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The Bohr compactification, modulo a metrizable subgroup
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Abstract. The authors prove the following result, which generalizes a well-known
theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compact-
ification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies:
A · (N ∩G) is compact in G if and only if {aN : a ∈ A} is compact in bG/N . Examples
are given to show: (a) the asserted equivalence can fail in the absence of the metrizability
hypothesis, even when N ∩ G = {1}; (b) the asserted equivalence can hold for suitable
G and N with N closed in bG but not metrizable; (c) an Abelian group may admit two
topological group topologies U and T , with U totally bounded, T locally compact, U ⊆ T ,
with U and T sharing the same compact sets, and such that nevertheless U is not the
topology inherited from the Bohr compactification of 〈G, T 〉.
There are applications to topological groups of the form kG for G a totally bounded

Abelian group.

1. Introduction: notation, definitions, and results
from the literature

1.1. The classes TBAG, MAP, and LCAG. A topological group G is
said to be totally bounded if there is a compact group K such that G is a
topological subgroup of K. When this occurs one may assume, replacing K
by clKG if necessary, that G is dense in K. It is a theorem of A. Weil [W]
that when G is totally bounded the compact group K containing G densely
is unique up to a topological isomorphism leaving G fixed pointwise. We
write K = G and we refer to K as the Weil completion of G. We denote by
TBAG the class of totally bounded Hausdorff (Abelian) topological groups.

Given an Abelian topological group G = 〈G, T 〉, we denote by Ĝ or
by 〈G, T 〉∧ the set of continuous homomorphisms from G into the circle
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group T. Writing K = TĜ, we define e : G→ K by

(ex)h = h(x) for x ∈ G, h ∈ Ĝ ,
and we set bG = clK e[G]; the group bG is the so-called Bohr compactifica-
tion of G.

Clearly the homomorphism e is an isomorphism if and only if Ĝ separates
points ofG. The groups which satisfy this condition are said to be maximally
almost periodic in the sense of von Neumann. We denote by MAP the class
of maximally almost periodic (Abelian) groups. ForG = 〈G, T 〉 ∈ MAP we
denote by T + the topology of bG (or, with minor abuse of notation, any one
of its subspaces). In general we suppress explicit mention of the isomorphism
e; we treat G as a subset of bG. Thus 〈G, T +〉 (alternative notation: G+)
denotes G with the totally bounded topological group topology inherited
from bG; that is, G+ is G with the weak topology induced by Ĝ. More
generally, given 〈G, T 〉 ∈ MAP and A ⊆ G, we denote by 〈A, T 〉 the set
A with the topology inherited from G and by 〈A, T +〉 the set A with the
topology inherited from G+ (that is, from bG).

For P a topological property and G = 〈G, T 〉 ∈ MAP we say, following
[T1], [T2], [CT], [T3], that G respects P if every A ⊆ G satisfies: 〈A, T 〉 ∈ P
if and only if 〈A, T +〉 ∈ P.

We denote by LCAG the class of locally compact, Abelian, Hausdorff
topological groups. The class-theoretic inclusion LCAG ⊆ MAP is crucial
to the success of Pontryagin duality theory; see [HR](22.17) for a proof.

We say as usual, as in 3.1 below, that a (not necessarily locally com-
pact) group G satisfies Pontryagin duality if the evaluation function from G

into ̂̂
G is a surjective homeomorphism and an isomorphism. It is evident

that every group G satisfying Pontryagin duality must satisfy G ∈ MAP.
It is a well-known result of Glicksberg [G] that every G ∈ LCAG re-

spects compactness. (Throughout this paper, we refer to this statement as
“Glicksberg’s theorem.”) There is a useful addendum to Glicksberg’s theo-
rem, noted by Glicksberg himself: If A ⊆ G = 〈G, T 〉 ∈ LCAG, then not
only is 〈A, T 〉 compact if and only if 〈A, T +〉 is compact but also (if these
conditions hold) the identity function i : 〈A, T 〉 → 〈A, T +〉 is a homeomor-
phism; this follows from the inclusion T + ⊆ T and the fact that a compact
Hausdorff space admits no strictly finer Hausdorff topology.

It is shown in [T1], [T2], generalizing Glicksberg’s theorem, that every
G ∈ LCAG respects in addition the properties P = σ-compact, P = Lin-
delöf, P = pseudocompact, and P = functionally bounded. For the second
two of these properties P the identity function e : 〈A, T 〉 → 〈A, T +〉 is again
a homeomorphism if 〈A, T 〉 ∈ P, but for P = σ-compact or P = Lindelöf the
corresponding statement fails. (It is easy to see, for example, denoting by T
the usual locally compact topology on the real line R, that the containment
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T + ⊆ T is strict. Indeed, T + is a totally bounded group topology for R,
while T is not.)

1.2. Discussion. The fact that 〈G, T +〉 is totally bounded whenever
〈G, T 〉 ∈ MAP (in particular, whenever 〈G, T 〉 ∈ LCAG) suggests two
natural questions.

(1) Let 〈G, U〉 ∈ TBAG. Must there exist a topological group topology
T for G such that 〈G, T 〉 ∈ LCAG and U = T +?

(2) Let G be an Abelian group with topological group topologies T and
U such that 〈G, T 〉 ∈ LCAG, 〈G,U〉 ∈ TBAG, U ⊆ T , and each A ⊆ G
satisfies: A is T -compact if and only if A is U-compact. Does it follow that
U = T +?

We show in this paper that the answer to both these questions is “No”.
In what follows all hypothesized topological groups are assumed to satisfy
the Hausdorff separation axiom. As is well-known, this ensures that our
topological groups are completely regular, Hausdorff spaces, i.e., Tikhonov
spaces.

The next two theorems record and assemble certain familiar facts from
the literature. These will be used below.

1.3. Theorem. Let G = 〈G, T 〉 be a topological group.

(a) If G is first countable then G is metrizable.
(b) If G has a dense metrizable subgroup then G itself is metrizable.
(c) If G is Abelian and G ∈ MAP, then 〈G, T 〉∧ = 〈G, T +〉∧.
(d) If N is a compact subgroup of a topological group G, and if {xN :

x ∈ A} is compact in G/N (with A ⊆ G), then AN is compact in G.

A proof of (a) is given in [HR](8.3); (b) follows from (a) and the fact
that if p ∈ D ⊆ X with D dense in X and X a Tikhonov space, then the
local weight of D at p is equal to the local weight of X at p. As for (c), the
inclusion ⊆ is clear from the definitions of bG and T +, while ⊇ follows from
the inclusion T + ⊆ T .

Statement (d) appears in [HR](5.24(a)).

1.4. Theorem. Let G,H ∈ LCAG. Then

(a) b(G×H) = bG × bH;
(b) every subgroup F of G satisfies F ∈ MAP and bF = clbGF ; and
(c) if H ⊆ G, then b(G/H) = bG/bH.

P r o o f. (a) is immediate from the relation (G × H)∧ = Ĝ × Ĥ (cf.
[HR](23.18)).

(b) That F ∈ MAP follows from G ∈ MAP. Since every f ∈ F̂ is
uniformly continuous on F , such f extends continuously over clG F and
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hence to f ∈ Ĝ ([HR](24.12)); thus Ĝ and F̂ induce the same topology on
F and (b) follows from Weil’s uniqueness theorem cited in 1.1.

(c) The group H is closed in G ([HR](5.11)), so it is enough to notice
that bG/bH is a compact group containing densely an isomorph of G/H
(given by xH → xbH for x ∈ G) such that every h ∈ (G/H)∧ remains
continuous in the topology induced by bG/bH on G/H; thus bG/bH is the
Weil completion of (G/H)+, and (c) follows.

The following statement is proved by Flor [F]; see also Reid [Re] and
Ross [Ro].

1.5. Theorem. Let G ∈ LCAG and let limk→∞ xk = p ∈ bG with each
xk ∈ G. Then

(a) p ∈ G, and
(b) not only xk → p (T +), but also xk → p (T ).

1.6. Notation.When we consider the additive group R or its subgroups
Z and Q, we use additive notation and we denote the neutral element by the
symbol 0. In other contexts in this paper, even when the group in question is
assumed Abelian, we use multiplicative notation and we denote the neutral
element by the symbol 1.

1.7. R e m a r k s. (a) The map e : G→ bG is an isomorphism (since we
have defined bG only when G is Abelian and Ĝ separates points of G) but
it is to be noted that only in the most trivial of cases is the group bG a
compactification of G in the topologist’s usual sense. Indeed, according to
[CR](1.2) the isomorphism e is a homeomorphism from G = 〈G, T 〉 into bG
if and only if G ∈ TBAG; for G ∈ LCAG this occurs if and only if G is
compact (in which case e is a homeomorphism of 〈G, T 〉 onto bG).

(b) There follows immediately from 1.5 the well-known fact that (except
in the case that G is already a compact metric group) the groups bG with
G ∈ LCAG are never metrizable. For G+ is dense in bG, so if bG is
metrizable then for every p ∈ bG\G there is xk ∈ G such that xk → p.

(c) Theorem 1.5(a) is the statement that for G ∈ LCAG no sequence
drawn from G converges to a point of bG \G. We note in this connection,
however, that the space bG does admit non-trivial convergent sequences.
Indeed, bG, like every compact group, is a dyadic space [Vi], [K]; therefore,
except in the trivial case that G = bG with |G| < ω, every point of bG is
the limit of a non-trivial sequence. (For a related proof one may use the fact
[Š], [Sh] that bG ⊇ {±1}ω when |G| ≥ ω, so some—hence, every—point of
bG is the limit of a non-trivial sequence.)

(d) The proof in [G] of Glicksberg’s theorem proceeds by way of the
Riemann–Lebesgue lemma and a theorem of Grothendieck concerning C∗-
algebras and Radon measures. For a direct, succinct, and “natural” proof
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of Glicksberg’s theorem, the reader may consult [T1], [T2], [CT], [T3]; see
also [Re], [F], [DPS](3.4.3), [Hu], [Mo].

(e) Some of the results of this paper were announced in [CHR].

1.8. Acknowledgements. We have profited substantially and in many
ways from an unusually creative referee’s report. In addition to suggestions
about spelling, punctuation, grammar and exposition, which are incorpo-
rated into the manuscript without comment, the referee has contributed
several helpful and interesting mathematical questions and he/she has short-
ened and simplified at least one of our proofs; these are acknowledged in situ.

2. LCA groups strongly respect compactness. Throughout this
section for G ∈ MAP and for N a closed subgroup of bG, we denote by π
the canonical homomorphism from bG onto bG/N and by φ the restriction
function φ = π|G. (Strictly speaking, we have φ = π ◦ e with e : G → bG
defined as in 1.1.) We use the symbols π and φ only in this context.

2.1. Definition. Let G ∈ MAP and let N be a closed subgroup of bG.
Then

(a) N preserves compactness provided: If A ⊆ G, then φ[A] is compact
in bG/N if and only if A · (N ∩G) is compact in G; and

(b) G strongly respects compactness if every closed, metrizable subgroup
of bG preserves compactness.

2.2. R e m a r k s. (a) The metrizability hypothesis in Definition 2.1(b)
may appear artificial; the reader may be tempted, as were the authors, to
conjecture that every compact (not necessarily metrizable) subgroup N of
bG preserves compactness. We show in Example 3.2, however, that this
proposed generalization of 2.10 can fail, even when N ∩G = {1}. (Theorem
1.3(d) shows that the metrizability hypothesis for N is superfluous in the
case that N ⊆ G.) In the positive direction, Example 3.8 shows that there
can exist non-metrizable subgroups N of bG which preserve compactness.
For an extension of Theorem 2.10 to discrete groups, see 3.11 below.

(b) Our principal result, Theorem 2.10, shows that every G ∈ LCAG
strongly respects compactness. By way of motivation let us note that this
statement generalizes Glicksberg’s theorem. Indeed, the special case N =
{1} of 2.10 asserts that 〈A, T +〉 = φ[A] ⊆ bG is compact if and only if
〈A, T 〉 = A · {1} ⊆ G is compact.

(c) The referee has contributed a nifty argument which simplified the
proof of one of our principal lemmas, namely 2.6. It is interesting to note
an unexpected by-product of the referee’s argument: the new proof of our
generalization of Glicksberg’s theorem, unlike the old, requires and invokes
Glicksberg’s original theorem not in its full generality but (only) for σ-
compact, metrizable groups G ∈ LCAG.
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(d) In the lemmas and theorems of this section, we show that various
MAP groups G strongly respect compactness. In each case it is required
to show (for suitable A ⊆ G and N ⊆ bG) that φ[A] = {aN : a ∈ A} is
compact in bG/N if and only if A · (N ∩ G) is compact in G. Since φ is
continuous from G into bG/N and φ[A] = φ[A·(N∩G)], the “if ” implication
is trivial in each case; accordingly in these proofs we restrict our attention
to the “only if” implications.

2.3. Lemma. Let G0 and G1 be MAP groups which strongly respect
compactness, and let G = G0 ×G1. Then G strongly respects compactness.

P r o o f. Let N be a compact, metrizable subgroup of bG = bG0 × bG1,
and let A ⊆ G have the property that φ[A] = {xN : x ∈ A} is a compact
subset of bG/N . We show that A · (N ∩G) is compact in G.

Let %i denote the natural projection

%i : bG→ bGi (i = 1, 2)

and set Ai = %i[A] and Ni = %i[N ]. Since φ[A] is compact and π : bG →
bG/N is continuous, the set π−1(φ[A]), which is AN , is compact in bG;
hence πi[%i[AN ]] is compact in bGi/Ni. It is clear that πi[%i[AN ]] = φi[Ai].
(Indeed, if a = 〈a1, a2〉 ∈ A and n = 〈n1, n2〉 ∈ N then

πi(%i(an)) = πi%i(〈a1n1, a2n2〉)
= ainiNi = aiNi = φi(ai) with ai ∈ Ai;

and if ai ∈ Ai then there is x ∈ A ⊆ AN such that ai = %i(x) and we have

φi(ai) = aiNi = πi(%i(x)) ∈ πi%i[AN ].)

Since φi[Ai] is compact in bGi/Ni, Ni is metrizable, and Gi strongly respects
compactness, it follows that the space Ai ·(Gi∩Ni) is compact in Gi. Writing
Bi = Ai · (Gi ∩Ni) and B = B0 ×B1 we have: B is compact in G.

We claim finally that A · (N ∩G) ⊆ B. Indeed, if a = 〈a0, a1〉 ∈ A and
n = 〈n0, n1〉 ∈ N ∩ G then ai ∈ %i[A] and ni ∈ %i[N ] ∩ Gi = Ni ∩ Gi, so
(an)i = aini ∈ Bi.

Since AN is compact the set AN ∩G, which is A · (N ∩G), is closed in
G. Since A · (N ∩G) ⊆ B and B is compact the set A · (N ∩G) is compact
in G, as required.

2.4. Lemma. Every compact Abelian group strongly respects compact-
ness.

P r o o f. This is immediate from Theorem 1.3(d).

2.5. Lemma. Let G = 〈G, T 〉 ∈ LCAG, and let N be a closed , metriz-
able subgroup of bG, and set G ∩ N = H. Then the spaces 〈H, T 〉 and
〈H, T +〉 are compact , metrizable, and homeomorphic.
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F i r s t p r o o f (using Glicksberg’s theorem). It suffices to show that
H+ is compact and metrizable. Clearly H+ is metrizable. To see that H+

is closed in N = 〈N, T +〉, note that if xk ∈ H+ and xk → p ∈ N then
p ∈ H+ by Theorem 1.5(a).

S e c o n d p r o o f (not using Glicksberg’s theorem). It suffices to show
thatH is compact and metrizable. SinceH+ is closed inG+ and e : G→ G+

is continuous, the space e−1(H+) = H is closed in G = 〈G, T 〉 so H =
〈H, T 〉 ∈ LCAG. It follows from Theorem 1.4(b) that the Bohr topology of
H is the topology which H inherits from G+; thus H+, a subspace of N , is
metrizable. Since H+ is a dense topological subgroup of bH, the compact
group bH is itself metrizable (Theorem 1.3(b) above). That H is compact
(i.e., H = bH) now follows from Remark 1.7(b).

We say as usual in the following proof that a family N of (not necessarily
open) subsets of a space X is a network for X if for every neighborhood U
of x ∈ X there is F ∈ N such that x ∈ F ⊆ U .

2.6. Lemma. Let G ∈ LCAG with G metrizable and σ-compact. Then
G strongly respects compactness.

P r o o f. Let N be a compact, metrizable subgroup of bG and let A ⊆ G
have the property that φ[A] = {xN : x ∈ A} is compact in bG/N . We must
show that A · (N ∩G) is compact in G.

Both A and N are separable and metrizable, so each has a countable
network. Thus A × N , hence its continuous image AN , has a countable
network. Now AN = π−1(φ[A]) is compact in bG, so AN is metrizable.
(Here we use the case κ = ω of the following familiar theorem: a compact
space with a network of cardinality κ has weight κ. See [E](3.1.19) for a
proof of this statement.)

To show that A · (N ∩G) is compact in G it is enough, since G respects
compactness, to show that A · (N ∩G) is compact in G+; for that it suffices
to show that A · (N ∩G) is closed in the compact metrizable space AN . Let
xk → p ∈ AN ⊆ bG with xk ∈ A · (N ∩G) = AN ∩G. Then p ∈ G by 1.5
above and we have p ∈ AN ∩G = A · (N ∩G), as required.

2.7. R e m a r k. In the original version of this manuscript we deduced
the metrizability of AN in 2.6 from Glicksberg’s theorem and this result
of Smirnov [Sm] (cf. also A. H. Stone [Sto]): A compact space which is
the union of countably many closed metrizable spaces is itself metrizable.
Indeed, (AN)∩G has the form

⋃
n<ω Kn with Kn metrizable (in G+, hence

in G by Glicksberg’s theorem), so AN =
⋃

n<ω (Kn ·N) with Kn ·N compact
and metrizable.
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Every locally compact topological group contains an open-and-closed
compactly generated subgroup. On the basis of the lemmas above we are
able to show that these (Abelian) topological groups strongly respect com-
pactness.

2.8. Theorem. Let G be a locally compact , compactly generated , Abelian
topological group. Then G strongly respects compactness.

P r o o f. The group G is topologically isomorphic to a group of the form
Rn × Zk × F for integers n, k ≥ 0 and F a compact group (cf. [HR](9.8)).
Since Rn×Zk strongly respects compactness by Lemma 2.6, and F strongly
respects compactness by Lemma 2.4, the conclusion follows from Lemma
2.3.

2.9. Lemma. Let G be a discrete Abelian group. Then G strongly respects
compactness.

P r o o f. Let N be a closed, metrizable subgroup of bG and let A ⊆ G
satisfy: φ[A] is compact in bG/N . Suppose that |A| ≥ ω, choose A′ ⊆ A
such that |A′| = ω, let G0 be the subgroup of G generated by A′, and set
A0 = G0 ∩A and N0 = N ∩ bG0. Then N0 is a closed, metrizable subgroup
of bG0.

The groups bG0/N0 and π[bG0] (a subgroup of π[bG] = bG/N) are
topologically isomorphic groups under a correspondence taking φ0[A0] onto
φ[A]∩π[bG0] (cf. [HR](5.31 and 5.33)). Thus φ0[A0] is compact in bG0/N0.
Since G0 strongly respects compactness (by Lemma 2.6) the space A0 ·(N0∩
G0) is compact in G0 and hence finite. Thus A0 itself is finite, contrary to
the conditions A0 ⊇ A′, |A′| = ω.

We turn now to the principal positive result of this paper.

2.10. Theorem. Let G ∈ LCAG. Then G strongly respects compact-
ness.

P r o o f. Let N be a compact, metrizable subgroup of bG and let A ⊆ G
satisfy: φ[A] is compact in bG/N .

Since (according to Lemma 2.5) the group G ∩ N is compact, there
is an open-and-closed, compactly generated subgroup H of G such that
G ∩ N ⊆ H. We choose such H and we note from 1.4 that bH = clbGH
and that b(G/H) is (topologically isomorphic to) bG/bH. Denoting by
% : bG → bG/bH the canonical homomorphism, we note that the natural
maps q : bG/N → bG/(N · bH) and

ψ : bG/bH → (bG/bH)/%[N ] ≈ bG/(N · bH)

satisfy q ◦ φ = ψ ◦ %|G; indeed, q ◦ π = ψ ◦ %, so ψ[%[A]] = q[φ[A]] is
compact in (bG/bH)/%[N ]. (The indicated isomorphism (bG/bH)/%[N ] ≈
bG/(N · bH) is given by [HR](5.35).) Since %[N ] is a compact, metrizable
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subgroup of bG/bH = b(G/H) and G/H is a discrete Abelian group, the
set %[A] · (G/H ∩ %[N ]) is compact in G/H by Lemma 2.9. It then follows
that %[A] is finite, i.e., that A meets only finitely many cosets of H in G.
Replacing H if necessary by the subgroup of G generated by H ∪ A, we
assume in what follows that A ⊆ H. The inclusion G ∩N ⊆ H perseveres,
so that G ∩N = H ∩N .

Now let σ : bG→ bG/(N ∩ bH) and g : bG/(N ∩ bH) → bG/N be the
(continuous) homomorphisms defined by

σ(p) = p(N ∩ bH),
g(p(N ∩ bH)) = pN .

Since φ[A] = {aN : a ∈ A} is compact in bG/N the space

g−1(φ[A]) = {p(N ∩ bH) : p ∈ bG, there is a ∈ A such that pN = aN}
is compact in bG/(N ∩ bH). That is, writing

Y = {p(N ∩ bH) : p ∈ bG and there are p′ ∈ bH, a ∈ A such that
p(N ∩ bH) = p′(N ∩ bH) and pN = aN} ,

we have: Y is compact in bG/(N∩bH). Now if p(N∩bH) ∈ Y then p ∈ bH
(since pbH = p′bH for some p′ ∈ bH). Thus

Y = {p(N ∩ bH) : p ∈ bH, there is a ∈ A such that pN = aN} .
It then follows, denoting by π′ : bH → bH/(N ∩ bH) the canonical homo-
morphism, that Y = π′[A]. (Indeed, if p(N ∩ bH) ∈ Y with pN = aN then
from p ∈ bH and A ⊆ H ⊆ bH follows

p(N ∩ bH) = a(N ∩ bH) = π′[a] ∈ π′[A] ;

the inclusion π′[A] ⊆ Y is immediate from A ⊆ H ⊆ bH.)
Since H is locally compact and compactly generated and A is a subset

of H such that {a(N ∩ bH) : a ∈ A} is compact (with N ∩ bH a compact
metrizable subgroup of bH), it follows from Theorem 2.8 that A ·(N ∩bH∩
H) is compact in bH. From N ∩H = N ∩G it follows that A · (N ∩G) is
compact in bH, hence in bG, as required.

2.11. Corollary. Let G = 〈G, T 〉 ∈ LCAG and let N be a compact ,
metrizable subgroup of bG. If N ∩ G = {1}, then the following conditions
are equivalent.

(a) A is compact in 〈G, T 〉;
(b) A is compact in 〈G, T +〉;
(c) φ[A] is compact in bG/N .

P r o o f. The equivalence (a)⇔(b) is Glicksberg’s theorem, restated here
for emphasis, while (a)⇔(c) is the case N ∩G = {1} of Theorem 2.10.
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2.12. Discussion. (a) The referee has raised the following question: If
N is a compact, metrizable subgroup of a compact Abelian group G, and
if A ⊆ G satisfies 〈A〉 ∩ N = {1} (with 〈A〉 the subgroup of G generated
by A) with AN closed in G, must A itself be closed in G? This question
is relevant to the present enterprise, since a positive answer could greatly
simplify the proof of Theorem 2.10. It is interesting to see that the answer
to this question is “No”. Let G = T and N = {+1,−1} ⊆ T and, with xn

a sequence in the Prüfer 3-group Z(3∞) such that xn → −1, define A =
{xn : n < ω} ∪ {1}. Evidently A is not compact but AN , the union of two
converging sequences and their limit points, is compact. From A ⊆ Z(3∞)
and Z(3∞) ∩N = {1} follows 〈A〉 ∩N = {1}, as required.

(b) The referee further has raised the question whether Theorem 2.10
characterizes those Abelian groups which are locally compact. In detail:
If G ∈ MAP and G strongly respects compactness, must G be locally
compact? The answer to this question is “No”; the additive group G = Q
is an example. Surely Q is not locally compact. Now bQ = bR by 1.4(b),
and if N is a closed, metrizable subgroup of bQ then 2.5 guarantees that
N ∩ R is compact (so {0} = N ∩ Q = N ∩ R). Suppose now that A ⊆ Q
and φ : bQ → bQ/N satisfy: φ[A] is compact in bQ/N . Since R strongly
respects compactness we conclude that A+ {0} = A+ (N ∩ R) is compact
in R, so A is compact in R and hence in Q.

3. Examples and counterexamples

3.1. R e m a r k. One may be tempted to strengthen Theorem 2.10 to the
statement that every G ∈ MAP strongly respects compactness, but this
result fails. Indeed, it is shown in [RT], correcting a statement from [Ve],
that there are (Abelian) groups which satisfy Pontryagin duality but which
do not respect compactness.

3.2. Examples. (a) The condition in Theorem 2.10 that N be metriz-
able cannot be omitted. Let G be any locally compact Abelian group with
a closed, non-compact subgroup H of finite index (for example, G is non-
compact and G = H) and take N = bH = clbGH. Since G/H is finite
and

bG/N = bG/bH = b(G/H) = G/H

by Theorem 1.4 above, every non-empty subset A of G satisfies: φ[A] is
finite and hence compact. But A · (N ∩G) = AH is not compact, since AH
contains a homeomorph of the non-compact space H as a closed subspace.

(b) It is more challenging to show, as promised in 2.2(a), that there exist
G ∈ LCAG and a closed (non-metrizable) subgroup N of bG such that
N ∩G = {1} and N does not preserve compactness. For an example to this
effect let G = Z in the usual (discrete) topology, choose α ∈ [0, 1]\Q, define
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χ ∈ Ẑ by χ(n) = e2πiαn, let h be the continuous homomorphism from bZ to
T such that χ ⊆ h, let F be any finite subgroup of T (e.g., F = {1}), and set
N = h−1(F ) ⊆ bZ. Now F is a closed Gδ-subset of T, so N is a compact,
Gδ-subgroup of bZ such that N ∩ Z = {0}; that the quotient group bZ/N
is metrizable is given by [HR](8.6).

Since φ[Z] is dense in bZ/N and this metrizable quotient space is not
discrete, there is a sequence {nk : k < ω} ⊆ Z \ {0} such that φ(nk) →
φ(0) = N in bZ/N . It is then clear, writing

A = {nk : k < ω} ∪ {0} ⊆ Z ,
that φ[A] is compact in bZ/N , while A is not compact in the discrete
space Z.

It is reassuring to observe in the example just given that the compact
group N is not metrizable—that is, this example does not contradict The-
orem 2.10. (If N were metrizable then both N and bZ/N would have car-
dinality ≤ c, so |bZ| ≤ c; but every infinite compact group K satisfies
|K| = 2wK , so from w(bZ) = |b̂Z| = |Ẑ| = c follows |bZ| = 2c. Alterna-
tively, one may argue that if {0} is a Gδ-subset of N then {0} would be
a Gδ-subset of bZ, so bZ would be metrizable; but Z is dense in bZ so if
bZ were metrizable then every point of bZ is the limit of a sequence drawn
from Z, contrary to Theorem 1.5.)

3.3. R e m a r k. It is easy to find examples of totally bounded Abelian
groups 〈G,U〉 such that U = T + for no locally compact topological group
topology T on G. Indeed, according to Remark 1.7(b) the topologies T +

with T locally compact are seldom metrizable, so it is enough to choose
G = 〈G,U〉 ∈ TBAG with G metrizable and non-compact (for example,
use G = Q/Z). More generally one may choose any totally bounded Abelian
group 〈G,U〉 with a closed, metrizable non-compact subgroup H; for if
U = T + with 〈G, T 〉 ∈ LCAG, then 〈H, T 〉 = e−1(H) is closed in 〈G, T 〉
so 〈bH, T 〉 = clbGH is metrizable by 1.3(b) and 1.4(b). Thus, replacing
G = Q/Z by Gα for cardinals α ≥ ω, one obtains examples of arbitrarily
large weight and cardinality.

3.4. For a (Hausdorff) space X = 〈X, T 〉 we denote as usual by kX or
by 〈X, kT 〉 the set X with the topology kT defined as follows: A subset U
of X is kT -open if and only if U ∩K is (relatively) T -open in K for every
T -compact subset K of X. Then kX is a k-space (that is, kX = kkX), kT
is the smallest k-space topology on X containing T , and kT is the unique
k-space topology for 〈X, T 〉 such that kT ⊇ T and the kT -compact sets
are exactly the T -compact sets. For proofs of these facts and additional
commentary the reader may consult [E](pp. 201–204).

The following simple observation is taken from [T1](6.24).
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3.5. Theorem. Let G = 〈G, T 〉 ∈ LCAG. Then G = kG+ (more for-
mally : 〈G, T 〉 = k(〈G, T +〉)).

P r o o f. Since T ⊇ T + and T is a k-space topology for G such that the
T -compact subsets are exactly the T +-compact sets, the result follows from
the uniqueness theorem cited in 3.4.

It has been shown by LaMartin [L] that for α > ω and G = Rα the
space kG is not a topological group (indeed, kG is a Hausdorff non-regular
topological space). As noticed in [T3](1.14) this furnishes the following
observations.

3.6. Theorem. Let α > ω. Then

(a) k((R+)α) = k(Rα);
(b) k((R+)α) is not a topological group;
(c) there is no locally compact topological group topology T on Rα for

which the totally bounded topological group (R+)α satisfies (R+)α =
〈Rα, T 〉+.

P r o o f. Statement (a) follows from the fact that Rα and (R+)α have
the same compact sets, while the topology of the former contains that of
the latter; (b) is then immediate from LaMartin’s theorem, and (c) follows
from (b) and Theorem 3.5.

3.7. Example. Let G ∈ TBAG satisfy kG ∈ LCAG. Does it follow
that G = (kG)+? This question is closely related to question (2) of 1.2
above: If 〈G, T 〉 ∈ LCAG and 〈G,U〉 ∈ TBAG with U ⊆ T and the
T -compact subsets of G are exactly the U-compact subsets of G, does it
follow that U = T +? We show that the answer to both these questions is
“No”; in our example the group G is Z appropriately topologized, and kG is
the discrete group Z. See also in this connection [T3](1.12) and [T1](6.28(a),
6.30).

We claim first that there is a non-trivial compact metrizable subgroup
N of bZ such that N ∩ Z = {0}. To see this, first write the (discrete)
circle group Td in the form Td = Ad × Bd with Ad and Bd subgroups
and |Ad| = ω; see [HR](A.14) for the availability of such a decomposition.
Now from b̂Z = Td = Ad × Bd follows bZ = T̂d = Âd × B̂d; we set
N = Âd × {1} ⊆ bZ, so indeed N is a compact, metrizable subgroup of bZ.
If h ∈ N ∩ Z then h is continuous in the usual topology of T—that is, not
only h ∈ T̂d but in fact h ∈ Z = T̂—so from h ≡ 1 on B (and the density
of B in T) follows h ≡ 1. Thus h is the identity element of bZ. The claim
is proved.

To complete the construction define φ = π|Z with π : bZ → bZ/N as
usual and set G = φ[Z]. Algebraically φ is an isomorphism, so there is a
topology U on Z determined by the condition that φ : 〈Z,U〉 → G ⊆ bZ/N
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is a homeomorphism. According to Theorem 2.10 the compact subsets of
G (that is, of 〈Z,U〉) are exactly the finite sets. Thus the usual discrete
topology T on Z satisfies U ⊆ T , and a subset of Z is U-compact if and only
if it is T -compact, so we have k〈Z, U〉 = 〈Z, T 〉. But the relation U = T +

fails: We have 〈Z, T +〉∧ = b̂Z = Ad × Bd while 〈Z, U〉∧ = 〈bZ/N〉∧ = Bd

(cf. [HR](23.25) or [CR]).

3.8. Example. There are locally compact Abelian groups G such that
bG contains a closed non-metrizable subgroup N which preserves compact-
ness. An easy example can be constructed as follows: Let K be any non-
metrizable compact Abelian group and let G = K × Z. Let N1 denote a
non-trivial closed metrizable subgroup of bZ, and set N = K × N1. Since
bG = K × bZ (1.4(a)) we deduce that N is a closed non-metrizable sub-
group of bG. An argument just as in the proof of Lemma 2.3 shows that
N preserves compactness. Since N1 ∩ Z = {0} by 2.5, we conclude that
K ≈ N ∩G is a compact non-metrizable subgroup of G.

3.9.Discussion. It is much more challenging, however, to find a discrete
Abelian group G such that some closed, non-metrizable subgroup of bG
preserves compactness. We achieve this in Theorem 3.12 below. As usual,
for G ∈ LCAG and N a closed subgroup of G, we write

A(Ĝ,N) = {χ ∈ Ĝ : N ⊆ ker(χ)}
= {χ ∈ Ĝ : χ(p) = 1 for all p ∈ N} .

(The set A(Ĝ,N) is called the annihilator of N in Ĝ.) In particular, the
set A(b̂G,N) is defined (and is a subgroup of b̂G) whenever N is a closed
subgroup of bG.

We approach Theorem 3.12 via two lemmas concerning the Haar measure
of Ĝ.

3.10. Lemma. Let G be a discrete Abelian group and let λ denote the
normalized Haar measure of the group Ĝ. If {xn} is a faithfully indexed
sequence in G and

A = {χ ∈ Ĝ : χ(xn) → 1} ,

then A is λ-measurable in Ĝ and λ(A) = 0.

P r o o f. Appealing to Pontryagin duality, we identify each xn with
the continuous homomorphism from Ĝ to T given by

xn(χ) = χ(xn) .

Writing

An,m = {χ ∈ Ĝ : |xn(χ)− 1| ≤ 1/m}
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for m,n < ω gives

A =
⋂

m<ω

⋃
N≥m

⋂
n≥N

An,m ;

thus A is an Fσδ of Ĝ, hence is λ-measurable.
Now for χ, ψ ∈ A and n < ω we have

|(χψ)(xn)− 1| ≤ |χ(xn)− 1|+ |ψ(xn)− 1| and
|χ−1(xn)− 1| = |χ(xn)− 1| ;

this shows that A is a subgroup of Ĝ. If λA > 0 then from the Steinhaus–
Weil theorem it follows that A is open-and-closed in Ĝ, so that |Ĝ/A| < ω.

Thus by [HR](23.25) the group ̂(Ĝ/A), which is A(G,A), is finite. But this
is impossible: Let i : A → Ĝ be the inclusion map. Then î : G → Â
satisfies î(g) = g ◦ i = g|A [HR](24.37). Now let Π : G → G/A(G,A)
denote the projection map. By [HR](23.25) the map Λ : (G/A(G,A))∧ →
A(Ĝ,A(G,A)) (which is just A [HR](24.10)) defined by Λ(χ) = χ ◦ Π is
a topological isomorphism. Let yn = Π(xn). If χ ∈ (G/A(G,A))∧, then
χ(yn) = χ ◦ Π(xn) → 1 by definition of A. From Glicksberg’s theorem
we have yn = A(G,A) for all n sufficiently large, and hence xn ∈ A(G,A)
for all n sufficiently large; since {xn} is faithfully indexed it follows that
|A(G,A)| ≥ ω. This contradiction gives λA = 0, as required.

The above result is closely related to [KN](7.8), and [Sc].
If G ∈ LCAG and N is a closed subgroup of bG, then we say that

φ : G → bG/N preserves closed subgroups of G if for any closed subgroup
H of G, φ[H] is closed in φ[G]. For example, if G and H denote the discrete
groups Rd and Qd of real and rational numbers respectively, there exists a
closed subgroup N of bG such that N ∩G+ = {0} and bG/N = bR. Since
φ[H] = Q+ is not closed in φ[G] = R+, φ does not preserve closed subgroups
of G.

3.11. Lemma. Let G be a discrete Abelian group and N a closed subgroup
of bG such that N∩G = {1}, and let λ denote Haar measure of Ĝ. Suppose
that either

(a) {χ|G : χ ∈ A(b̂G,N)} is not Haar-measurable in Ĝ, or
(b) λ({χ|G : χ ∈ A(b̂G,N)}) > 0.

If either G is countable or φ : G→ bG/N preserves closed subgroups of G,
then N preserves compactness.

P r o o f. Suppose instead that there is an infinite subset A of G such that
φ[A] is compact in bG/N . We claim first that in this case there is C ⊆ G
such that |C| = ω and φ[C] is compact in bG/N . This is obvious in case G
is countable: take C = A. Assuming |G| > ω, choose B ⊆ A with |B| = ω,
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and set H = 〈B〉 ⊆ G and C = H ∩ A. Since φ preserves closed subgroups
of G the group φ[H] is closed in φ[G]; since φ is a bijection from G onto
φ[G] we have

φ[C] = φ[H ∩A] = φ[H] ∩ φ[A] ,
so φ[C] is compact and the claim is established.

Like every countably infinite, compact space, φ[C] is second-countable
and hence metrizable. Thus there exist a faithfully indexed sequence xn ∈ C,
and p ∈ C, such that φ(xn) → φ(p) in bG/N . Replacing xn by xn − p
if necessary, we assume φ(xn) → φ(1) = N in bG/N . Then every χ ∈
A(b̂G,N) satisfies χ(xn) → χ(1) = 1, and it follows (defining A = {χ ∈ Ĝ :
χ(xn) → 1}) that

(∗) {χ|G : χ ∈ A(b̂G,N)} ⊆ A .

Since A is λ-measurable in Ĝ with λA = 0, we conclude from (∗) that
{χ|G : χ ∈ A(b̂G,N)} itself is λ-measurable and has λ-measure equal to 0.
This contradiction completes the proof.

3.12. Theorem. There is a closed , non-metrizable subgroup of bZ such
that N ∩ Z = {0} and N preserves compactness.

P r o o f. We note first that the usual construction of a Bernstein subset
of R modifies easily to give a non-measurable subgroup H of T such that
|T/H| = c. (This was pointed out to us by Oscar Masaveu. See [Str] for
related and stronger results.) Indeed, let {Fξ : ξ < c} be an enumeration
of all uncountable, closed subsets of T, choose p0, q0 ∈ F0 with q0 6∈ 〈p0〉
and recursively, if ξ < c and pη, qη have been chosen for all η < ξ, choose
pξ, qξ ∈ Fξ with

pξ 6∈ 〈{pη : η < ξ} ∪ {qη : η < ξ}〉, qξ 6∈ 〈{pη : η ≤ ξ} ∪ {qη : η < ξ}〉 .
(The availability of such pξ, qξ derives from the fact that |Fξ| = c.) The
group H = 〈{pξ : ξ < c}〉 is as required: (a) |T/H| = c, since η < ξ < c
yields qη+H 6= qξ+H; (b) λH > 0 is impossible, since that inequality implies
that H is open in T (by the Steinhaus–Weil theorem) and then H = T; and
(c) λH = 0 is impossible, since if T\H is measurable and λ(T\H) > 0 then
there is a (necessarily uncountable) compact subset F = Fξ of T\H with
λF > 0, so that pξ ∈ F ⊆ (T\H) ∩H = ∅.

Now set N = A(bZ,H). Then:

(a) N is a closed subgroup of bZ;
(b) N is not metrizable, since a compact metrizable space has countable

weight while

wN = |N̂ | = |b̂Z/H| = |T/H| = c ;
(c) N ∩ Z = {0} since H is dense in T; and
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(d) {χ|Z : χ ∈ A(b̂Z, N)} = H is not measurable in Ẑ = T, so N
preserves compactness by Lemma 3.11.

4. Some questions. The results proved above raise some questions
which our methods seem inadequate to settle. Perhaps the most interesting
of these is 4.1, which was contributed by the referee.

We hope to return to some of these in a later communication.

4.1. Question. Let G ∈ MAP and suppose that every closed, metriz-
able subgroup N of bG such that N ∩ G = {1} preserves compactness (in
the sense of Definition 2.1(a)). Does it follow that G strongly respects com-
pactness?

Of course, Theorem 2.10 responds affirmatively to Question 4.1 (even if
the hypothesis N ∩ G = {1} is omitted) if the assumption G ∈ MAP is
strengthened to G ∈ LCAG.

4.2.Question. Characterize those MAP groups which strongly respect
compactness.

4.3.Question. Characterize those G ∈ TBAG such that kG ∈ LCAG
and (kG)+ = G.

4.4. Question. Given G ∈ LCAG and a closed subgroup N of bG such
that N ∩G = {0}, clarify the relation between the properties “N preserves
compactness” and “φ : G→ bG/N preserves closed subgroups of G.”

4.5.Question. Suppose that in Lemma 3.11 the hypothesis “G is count-
able or φ preserves closed subgroups” is deleted. Is the resulting statement
valid?

4.6. Question. Let G = 〈G, T 〉 ∈ LCAG and let N be a closed
subgroup of bG such that N ∩ G is metrizable. Suppose that every subset
A of G satisfies: A · (N ∩G) is compact in G if and only if φ[A] is compact
in bG/N . What can be said about N?
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