we have∣∣∣∣F[n](x)−Gn(x)
(p+ n)!

∣∣∣∣ = |E(h)− ε
[p]
p+n(x, h)|(11)

≤ ε
(q + n)!
(p+ n)!

+ |ε[p]
p+n(x, h)| .

The left hand side of (11) does not depend on h so letting h→ 0 in the
right hand side of (11) we get

(12)
∣∣∣∣F[n](x)−Gn(x)

(p+ n)!

∣∣∣∣ ≤ ε
(q + n)!
(p+ n)!

.

Finally, from the first part of the proof we know that there is a constant C so
that |F[n](y)| ≤ C for y ∈ Pq(ε, δ)∩ [a, b]. Since limj→∞ F[n](xmj ) = Gn(x),
|Gn(x)| ≤ C. Hence by (12), |F[n](x)| ≤ ε(q+n)! +C. Note that the bound
on F[n](x) does not depend on the choice of p.

If x1 and x are two different points in Aq, then since F[n](y) =
(F (−q))q+n(y) for y ∈ Aq, we have a formula for generalized Peano deriva-
tives similar to that in Theorem 1 of [6]. Since the formula is the crux of
the proof of the main theorem of this section, Theorem 19, we state it as a
theorem.
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Theorem 18. Let x, x1 ∈ Aq such that x 6= x1, and t 6= 0. Then
F[n−1](x1)− F[n−1](x)

x1 − x
− F[n](x) =

t

x1 − x

q + n− 1
2

F[n](x)

+
q+n−1∑

j=0

(−1)q+n−1−j

(
q + n− 1

j

)
(x1 − x+ jt)q+n

tq+n−1(x1 − x)
ε
[q]
q+n(x, x1 − x+ jt)

− t

x1 − x

{
q + n− 1

2
F[n](x1)

+
q+n−1∑

j=0

(−1)q+n−1−j

(
q + n− 1

j

)
jq+nε

[q]
q+n(x1, jt)

}
.

Finally, we are ready to prove the main result of this section.

Theorem 19. Suppose F is n times generalized Peano differentiable at
each x ∈ R. Then F[n−1] is differentiable on Pq = Pq(ε, δ) relative to Pq

with
F[n−1]|′P q

(x) = F[n](x) .

P r o o f. Let x ∈ Pq. There is a p ≥ q so that x ∈ Ap. Let 1 > ε1 > 0 be
given. There is an η with 0 < η < δ such that |ε[p]

p+n(x, h)| < ε1 whenever
|h| < η. Let {xm} be a sequence in Pq converging to x so that |xm − x| <
η/(p+n). By Theorem 17, there is a constant C so that |F[n](xm)| ≤ C, for
every m ∈ N. Let t = (xm−x)ε1/(p+n)

1 . Then |jt| < δ and |xm−x+jt| < η,
for j = 0, 1, . . . , q + n− 1. Therefore

(13) |ε[p]
p+n(x, xm − x+ jt)| < ε1

and by Lemma 10,

(14) |ε[p]
p+n(xm, jt)| < ε for j = 0, 1, . . . , p+ n− 1 and m ∈ N .

Since xm ∈ Ap, the formula of Theorem 18 gives∣∣∣∣F[n−1](xm)− F[n−1](x)
xm − x

− F[n](x)
∣∣∣∣ ≤ ε

1/(p+n)
1

p+ n− 1
2

|F[n](x)|

+
p+n−1∑

j=0

(
p+ n− 1

j

)
(1 + jε

1/(p+n)
1 )p+n

ε
(p+n−1)/(p+n)
1

|ε[p]
p+n(x, xm − x+ jt)|

+ ε
1/(p+n)
1

∣∣∣∣p+ n− 1
2

F[n](xm)

+
p+n−1∑

j=0

(−1)p+n−1−j

(
p+ n− 1

j

)
jp+nε

[p]
p+n(xm, jt)

∣∣∣∣ .
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By (14) and (13) together with Theorem 17 the above is

≤ ε
1/(p+n)
1

p+ n− 1
2

|F[n](x)|+
p+n−1∑

j=0

(
p+ n− 1

j

)
(1 + jε

1/(p+n)
1 )p+nε

1/(p+n)
1

+ ε
1/(p+n)
1

{
p+ n− 1

2
C +

p+n−1∑
j=0

(
p+ n− 1

j

)
jp+nε

}
.

Since ε1 was arbitrary we have
F[n−1](xm)− F[n−1](x)

xm − x
− F[n](x) → 0 as xm ∈ Pq, xm → x .

Now for the general case let {xm} be a sequence in Pq such that xm → x.
Let ym ∈ Pq be such that |ym − xm| ≤ 1

m |xm − x| and that

(15)
∣∣∣∣F[n−1](ym)− F[n−1](xm)

ym − xm
− F[n](xm)

∣∣∣∣ ≤ 1 .

By what was just proved, there is such a sequence ym. By Theorem 17,
there is a constant C such that |F[n](xm)| ≤ C for every m ∈ N. This and
(15) give

(16)
∣∣∣∣F[n−1](ym)− F[n−1](xm)

ym − xm

∣∣∣∣ ≤ C + 1 .

Now
F[n−1](xm)− F[n−1](x)

xm − x
− F[n](x) =

F[n−1](xm)− F[n−1](ym)
xm − ym

xm − ym

xm − x

+
{
F[n−1](ym)− F[n−1](x)

ym − x
− F[n](x)

}
ym − x

xm − x
− F[n](x)

xm − ym

xm − x
.

So by (16),

(17)
∣∣∣∣F[n−1](xm)− F[n−1](x)

xm − x
− F[n](x)

∣∣∣∣
≤ (C + 1)

1
m

+
∣∣∣∣F[n−1](ym)− F[n−1](x)

ym − x
− F[n](x)

∣∣∣∣(1 +
1
m

)
+ C

1
m
.

Finally, since xm → x, ym → x. But ym ∈ Pq, and hence by the first part

(18)
F[n−1](ym)− F[n−1](x)

ym − x
− F[n](x) → 0 .

Therefore by (17) and (18),

F[n−1](xm)− F[n−1](x)
xm − x

− F[n](x) → 0 as xm ∈ Pq, xm → x .

This completes the proof.
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Lemma 20. For each ε > 0,
⋃∞

q=0

⋃∞
m=1 Pq(ε, 1/m) = R.

P r o o f. The assertion follows from Definition 9.

Corollary 21. F[n] ∈ [∆′].

P r o o f. The corollary follows directly from Theorem 19, Lemma 20 and
the fact that for any function g defined on a closed set P that is differentiable
with respect to P , there is a function G differentiable on R so that G|P = g
and G′ = g′. (See Mař́ık [14].)

Corollary 22. F[n] is a Baire 1 function.

P r o o f. The assertion is an immediate consequence of the previous corol-
lary.

That F[n] is a Baire 1 function was proved in [9]. Corollary 22 gives
another proof of this assertion. Note that we have proved even more than
Corollary 21, namely that the nth generalized Peano derivative is a com-
posite derivative of the (n− 1)th generalized Peano derivative.

Definition 23. Let f be a function defined on R. If there exist a
function g and closed sets An, n = 1, 2, . . . , such that

⋃∞
n=1An = R and

g|′An
(x) = f(x) for x ∈ An, then we say that f is a composite derivative of g.

Corollary 24. F[n] is a composite derivative of F[n−1].

Corollary 25. F[n] is the approximate derivative of F[n−1] a.e.

P r o o f. The assertion follows from Corollary 24 and the fact that every
composite derivative is the approximate derivative of its primitive a.e.

Generalized Peano and path derivatives. In this section we will
prove that the nth generalized Peano derivative is a path derivative of the
(n − 1)th generalized Peano derivative with a nonporous system of paths
that satisfies the I.C. condition. In particular, the same holds for Peano
derivatives, which gives a positive answer to the questions posed in [3].

First we will assume inductively that certain properties for generalized
Peano derivatives hold. Later using induction we will get rid of these as-
sumptions. This will give us a new approach to studying generalized Peano
derivatives.

Theorem 26. Let l ∈ N with l ≤ n− 1. Assume that for each function g
defined on a closed interval I and having an l-th generalized Peano deriva-
tive, g[l], on I, g[l] is a Darboux function and if g[l] ≥ 0 on I, then g[l] = g(l)

on I. Suppose F[n] exists on R. Then there is a bilateral nonporous system
E = {Ex : x ∈ R} of paths satisfying the I.C. condition such that F[n] is the
E-derivative of F[n−1].
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To prove Theorem 26, we need some lemmas and the theorem below,
due to Mař́ık (see [13]).

Theorem 27. Let k ∈ N, x ∈ R. Suppose that a function f has a k-th
Peano derivative at x. Define

P (y) =
k∑

i=0

(y − x)i fi(x)
i!

(y ∈ R) .

Let ε > 0, η > 0. Then there is a δ > 0 with the following property : If I is
a subinterval of (x− δ, x+ δ) and j an integer with 0 < j ≤ k, and if either
f (j) ≤ P (j) on I or f (j) ≥ P (j) on I, then

m{y ∈ I : |f (j)(y)− P (j)(y)| ≥ ε|y − x|k−j} ≤ η(mI + d(x, I))

(here m denotes the Lebesgue measure and d(x, I) denotes the distance from
x to I).

Lemma 28. Suppose the assumptions of Theorem 26 hold. Let x ∈ Aq.
Then for every ε > 0 and η > 0 there is a δ > 0 such that if I is a closed
subinterval of (x− δ, x+ δ), x is not in I and

(19)
∣∣∣∣F[n−1](y)− F[n−1](x)

y − x
− F[n](x)

∣∣∣∣ ≥ ε

for all y ∈ I then mI ≤ ηd(x, I).

P r o o f. Let I be an interval such that (19) holds, and let

g(y) = F (y)− yn−1F[n−1](x)
(n− 1)!

− (y − x)nF[n](x)
n!

.

Then g has an (n − 1)th generalized Peano derivative and g[n−1](y) =
F[n−1](y) − F[n−1](x) − (y − x)F[n](x). So by assumptions g[n−1] is Dar-
boux. By the assumption of Lemma 28, |g[n−1](y)| ≥ ε|y − x| on I. If
y > x then |g[n−1](y)| > 0 on I and since it is Darboux we have either
g[n−1](y) > 0 or −g[n−1](y) > 0 on I. Hence by the assumptions, g[n−1] is
the (n− 1)th ordinary derivative of g on I. If y < x by the same argument
we find that g[n−1] is the (n − 1)th ordinary derivative of g on I. There-
fore F is n − 1 times ordinarily differentiable on I and by the uniqueness
of generalized Peano derivatives F (n−1) = F[n−1] on I. Now we can apply
Theorem 27, with k = n + q , j = n − 1 + q, f = F (−q) and with η re-
placed by η1 = η/(1 + η), which gives δ so that if I ⊂ (x − δ, x + δ) then
mI ≤ η1(mI + d(x, I)). Therefore mI ≤ ηd(x, I).

The next lemma is Lemma 3.6.1 of [3].

Lemma 29. Let G be a function that has the following property at a point
x: there is a number λ so that for every ε > 0 there is a δ = δ(ε) such that ,
whenever 0 < y−x < δ, there must be a number z with 0 < y− z < ε(y−x)
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and |G(z)− λ| < ε. Then there is a path Ex leading to x and nonporous on
the right at x such that

lim
y∈Ex, y→x

G(y) = λ .

Lemma 30. Under the assumptions of Theorem 26, for each x ∈ I there
is a path Ex leading to x and nonporous at x so that

lim
y∈Ex, y→x

F[n−1](y)− F[n−1](x)
y − x

= F[n](x) .

P r o o f. For fixed x, by Lemma 28 (applied with η = ε/(1− ε) for ε < 1
and η = ε otherwise) the function G defined by

G(y) =
F[n−1](y)− F[n−1](x)

y − x

satisfies the conditions of Lemma 29 where λ = F[n](x). The rest follows
from Lemma 29, together with a left-hand version of that lemma.

Lemma 31. Let m ≤ l be positive integers and ε > 0. Then

Pm(ε, 1/m) ⊂ Pl(ε, 1/l) .

P r o o f. By Lemma 10, Pm(ε, 1/m) ⊂ Pl(ε, 1/m), and by Definition 9,
Pl(ε, 1/m) ⊂ Pl(ε, 1/l).

Now we are ready to prove Theorem 26.

P r o o f o f T h e o r e m 26. For each x ∈ R let E′x be a path satisfying
the assertion of Lemma 30. We define the system E = {Ex : x ∈ R} of
paths as follows:

For x ∈ R let Ex = E′x ∪ Pm(1, 1/m) where m is a positive integer such
that x ∈ Pm(1, 1/m). That E is nonporous (therefore bilateral) follows
directly from Lemma 30. Also Lemma 30 and Theorem 19 assure that
F[n−1] is E-differentiable with F[n−1]|′E(x) = F[n](x) for every x ∈ R. It
remains to prove that E satisfies the intersection condition I.C. We will
prove that for any two different points x and y, Ex ∩Ey ∩ [x, y] 6= ∅, which
is stronger than the I.C. condition.

Let x ∈ Pm(1, 1/m) and y ∈ Pl(1, 1/l) be any two different points. If
m ≤ l then, by Lemma 31, Pm(1, 1/m) ⊂ Pl(1, 1/l) and hence x ∈ Ey.
Similarly if m ≥ l then y ∈ Ex.

Therefore Ex ∩Ey ∩ [x, y] 6= ∅, hence E satisfies the I.C. condition. This
completes the proof of the theorem.

We can weaken the assumptions of Theorem 26. In order to do that we
list some theorems from [3] about path derivatives.
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Theorem 32. Let E = {Ex : x ∈ R} be a system of paths that is bilateral
and satisfies the intersection condition. If f is an exact E-derivative and is
Baire 1, then f has the Darboux property.

P r o o f. This is Theorem 6.4 of [3].

Theorem 33. Let E = {Ex : x ∈ R} be a system of paths that is
bilateral and satisfies the intersection condition. If f ′E(x) ≥ 0 in [a, b] then
f is nondecreasing on [a, b].

P r o o f. See 4.7.1 of [3].

Theorem 34. Let E = {Ex : x ∈ R} be a system of paths and suppose f
is monotonic. If E is nonporous at a point x, then

F ′E(x) = F ′(x) and F ′E(x) = F ′(x) .

P r o o f. See Theorem 4.4.3 of [3].

Theorem 35. Let F be a continuous function defined on R so that F[n]

exists on R. Then there is a bilateral nonporous system E = {Ex : x ∈ R}
of paths satisfying the I.C. condition such that F[n] is an E-derivative of
F[n−1].

P r o o f. The proof is by induction on n. For n = 0 there is nothing
to prove. Let 1 ≤ l ≤ n − 1, and let a function g defined on some closed
interval I have an lth generalized Peano derivative on I. Suppose the as-
sertion of the theorem is true for every 1 ≤ j ≤ n − 1, and every function
h defined on some closed interval J so that h[j] exists on J . (Note that we
can restrict ourselves to closed subintervals because we can always extend h
to R so that h[j] exists on R. For example if J = [a, b], then we can define
h(y) =

∑j
i=0(y−x)ifi(a)/i! for y ∈ (−∞, a) and h(y) =

∑j
i=0(y−x)ifi(b)/i!

for y ∈ (b,∞).) By Corollary 22, g[l] is a Baire 1 function. By the induc-
tion hypothesis and Theorem 32, g[l] is a Darboux function. Suppose that
g[l] ≥ 0 on I. Again by the induction hypothesis but now using Theorem 33,
g[l−1] is nondecreasing on I. By Theorem 34, g′[l−1] = g[l] on I. Also there is
an α such that g[l−1] − α ≥ 0 on I. Let h(x) = g(x)− αxl−1/(l− 1)!. Then
h[l−1] = g[l−1] − α and hence h[l−1] ≥ 0 on I. Proceeding as before yields
h′[l−2] = h[l−1] on I. This implies g′[l−2] = g[l−1] on I. Continuing in this fash-
ion one can deduce that g(l) exists on I. Now we can apply Theorem 26.

Now using the properties of path derivatives we get the following corol-
laries:

Corollary 36. F[n] is Darboux.

P r o o f. The assertion follows directly from Theorems 32, 26, and Corol-
lary 22.
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The assertion of the next corollary follows directly from the properties
of functions that are Baire 1 and Darboux. (See [2].)

Corollary 37. Let F be a continuous function on R such that F[n]

exists.

(1) For each x, there exist sequences xm ↗ x and ym ↘ x such that
F[n](x) = limm→∞ F[n](xm) = limm→∞ F[n](ym).

(2) For each x,

F[n](x) ∈ [lim inf
z→x−

F[n](z), lim sup
z→x−

F[n](z)] ∩ [lim inf
z→x+

F[n](z), lim sup
z→x+

F[n](z)] .

(3) For each real number a, the sets {F[n] ≤ a} and {F[n] ≥ a} have
compact components.

(4) The graph of F[n] is connected.
(5) F[n] has a perfect road at each point.
(6) Each of {F[n] < a} and {F[n] > a} is bilaterally c-dense in itself.
(7) Each of {F[n] < a} and {F[n] > a} is bilaterally dense in itself.

Definition 38. Let E = {Ex : x ∈ R} be a system of paths and f a
function on R. We say that f has the monotonicity property relative to E if
for any interval [a, b] the conditions f ′E(x) exists a.e. in [a, b] and f ′E(x) ≥ α
(resp. f ′E(x) ≤ α) a.e. in [a, b] imply that the function f(x) − αx (resp.
αx− f(x)) is nondecreasing on [a, b].

Theorem 39. Let E = {Ex : x ∈ R} be a system of paths and let f be a
function. If E is bilateral and satisfies the intersection condition, and f is
E-differentiable, then f has the monotonicity property relative to E.

P r o o f. See Theorem 6.6.1 of [3].

Corollary 40. Let [a, b] be an interval , and α be any constant. If
F[n] ≥ α (or F[n] ≤ α) then

(a) F[n−1](x)−αx (resp. αx−F[n−1](x)) is nondecreasing and continuous
on [a, b],

(b) F (n) exists and F (n) = F[n] on [a, b].

P r o o f. The assertion follows directly from Theorems 35, 39 and 34.

Definition 41. Let f be a function defined on R. If for any interval
(a, b), f−1(a, b) 6= ∅ implies m{x : f(x) ∈ (a, b)} > 0 then we say that a
function f has the Denjoy property (here m denotes the Lebesgue measure
on R).

Theorem 42. Let E = {Ex : x ∈ R} be a system of paths and let f be
an E-differentiable function that has the monotonicity property relative to
E. If f ′E is Darboux Baire 1, then f ′E has the Denjoy property.

P r o o f. This is Theorem 6.7 of [3].
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Corollary 43. F[n] has the Denjoy property.

P r o o f. The assertion follows directly from Theorems 35, 39, 42 and
Corollary 36.

Theorem 44. Let E = {Ex : x ∈ R} be a nonporous system of paths
satisfying the intersection condition. Suppose that f is an E-differentiable
function with f ′E Baire 1. Then if f ′E attains the values M and −M on an
interval I0, then there is a subinterval I of I0 on which f is differentiable
and f ′ attains both values M and −M .

P r o o f. This is Theorem 8.1 of [3].

An immediate consequence of Theorems 44 and 35 is the following corol-
lary.

Corollary 45. Suppose F[n](x) exists for all x in I0 and let M ≥ 0. If
F[n] attains both M and −M on I0, then there is a subinterval I of I0 on
which F[n] = F (n) and F (n) attains both M and −M on I.

Generalized Peano and selective derivatives. In this section we
show that every generalized Peano derivative F[n] is a selective derivative of
F[n−1].

Definition 46. Let Py be a set containing y so that y is a bilateral
point of accumulation of Py,

lim
z∈Py,z→y

F[n−1](z)− F[n−1](y)
z − y

= F[n](y)

and ∣∣∣∣F[n−1](z)− F[n−1](y)
z − y

− F[n](y)
∣∣∣∣ ≤ 1 for every z ∈ Py .

Theorem 35 assures the existence of Py.
To define the system {Ex : x ∈ R} of paths with respect to which a given

nth generalized Peano derivative, F[n], is the path derivative of F[n−1], we
begin with some notation.

For x, y ∈ R let δ(x, y) = min{1, |y − x|/3}. For x ∈ R and M ∈ N let

Rx =
⋃
{Py ∩ [y, y + δ(x, y)2) : y ∈ PM (1, 1/M) and y is right isolated

from PN (1, 1/N) for N ∈ N} ,
Lx =

⋃
{Py ∩ (y − δ(x, y)2, y] : y ∈ PM (1, 1/M) and y is left isolated

from PN (1, 1/N) for N ∈ N} .
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Definition 47. Let x ∈ R. If there is an Mx ∈ N such that x is a
bilateral point of accumulation of PMx(1, 1/Mx), then let

Ex = PMx
(1, 1/Mx) ∪Rx ∪ Lx .

If x is a right isolated point of PM (1, 1/M) for every positive constant M
but there is an Mx so that x is a left point of accumulation of PMx(1, 1/Mx),
or if x is a left isolated point of PM (1, 1/M) for every positive constantM but
there is an Mx so that x is a right point of accumulation of PMx

(1, 1/Mx),
let

Ex = PMx(1, 1/Mx) ∪ Px ∪Rx ∪ Lx .

Finally, if x is an isolated point of PM (1, 1/M) for every positive constant
M then let Mx = 1 and let

Ex = PMx(1, 1/Mx) ∪ Px ∪Rx ∪ Lx .

Definition 48. Let E be the system of paths {Ex : x ∈ R}.
Lemma 49. Let n ∈ N and let F be a function defined on R such that

F[n](x) exists at every x ∈ R. Then E is bilateral and satisfies the I.I.C.
condition.

P r o o f. Clearly E is bilateral. We will prove a stronger condition than
I.I.C.: for any two points x and y, Ex ∩ Ey ∩ (x, y) 6= ∅. Let x < y be any
two points. Suppose Mx ≤ My. If x is a right point of accumulation of
PMx

(1, 1/Mx) ⊂ PMy
(1, 1/My), then Ex ∩ Ey ∩ (x, y) 6= ∅.

If x is a right isolated point of PMx
(1, 1/Mx), then by choice of Mx, x is a

right isolated point of PM (1, 1/M) for every M ∈ N and x ∈ PMy (1, 1/My).
Thus

∅ 6= Px ∩ [x, x+ δ(x, y)2) ∩ (x, y) ⊂ Ex ∩ Ey ∩ (x, y) .
If Mx > My and if y is a left point of accumulation of PMy (1, 1/My) ⊂

PMx(1, 1/Mx) then Ex ∩ Ey ∩ (x, y) 6= ∅.
If y is a left isolated point of PMy

(1, 1/My), then by a similar argument
Ex ∩ Ey ∩ (x, y) 6= ∅. Therefore E satisfies the I.I.C. condition.

Theorem 50. Let F be a continuous function defined on R so that F[n]

exists at every point x ∈ R. Then F[n−1] is E-differentiable with F ′[n−1]E(x)
= F[n](x).

P r o o f. Let x ∈ R and ε > 0 be given. Then there is an η with ε > η > 0
such that

(20)
∣∣∣∣F[n−1](y)− F[n−1](x)

y − x
− F[n](x)

∣∣∣∣ < ε

whenever |y−x| < η where y ∈ PMx(1, 1/Mx) or y ∈ Px. Let z ∈ Ex be such
that |z − x| < η/2. If z ∈ Py for some y ∈ PMx(1, 1/Mx) such that y is an
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isolated point of PN (1, 1/N) from either left or right, and for every positive
constant N , then η/2 > |z−x| ≥ |x−y|−|y−z| ≥ 2δ(x, y)−δ(x, y) = δ(x, y).
Therefore |y − x| ≤ |y − z|+ |x− z| < δ(x, y) + η/2 < η. Hence by (20),

(21)
∣∣∣∣F[n−1](y)− F[n−1](x)

y − x
− F[n](x)

∣∣∣∣ < ε .

Thus∣∣∣∣F[n−1](z)− F[n−1](x)
z − x

− F[n](x)
∣∣∣∣

=
∣∣∣∣(F[n−1](y)− F[n−1](x)

y − x
− F[n](x)

)
y − x

z − x

+
(
F[n−1](z)− F[n−1](y)

z − y
− F[n](y)

)
z − y

z − x

+
z − y

z − x
(F[n](y)− F[n](x))

∣∣∣∣
≤

∣∣∣∣F[n−1](y)− F[n−1](x)
y − x

− F[n](x)
∣∣∣∣∣∣∣∣1− z − y

z − x

∣∣∣∣
+

∣∣∣∣F[n−1](z)− F[n−1](y)
z − y

− F[n](y)
∣∣∣∣∣∣∣∣ z − y

z − x

∣∣∣∣
+

∣∣∣∣ z − y

z − x

∣∣∣∣(|F[n](x)|+ |F[n](y)|) .

By (21), Theorem 17 and the relationship between x, y and z, the above is

≤ ε

(
1 +

δ(x, y)2

δ(x, y)

)
+ 1 · δ(x, y)

2

δ(x, y)
+
δ(x, y)2

δ(x, y)
4M

≤ 2ε+ δ(x, y)(1 + 4M) ≤ 2ε+
ε

2
(1 + 4M)

where M is a constant coming from Theorem 17. Since ε was arbitrary we
conclude that F ′[n−1]E(x) exists and equals F[n](x).

Definition 51. If for a given function F there is a function p of two
variables, called a selection, satisfying p(x, y) = p(y, x) and p(x, y) ∈ (x, y),
so that

(22) lim
y→x

F (p(x, y))− F (x)
p(x, y)− x

exists, we say that F is selectively differentiable at x; the limit in (22) is
then called a selective derivative of F at x and denoted by F ′p(x).

Corollary 52. Let F be a continuous function defined on R so that
F[n] exists at every x ∈ R. Then F[n] is a selective derivative of F[n−1].
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P r o o f. Define a selection p(x, y) as follows: If x < y, let p(x, y) = z,
where z is any point in Ex ∩ Ey ∩ (x, y); if x = y, let p(x, x) = x. Then for
fixed x0 we have

lim
y→x0

F[n−1](p(x0, y))− F[n−1](x0)
p(x0, y)− x0

= lim
z→x0

F[n−1](z)− F[n−1](x0)
z − x0

.

Since z ∈ Ex we see that the above limit exists and equals F[n](x0).
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