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Abstract. Let φ be an arbitrary bijection of R+. We prove that if the two-place
function φ−1[φ(s) + φ(t)] is subadditive in R2

+ then φ must be a convex homeomorphism
of R+. This is a partial converse of Mulholland’s inequality. Some new properties of
subadditive bijections of R+ are also given. We apply the above results to obtain several
converses of Minkowski’s inequality.

Introduction. Throughout this paper R, R+, and N will stand respec-
tively for the set of reals, nonnegative reals, and positive integers.

Every function f : R+ → R satisfying the inequality

f(s + t) ≤ f(s) + f(t) (s, t ≥ 0)

is said to be subadditive. If the inequality is reversed the function is termed
superadditive.

In our recent paper [4] we have proved the following

Theorem 1. If f : R+ → R+ is subadditive, right-continuous at 0 and
bijective then f is a homeomorphism of R+.

In Section 1 we consider the two-place function pφ : R2
+→R+ given by

the formula pφ(s, t) := φ−1[φ(s) + φ(t)] where φ : R+→R+ is an arbitrary
bijection. Using Theorem 1 we prove that if pφ is subadditive in R2

+ then
φ is a convex homeomorphism of R+. This is a partial converse of Mulhol-
land’s criterion of subadditivity of the functional pφ (cf. H. P. Mulholland

1991 Mathematics Subject Classification: Primary 26D15, 46E30, 39C05; Secondary
26A51, 26A18.
Key words and phrases: subadditive function, homeomorphisms of R+, Mulholland’s

inequality, convex function, iteration, measure space, the converse of Minkowski’s inequal-
ity.



76 J. Matkowski and T. Świa̧tkowski

[6], also M. Kuczma [2], p. 201, Theorem 1). In Section 2 we apply this
result to improve some converses of Minkowski’s inequality for lp2-norm.

In [5] we have shown that in Theorem 1 the right continuity at 0 cannot
be replaced by a weaker assumption of boundedness in a neighbourhood
of 0. However, in Section 3 of the present paper we prove among other
things that if φ is a bijection of R+ such that φ−1 and , for some positive
integer n > 1, the function φ ◦ (nφ−1) are subadditive and φ−1 is bounded
in a neighbourhood of 0 then φ is a homeomorphism of R+. This result
together with Theorem 1 as well as the main result of Section 1 permit us
(Section 4) to prove some new converses of Minkowski’s inequality for the
Lp-norm. One of these results (Theorem 8) reads as follows. Let (Ω,Σ, µ)
be a measure space with at least three sets A,B, C ∈ Σ such that

0 < µ(A) < 1 , µ(B) = µ(C) = 1 , B ∩ C = ∅ .

If φ : R+ → R+ is a bijection such that φ(0) = 0 and for all nonnegative
µ-integrable step functions x, y,

φ−1
( ∫

Ω

φ ◦ |x + y| dµ
)
≤ φ−1

( ∫
Ω

φ ◦ |x| dµ
)

+ φ−1
( ∫

Ω

φ ◦ |y| dµ
)

then, without any regularity conditions, φ(t) = φ(1)tp (t ≥ 0) for some
p ≥ 1.

1. Subadditive functions of the form φ−1[φ(s)+φ(t)] and a partial
converse of Mulholland’s inequality. For an arbitrary bijection φ :
R+ → R+ the two-place function pφ : R2

+ → R+ given by the formula

pφ(x) := φ−1[φ(x1) + φ(x2)], x = (x1, x2) ,

is well defined. Functions of this form are known to be solutions of the
associativity functional equation (cf. J. Aczél [1], p. 253). Moreover, if
φ(t) = φ(1)tp, p ≥ 1, then, in view of Minkowski’s inequality, pφ is subaddi-
tive. This classical fact has been generalized by H. P. Mulholland [6] (cf. also
M. Kuczma [2], p. 198), who proved the following criterion of subadditivity
for pφ.

Mulholland’s Inequality. If φ : R+ → R+ is a convex homeomor-
phism of R+ such that log ◦φ ◦ exp is convex in R then the functional pφ

is subadditive in R2
+.

Using Theorem 1, we prove a partial converse.

Theorem 2. Let φ : R+ → R+ be an arbitrary bijection of R+. If pφ

is subadditive in R2
+ then φ is a convex homeomorphism of R+.

P r o o f. Writing out the subadditivity of pφ we have
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(1) φ−1[φ(x1 + y1) + φ(x2 + y2)]
≤ φ−1[φ(x1) + φ(x2)] + φ−1[φ(y1) + φ(y2)]

for all x1, x2, y1, y2 ≥ 0. Setting here x1 = x2 := s, y1 = y2 := t, we get

(2) φ−1[2φ(s + t)] ≤ φ−1[2φ(s)] + φ−1[2φ(t)], s, t ≥ 0 ,

which means that the function f := φ−1 ◦ (2φ) is subadditive in R+. Since
f maps R+ onto R+, there exists a t0 ≥ 0 such that f(t0) = 0. From (2)
we have f(2t0) ≤ 2f(t0) = 0 and, consequently, f(2t0) = f(t0). Since f
is one-to-one it follows that t0 = 0. Hence we get f(0) = φ−1[2φ(0)] = 0,
which implies that φ(0) = 0. Therefore, substituting x1 := s, x2 = y1 := 0,
y2 := t in (1), we get

(3) φ−1[φ(s) + φ(t)] ≤ s + t, s, t ≥ 0 .

In particular, φ−1[2φ(t)] ≤ 2t (t ≥ 0). This proves that the function f =
φ−1 ◦ (2φ) is continuous at 0. In view of Theorem 1, f is a homeomorphism
of R+.

Substituting x1 = y2 := s, x2 = y1 := t in (1) we get

f(s + t) ≤ 2φ−1[φ(s) + φ(t)] , s, t ≥ 0 .

As f is strictly increasing, it follows that

(4) f(t) < 2φ−1[φ(s) + φ(t)] , s, t > 0 .

Since f(t) = t if and only if t = 0 we have either

(a) f(t) < t for all t > 0, or
(b) f(t) > t for all t > 0.

We are going to show that case (a) cannot occur. To this end denote
by fn the nth iterate of f . In case (a) the sequence (fn(t))∞n=1 would be
strictly decreasing for every t > 0. Therefore, since fn(t) = φ−1[2nφ(t)], we
would have from (4),

φ−1[2nφ(t)] < 2φ−1[φ(s) + φ(t)] , s, t > 0 , n ∈ N .

Replacing t by φ−1[2−nφ(t)] we hence obtain

t < 2φ−1[φ(s) + 2−nφ(t)], s, t > 0 , n ∈ N .

Fix t > 0. For n ∈ N sufficiently large we clearly have φ(2−1t)−2−nφ(t) > 0.
Substituting in the above inequality

s := φ−1[φ(2−1t)− 2−nφ(t)]

we get t < t, which is a contradiction.
This proves that f satisfies inequality (b).
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Now we are in a position to prove that φ−1 is continuous at 0. From (4)
and (b) we have

t < 2φ−1[φ(s) + φ(t)] , s, t > 0 ,

or, equivalently,

(5) φ−1(t) < 2φ−1(s + t) , s, t > 0 .

If φ−1 were discontinuous at 0 then there would exist an ε > 0 and a sequence
of positive reals (tn)∞n=1 such that

lim
n→∞

tn = 0 and 2ε ≤ φ−1(tn) , n ∈ N .

Hence, setting t := tn in (5), we obtain

ε ≤ φ−1(s + tn) , s > 0 , n ∈ N .

This inequality and the relation limn→∞ tn = 0 imply that

φ−1[(0,∞)] =
∞⋃

n=1

φ−1[(tn,∞)] ⊆
∞⋃

n=1

[ε,∞) = [ε,∞) ,

which contradicts the bijectivity of φ and proves that φ−1 is continuous at 0.
Since φ is bijective it follows from (3) that φ−1 is a subadditive bijection

of R+. In view of Theorem 1 the function φ−1 is a homeomorphism of R+

and, consequently, increasing.
Hence for all s, t ≥ 0 with s ≤ t, the numbers

(6)
x1 := φ−1(s) , x2 := φ−1

(
t− s

2

)
,

y1 := φ−1

(
s + t

2

)
− φ−1(s) , y2 := 0

are nonnegative. Inserting them in (1) we obtain

φ−1(s) + φ−1(t)
2

≤ φ−1

(
s + t

2

)
, s, t ≥ 0 ,

i.e. φ−1 is Jensen concave. Since φ−1 is continuous and increasing it follows
that φ is convex. This completes the proof.

R e m a r k 1. If f : R+ → R+ satisfies f(s)+f(t) ≤ f(s+t), s, t ≥ 0, then
obviously it is increasing and f(0) = 0. Thus every superadditive bijection
of R+ is a homeomorphism. This permits us to prove a dual counterpart
of Theorem 2.

Theorem 3. Let φ : R+ → R+ be an arbitrary bijection. If pφ is
superadditive in R2

+ then φ is a concave homeomorphism of R+.

P r o o f. Suppose that pφ is superadditive in R2
+. It is easy to see that

φ(0) = 0 and φ−1 is superadditive. By Remark 1, φ−1 is a homeomorphism
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of R+. Substituting in the reversed inequality (1) the numbers x1, x2, y1,
y2 defined by (6) we conclude that φ is concave.

This is a partial converse of Mulholland’s inequality stating that if φ and
log ◦φ ◦ exp are concave then pφ is superadditive [6].

2. An application to a partial converse of Minkowski’s inequal-
ity for lp2-norm. Mulholland’s inequality provides us with a broad class of
bijective functions φ for which the functional pφ is subadditive in R2

+. It
is easy to verify that every power function φ(t) := φ(1)tp, p ≥ 1, belongs
to this class and that the subadditivity of pφ becomes the simplest version
of Minkowski’s inequality for the lp2-norm. The main result of this section
says that, under only some regularity assumptions, the subadditivity of the
functional pφ implies that φ is a power function. We start with the following

Theorem 4. Let φ : R+ → R+ be an arbitrary bijection and suppose that
the functional pφ is subadditive in R2

+. Then φ is a convex homeomorphism
of R+ and the limit

c0 := lim
t→∞

φ(t)
t

exists where 0 < c0 ≤ ∞. Moreover :

(a) if c0 < ∞ then φ(t) = c0t (t ≥ 0);
(b) if c0 = ∞ and there exists a p > 1 such that the limit

c := lim
t→∞

φ(t)
tp

exists, 0 < c < ∞, and the function φ1/p is convex then φ(t) = ctp (t ≥ 0).

P r o o f. By Theorem 2 the function φ is a convex homeomorphism of
R+. Thus φ(0) = 0 and, consequently, the function (0,∞) 3 t → φ(t)/t is
increasing. This implies that the limit c0 exists and 0 < c0 ≤ ∞.

Inequality (1) holds by assumptions. Setting x1 = x2 := s, y1 = y2 := t
in (1) we get inequality (2), which means that f := φ−1◦(2φ) is subadditive.
Since f is increasing it follows that fn, the nth iterate of f , is subadditive,
i.e.

(7) φ−1[2nφ(s + t)] ≤ φ−1[2nφ(s)] + φ−1[2nφ(t)] , s, t ≥ 0, n ∈ N .

Suppose now that c0 is finite. Then limt→∞ φ−1(t)/t = c−1
0 . Writing (7)

in the form
φ−1[2nφ(s + t)]

2nφ(s + t)
φ(s + t) ≤ φ−1[2nφ(s)]

2nφ(s)
φ(s) +

φ−1[2nφ(t)]
2nφ(t)

φ(t)

for s, t > 0, n ∈ N, and letting n tend to infinity we hence get

φ(s + t) ≤ φ(s) + φ(t) , s, t > 0 ,
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i.e. φ is subadditive. On the other hand, φ, being convex and satisfying
φ(0) = 0, is superadditive. Thus φ is additive and, consequently, φ(t) = c0t
(t ≥ 0) (cf. J. Aczél [1], p. 34, Theorem 1).

Suppose that c0 = ∞. Now limt→∞ φ−1(t)/t1/p = c−1/p. Therefore
writing (7) in the form

φ−1[2nφ(s + t)]
[2nφ(s + t)]1/p

[φ(s + t)]1/p ≤ φ−1[2nφ(s)]
[2nφ(s)]1/p

[φ(s)]1/p +
φ−1[2nφ(t)]
[2nφ(t)]1/p

[φ(t)]1/p

for all s, t > 0, n ∈ N, and letting n tend to infinity we get

[φ(s + t)]1/p ≤ [φ(s)]1/p + [φ(t)]1/p , s, t ≥ 0 ,

i.e. φ1/p is subadditive. Since φ1/p is increasing and by assumption convex,
it follows that it is superadditive. Thus φ1/p is additive and, consequently,
linear. This concludes the proof.

R e m a r k 2. One can easily verify that the assumption of convexity of
φ1/p in Theorem 4(b) can be replaced by each of the following conditions:

(i) t → φ(t1/p) is convex in (0,∞);
(ii) t → t−1φ(t1/p) is increasing in (0,∞);
(iii) t → t−1[φ(t)]1/p is increasing in (0,∞);
(iv) t → φ(t1/p) is superadditive in (0,∞);
(v) φ1/p is superadditive.

This improves our earlier result (cf. [4], Corollary 2) where it is assumed
that φ(0) = 0 and φ−1 is continuous at 0.

If we drop the convexity assumption in Theorem 4(b) we can only assert
that φ(t) ≥ ctp (t ≥ 0). In fact, in view of the first part of the proof
of Theorem 4(b), where we do not use the convexity assumption, φ1/p is
subadditive. Therefore

[φ(nt)]1/p ≤ n[φ(t)]1/p , t > 0 , n ∈ N ,

or, equivalently,
φ(nt)
(nt)p

tp ≤ φ(t) , t > 0, n ∈ N .

As n tends to infinity we hence obtain ctp ≤ φ(t) for all t > 0 (cf. also [4],
Proposition 5). In this connection consider the following

Example. For p > 1 the function φ(t) := tp + tp−1, t ≥ 0, is obviously
convex. After some simple calculations we have

(log ◦φ ◦ exp)′′(u) = (u + 1)−2 , u ∈ R ,

which proves that log ◦φ ◦ exp is also convex. Thus, by Mulholland’s in-
equality, pφ is subadditive in R2

+. Since φ is not a power function, this
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example shows that in Theorem 4(b) the convexity of φ1/p (or of any of its
substitutes (i)–(v)) is essential.

R e m a r k 3. It is easy to observe that the assumption of the existence
of p > 1 such that the limit

c := lim
t→∞

φ(t)
tp

is positive and finite in Theorem 4(b) can be replaced by the existence of a
finite positive limit

lim
t→0

φ(t)
tp

.

R e m a r k 4. Making use of Remark 3 one can easily get the counterparts
of the above results for pφ superadditive.

3. Functions conjugate to linear functions and subadditivity.
In the proofs of Theorems 2 and 4 we considered functions of the form
f := φ−1 ◦ (aφ), with a = 2n, n ∈ N. Since φ ◦ f ◦ φ−1(t) = at, the
function f is φ-conjugate to the linear function t → at. In this section we
are concerned with some properties of such functions.

Theorem 5. If φ : R+ → R+ is a bijection such that

(i) φ−1 is subadditive;
(ii) φ−1 ◦ (aφ) is continuous for some a > 0, a 6= 1;
(iii) φ−1 is bounded in (0, c) for some c > 0,

then φ is a homeomorphism of R+.

P r o o f. Since t = 0 is the only fixed point of the homeomorphism
f := φ−1 ◦ (aφ), we have either

(a) f(t) < t for all t > 0, or
(b) f(t) > t for all t > 0.

Take an arbitrary x0 > 0 and define
xk+1 := f(xk) (k = 0,±1,±2, . . .) .

One can easily verify that
φ(xk) = akφ(x0) (k = 0,±1,±2, . . .) .

In the sequel, without any loss of generality, we may assume that a > 1.
(In fact, if 0 < a < 1, consider the function φ−1 ◦ (a−1φ) which, being the
inverse of f , is also a homeomorphism of R+.)

Note that case (a) cannot occur. Indeed, in this case we have xk+1 < xk

for all integer k. Consequently, the limit
c := lim

k→∞
x−k > x0 > 0

exists. If c < ∞ then, by the continuity of f , we would have
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f(c) = lim
k→∞

f(x−k) = lim
k→∞

x−k+1 = c ,

which is a contradiction.
Suppose that c = ∞ and put yk := φ(x−k), k ∈ N. Since

lim
k→∞

yk = lim
k→∞

φ(x−k) = lim
k→∞

a−kφ(x0) = 0 ,

we hence get

lim
k→∞

φ−1(yk) = lim
k→∞

x−k = c = ∞ .

This is a contradiction as φ−1 is bounded in a neighbourhood of 0.
This proves that f satisfies inequality (b). Consequently,

xk < xk+1, k = 0,±1,±2, . . . ,

and, by the continuity of f ,

lim
k→∞

f(x−k) = 0, lim
k→∞

f(xk) = ∞ .

It follows that

(0,∞) =
∞⋃

k=−∞

[xk, xk+1) .

Because [xk, xk+1) = f([xk−1, xk)), we have φ([xk, xk+1)) = aφ([xk−1, xk)).
Setting

Ek := φ([xk, xk+1)) (k = 0,±1,±2, . . .) ,

we obtain

Ek = aEk−1 := {at : t ∈ Ek−1} = akE0 (k = 0,±1,±2, . . .) .

Since φ is bijective, the sets Ek are pairwise disjoint and

(0,∞) =
∞⋃

k=−∞

Ek .

Observe that 0 is not a limit point of the set E0. For an indirect proof
suppose that this is not the case. Then there exists a sequence yk ∈ E0

(k ∈ N) such that zk := akyk (k ∈ N) satisfies limk→∞ zk = 0. Since zk ∈ Ek

(k ∈ N), we hence get φ−1(zk) ∈ [xk, xk+1) (k ∈ N) and limk→∞ φ−1(zk)
= ∞. This contradicts the boundedness of φ−1 in a neighbourhood of 0.

Hence, putting δk := inf Ek (k = 0,±1,±2, . . .), we have

δk = akδ0 > 0 (k = 0,±1,±2, . . .) .

Taking an arbitrary integer n we get
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φ([xn,∞)) = φ
( ∞⋃

k=n

[xk, xk+1)
)

=
∞⋃

k=n

φ([xk, xk+1))

=
∞⋃

k=n

Ek ⊆
∞⋃

k=n

[δk,∞) = [δn,∞) = [anδ0,∞) ,

which means that for every t,
0 < t < anδ0 ⇒ φ−1(t) < xn .

Since n = 0,±1,±2, . . . is arbitrary and limn→∞ x−n = 0, this implies that
φ−1 is continuous at 0. Now Theorem 1 concludes the proof.

Example. Let α : R → R be a discontinuous additive involution (cf. [2],
p. 293, Theorem 2) and let φ := |α||R+ (the restriction of |α| to R+). Since
α = α−1, it is easy to verify that

1o φ−1 and φ are subadditive bijections of R+;
2o for every rational a > 0 the function φ−1 ◦ (aφ) is linear;
3o the graphs of φ and φ−1 are dense in R2

+.

Thus φ−1 ◦ (aφ) can be homeomorphic (even linear) for extremely irregular
φ. This also shows that assumption (iii) of Theorem 5 is essential.

The main result of this section reads as follows.

Theorem 6. If a bijective function φ : R+ → R+ satisfies the following
conditions:

(i) φ−1 is subadditive;
(ii) there exists n ∈ N, n > 1, such that φ−1 ◦ (nφ) is subadditive;
(iii) φ−1 is bounded in a neighbourhood of 0,

then φ is a homeomorphism of R+.

P r o o f. Clearly f := φ−1 ◦ (nφ) is a bijection of R+. From (i) we get
f(t) = φ−1(nφ(t)) ≤ nφ−1(φ(t)) = nt , t ∈ [0,∞) ,

which proves that f is continuous at 0. In view of Theorem 1 the function
f is a homeomorphism of R+. Now Theorem 5 concludes the proof.

R e m a r k 5. The function φ : R+ → R+ given by φ(t) := t−1 (t > 0)
and φ(0) = 0 is a subadditive bijection of R+. Moreover, for every a > 0
the function φ−1 ◦ (aφ)(t) = at (t ≥ 0) is additive. This shows that the
assumption (iii) of Theorem 6 is indispensable.

4. A contribution to the converse of Minkowski’s integral in-
equality. For a measure space (Ω,Σ, µ) denote by S = S(Ω,Σ, µ) the set
of all µ-integrable step functions x : Ω → R and by S+ the set of all nonneg-
ative x ∈ S. It can be easily verified that for every bijection φ : R+ → R+
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such that φ(0) = 0 the functional Pφ : S → R+ given by the formula

Pφ(x) := φ−1
( ∫

Ω

φ ◦ |x| dµ
)
, x ∈ S ,

is well-defined. In [3] the following converse of Minkowski’s inequality has
been proved.

If (Ω,Σ, µ) is a measure space with two sets A,B ∈ Σ such that
0 < µ(A) < 1 < µ(B) < ∞

and φ is a bijection such that φ(0) = 0, φ−1 is continuous at 0 and
Pφ(x + y) ≤ Pφ(x) + Pφ(y) , x, y ∈ S+ ,

then φ(t) = φ(1)tp (t ≥ 0) for some p ≥ 1.

At least from the aesthetic point of view this result would be more sat-
isfactory if the purely technical continuity assumption could be dropped.
This seems to be a rather difficult question. To explain the role of this
assumption observe that φ(0) = 0 and the triangle inequality for Pφ im-
ply that f := φ−1 is subadditive in R+. Therefore, by Theorem 1, φ is a
homeomorphism of R+. This is a starting point of the proof given in [3].

An attempt at replacing the continuity of φ−1 at 0 by the boundedness
of φ−1 in a neighbourhood of 0 causes serious difficulties (cf. [5]). However,
making use of Theorem 6, we can prove the following

Theorem 7. Let (Ω,Σ, µ) be a measure space with two disjoint sets
A,B ∈ Σ such that µ(A) ∈ (0, 1) and µ(B) ∈ N\{1}. If φ : R+ → R+ is
an arbitrary bijection such that φ(0) = 0, the function φ−1 is bounded in a
neighbourhood of 0 and
(8) Pφ(x + y) ≤ Pφ(x) + Pφ(y) , x, y ∈ S+ ,

then φ(t) = φ(1)tp (t ≥ 0) for some p ≥ 1.

P r o o f. Put a := µ(A), n := µ(B) and denote by χ
C

the characteristic
function of a set C. Setting in (8),

x := x1χA
+ x2χB

, y := y1χA
+ y2χB

(x1, x2, y1, y2 ≥ 0) ,

we get the inequality
(9) φ−1[aφ(x1 + y1) + nφ(x2 + y2)]

≤ φ−1[aφ(x1) + nφ(x2)] + φ−1[aφ(y1) + nφ(y2)]
for all nonnegative x1, x2, y1, y2. Hence, specifying these variables in an
obvious way and making use of the assumption φ(0) = 0, we infer that φ−1

and φ−1 ◦ (nφ) are subadditive. Since φ−1 is bounded in a neighbourhood
of 0, Theorem 6 implies that φ is a homeomorphism of R+. We also have
0 < µ(A) < 1 < µ(B) < ∞. Now our theorem results from the converse of
Minkowski’s inequality quoted above.
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We end this paper with one more application of Theorem 2. Strength-
ening slightly the assumptions on the underlying measure space, we prove
a converse of Minkowski’s inequality without any regularity assumptions.

Theorem 8. Let (Ω,Σ, µ) be a measure space with three sets A,B, C
∈ Σ such that

0 < µ(A) < 1, µ(B) = µ(C) = 1, B ∩ C = ∅.
If φ : R+ → R+ is a bijection such that φ(0) = 0 and

Pφ(x + y) ≤ Pφ(x) + Pφ(y) , x, y ∈ S+ ,

then φ(t) = φ(1)tp (t ≥ 0) for some p ≥ 1.

P r o o f. One can easily verify that taking in the triangle inequality (8),
x := x1χB

+ x2χC
, y := y1χB

+ y2χC
(x1, x2, y1, y2 ≥ 0) ,

we get inequality (1). It means that the functional pφ : R2
+ → R+ given by

the formula
pφ(x) := φ−1[φ(x1) + φ(x2)] , x = (x1, x2) ,

is subadditive. By Theorem 2 the function φ is a homeomorphism of R+

and, consequently, φ−1 is continuous at 0. Since 0 < µ(A) < 1 and µ(B ∪
C) = 2, our theorem follows from the above quoted converse of Minkowski’s
inequality.
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