Striped structures of stable and unstable sets of expansive homeomorphisms and a theorem of K. Kuratowski on independent sets

by

Hisao Kato (Hiroshima)

Abstract. We investigate striped structures of stable and unstable sets of expansive homeomorphisms and continuum-wise expansive homeomorphisms. The following theorem is proved: if $f: X \to X$ is an expansive homeomorphism of a compact metric space X with dim X > 0, then the decompositions $\{W^s(x) \mid x \in X\}$ and $\{W^u(x) \mid x \in X\}$ of X into stable and unstable sets of f respectively are uncountable, and moreover there is σ (= s or u) and $\varrho > 0$ such that there is a Cantor set C in X with the property that for each $x \in C$, $W^{\sigma}(x)$ contains a nondegenerate subcontinuum A_x containing x with diam $A_x \ge \varrho$, and if $x, y \in C$ and $x \ne y$, then $W^{\sigma}(x) \ne W^{\sigma}(y)$. For a continuum-wise expansive homeomorphism, a similar result is obtained. Also, we prove that if $f: G \to G$ is a map of a graph G and the shift map $\tilde{f}: (G, f) \to (G, f)$ of f is expansive, then for each $\tilde{x} \in (G, f), W^u(\tilde{x})$ is equal to the arc component of (G, f) containing \tilde{x} , and dim $W^s(\tilde{x}) = 0$.

1. Introduction. All spaces under consideration are assumed to be metric. By a *compactum* we mean a compact metric space, and by a *continuum* a connected nondegenerate compactum. A homeomorphism $f: X \to X$ of a compactum X is called *expansive* [6] if there is a constant c > 0 (called an *expansive constant* for f) such that if $x, y \in X$ and $x \neq y$, then there is an integer $n = n(x, y) \in \mathbb{Z}$ such that

$$d(f^n(x), f^n(y)) > c.$$

This property has frequent applications in topological dynamics, ergodic theory and continuum theory [1, 5, 6, 25].

A homeomorphism $f : X \to X$ of a compactum X is *continuum-wise* expansive [15] if there is a constant c > 0 such that if A is a nondegener-

¹⁹⁹¹ Mathematics Subject Classification: Primary 54B25, 54F50; Secondary 54H20, 54E40, 54B20.

Key words and phrases: expansive homeomorphism, continuum-wise expansive homeomorphism, stable and unstable sets, independent.

H. Kato

ate subcontinuum of X, then there is an integer $n = n(A) \in \mathbb{Z}$ such that diam $f^n(A) > c$. By the definitions, we can easily see that every expansive homeomorphism is continuum-wise expansive, but the converse is not true. There are many important examples of homeomorphisms which are continuum-wise expansive, but not expansive.

In [13, Theorem 3.1], we proved that if $f: X \to X$ is an expansive homeomorphism of a compactum X with dim X > 0, then there is a closed subset Z of X such that each component of Z is nondegenerate, the space of components of Z is a Cantor set, the decomposition space of Z into components is upper and lower semi-continuous and all components of Z are contained in stable sets or unstable sets.

In this paper, we show more precise results. In particular, we prove that if $f: X \to X$ is an expansive homeomorphism of a compactum X with dim X > 0, then the decompositions $\{W^{s}(x) \mid x \in X\}$ and $\{W^{u}(x) \mid x \in X\}$ of X into stable and unstable sets respectively are uncountable, and moreover there is σ ($\sigma = s$ or u) and $\rho > 0$ such that the σ -striped set $Z(\sigma, \rho)$ of f is not empty. Hence, by using a theorem of K. Kuratowski on independent sets, it is proved that almost every Cantor set C of $Z(\sigma, \rho)$ has the property that for each $x \in C$, $W^{\sigma}(x)$ contains a nondegenerate subcontinuum containing x and if $x, y \in C$ and $x \neq y$, then $W^{\sigma}(x) \neq W^{\sigma}(y)$.

Also, we prove that if $f: G \to G$ is a map of a graph G and the shift map $\tilde{f}: (G, f) \to (G, f)$ of f is expansive, then for each $\tilde{x} \in (G, f), W^{\mathrm{u}}(\tilde{x})$ is the arc component of (G, f) containing \tilde{x} , and $W^{\mathrm{s}}(\tilde{x})$ is 0-dimensional.

We refer the readers to [1], [6] and [25] for the general properties of expansive homeomorphisms.

2. Definitions and preliminaries. Let X be a metric space. Then the *hyperspaces* 2^X and C(X) of X are defined as follows:

$$2^{X} = \{A \mid A \text{ is a nonempty compact subset of } X\},\$$
$$C(X) = \{A \in 2^{X} \mid A \text{ is connected}\}.$$

The hyperspaces 2^X and C(X) are metric spaces with the Hausdorff metric $d_{\rm H}$, i.e., $d_{\rm H}(A, B) = \inf\{\varepsilon > 0 \mid U_{\varepsilon}(A) \supset B \text{ and } U_{\varepsilon}(B) \supset A\}$, where $U_{\varepsilon}(A)$ denotes the ε -neighborhood of A in X. Note that if X is a compactum, then the hyperspaces 2^X and C(X) are also compact (see [21]). Let A and B be subsets of X. Put $d(A, B) = \inf\{d(a, b) \mid a \in A \text{ and } b \in B\}$.

Let $f: X \to X$ be a homeomorphism of a compactum X and let $x \in X$. Then the stable set $W^{s}(x)$ and the unstable set $W^{u}(x)$ are defined as follows:

$$\begin{split} W^{\rm s}(x) &= \left\{ y \in X \mid \lim_{n \to \infty} d(f^n(x), f^n(y)) = 0 \right\}, \\ W^{\rm u}(x) &= \left\{ y \in X \mid \lim_{n \to \infty} d(f^{-n}(x), f^{-n}(y)) = 0 \right\}. \end{split}$$

Also, the *continuum-wise stable* and *unstable sets* $V^{s}(x)$, $V^{u}(x)$ are defined as follows:

$$\begin{split} V^{\rm s}(x) &= \left\{y \in X \mid \text{there is } A \in C(X) \text{ such that } x, y \in A \text{ and} \\ & \lim_{n \to \infty} \operatorname{diam} f^n(A) = 0\right\}, \\ V^{\rm u}(x) &= \left\{y \in X \mid \text{there is } A \in C(X) \text{ such that } x, y \in A \text{ and} \\ & \lim_{n \to \infty} \operatorname{diam} f^{-n}(A) = 0\right\}. \end{split}$$

Clearly, $W^{\sigma}(x) \supset V^{\sigma}(x)$, $\{W^{\sigma}(x) \mid x \in X\}$ and $\{V^{\sigma}(x) \mid x \in X\}$ are decompositions of X for both $\sigma = s$ and u, i.e., $X = \bigcup\{W^{\sigma}(x) \mid x \in X\}$ (resp. $X = \bigcup\{V^{\sigma}(x) \mid x \in X\}$), and if $W^{\sigma}(x) \neq W^{\sigma}(y)$ (resp. $V^{\sigma}(x) \neq V^{\sigma}(y)$), then $W^{\sigma}(x) \cap W^{\sigma}(y) = \emptyset$ (resp. $V^{\sigma}(x) \cap V^{\sigma}(y) = \emptyset$). Also, for $0 < \delta < \varepsilon$ consider the following subsets of C(X):

$$\begin{split} V^{\mathrm{s}}(\varepsilon) &= \left\{ A \in C(X) \mid \operatorname{diam} f^{n}(A) \leq \varepsilon \text{ for any } n \geq 0 \right\}, \\ V^{\mathrm{u}}(\varepsilon) &= \left\{ A \in C(X) \mid \operatorname{diam} f^{-n}(A) \leq \varepsilon \text{ for any } n \geq 0 \right\}, \\ V^{\mathrm{s}}(\delta, \varepsilon) &= \left\{ A \in V^{\mathrm{s}}(\varepsilon) \mid \operatorname{diam} A = \delta \right\}, \\ V^{\mathrm{u}}(\delta, \varepsilon) &= \left\{ A \in V^{\mathrm{u}}(\varepsilon) \mid \operatorname{diam} A = \delta \right\}, \\ V^{\mathrm{s}} &= \left\{ A \in C(X) \mid \lim_{n \to \infty} \operatorname{diam} f^{n}(A) = 0 \right\}, \\ V^{\mathrm{u}} &= \left\{ A \in C(X) \mid \lim_{n \to \infty} \operatorname{diam} f^{-n}(A) = 0 \right\}. \end{split}$$

We are interested in the structures of the decompositions $\{W^{\sigma}(x) \mid x \in X\}$ and $\{V^{\sigma}(x) \mid x \in X\}$ ($\sigma = s$ and u) of X. Let $f : X \to X$ be an expansive homeomorphism of a compactum X with an expansive constant c > 0 and dim X > 0. Let $c > \rho > 0$ be a positive number. Consider the family $\Phi(\sigma) = \{Z \mid Z \text{ is a closed subset of } X \text{ such that (i) for each } x \in Z$ there is a subcontinuum A_x of X with diam $A_x \ge \rho$ and $x \in A_x \subset W^{\sigma}(x)$, and (ii) for any neighborhood U of x in X, there is $y \in Z \cap U$ such that $W^{\sigma}(x) \neq W^{\sigma}(y)\}$. By [20, p. 315], $\Phi(\sigma)$ has the maximal element $Z(\sigma, \rho)$ (= Cl($\bigcup \{Z \mid Z \in \Phi(\sigma)\})$). The set $Z(\sigma, \rho_1) \supset Z(\sigma, \rho_2)$. Also, note that if $Z(\sigma, \rho) \neq \emptyset$ for some $\rho > 0$, then X contains an uncountable collection of mutually disjoint, nondegenerate subcontinua of X each of which is contained in a different element of $\{W^{\sigma}(x) \mid x \in X\}$ (see (3.1)).

Let $f : X \to X$ be a map of a compactum X with metric d. Consider the following inverse limit space:

$$(X, f) = \{ (x_i)_{i=0}^{\infty} \mid x_i \in X, \ f(x_{i+1}) = x_i \text{ for each } i \ge 0 \}.$$

Define a metric d for (G, f) by

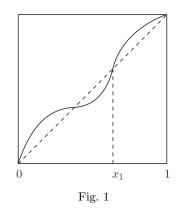
$$\widetilde{d}(\widetilde{x},\widetilde{y}) = \sum_{i=0}^{\infty} d(x_i, y_i)/2^i \quad \text{for } \widetilde{x} = (x_i)_{i=0}^{\infty}, \widetilde{y} = (y_i)_{i=0}^{\infty} \in (X, f).$$

The space (X, f) is called the *inverse limit of the map* f. Define a map $\widetilde{f}: (X, f) \to (X, f)$ by

$$\widetilde{f}(x_0, x_1, \ldots) = (f(x_0), x_0, x_1, \ldots) \quad \text{for } (x_i)_{i=0}^{\infty} \in (X, f).$$

Then \tilde{f} is a homeomorphism and it is called the *shift map* of f. Let $p_n : (X, f) \to X$ be the natural projection $(n \ge 0)$, i.e., $p_n((x_i)_{i=0}^{\infty}) = x_n$.

(2.1) EXAMPLE. Let $f: I \to I$ be the homeomorphism as in Figure 1, where I = [0, 1] denotes the unit interval.

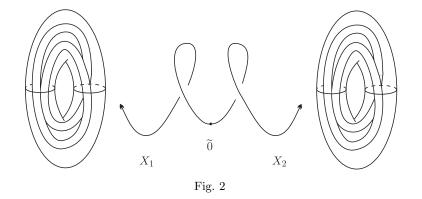


Then $\{W^{s}(x) \mid x \in I\} = \{\{0\}, (0, x_{1}), \{x_{1}\}, (x_{1}, 1]\}$ is finite, because $W^{s}(0) = \{0\}, W^{s}(y) = (0, x_{1})$ for $y \in (0, x_{1}), W^{s}(x_{1}) = \{x_{1}\}$ and $W^{s}(x) = (x_{1}, 1]$ for $x \in (x_{1}, 1]$. Similarly, $\{W^{u}(x) \mid x \in I\}$ is finite. Hence $Z(\sigma, \varrho) = \emptyset$ for each $\varrho > 0$ ($\sigma = s$ and u).

(2.2) EXAMPLE. Let S^1 be the unit circle and let $f : S^1 \to S^1$ be the natural covering map with degree 2. Consider the inverse limit (S^1, f) of f and the shift map $\tilde{f} : (S^1, f) \to (S^1, f)$. The continuum (S^1, f) is well-known as the 2-adic solenoid and \tilde{f} is an expansive homeomorphism (see [26]). In this case, for each $\tilde{x} \in (S^1, f)$, $W^u(\tilde{x}) = V^u(\tilde{x})$ is the arc component of (S^1, f) containing \tilde{x} . Also, $V^s(\tilde{x}) = {\tilde{x}} \subsetneq W^s(\tilde{x})$ for each $\tilde{x} \in (S^1, f)$. Then the decomposition $\{W^{\sigma}(\tilde{x}) \mid \tilde{x} \in (S^1, f)\}$ ($\sigma = s$ and u) is uncountable. Note that dim $W^s(\tilde{x}) = 0$, because $W^s(\tilde{x})$ is an F_{σ} -set and does not contain a nondegenerate subcontinuum (see (3.10) below). Note that the continuum (S^1, f) itself is a u-striped set $Z(u, \varrho)$ of \tilde{f} for some $\varrho > 0$, but $Z(s, \varrho) = \emptyset$ for each $\varrho > 0$.

(2.3) EXAMPLE. (a) There is an expansive homeomorphism $f: X \to X$ such that $\operatorname{Int}_X W^{\sigma}(x) \neq \emptyset$ for some $x \in X$. Let G be the one-point union of the unit interval I and a circle S^1 , i.e., $(G, *) = (I, 1) \lor (S^1, *)$. Define a map $g: G \to G$ such that $g|S^1: S^1 \to S^1$ is the natural covering map with degree 2 and g(0) = 0, g(1) = * and g(I) = G. We can choose $g: G \to G$ so that $\tilde{g}: X = (G,g) \to X = (G,g)$ is expansive (see [10, Theorem 4.3]). Then $W^{\mathrm{u}}(\tilde{0})$ is a dense open set of X, where $\tilde{0} = (0, 0, \ldots)$. Hence X itself is not a u-striped set of \tilde{g} .

(b) There is an expansive homeomorphism h of a continuum Y such that there is a point $x_0 \in Y$ such that if A is any nondegenerate subcontinuum of Y containing x_0 , then $A \notin V^{s} \cup V^{u}$. Let G and $g: G \to G$ be the same as in (a), and let X_i (i = 1, 2) be the copies of the space X as in (a). Let $(Y, \widetilde{0}) = (X_1, \widetilde{0}) \lor (X_2, \widetilde{0})$ be the one-point union of X_1 and X_2 (see Figure 2).



Take a natural injection $i: \mathbb{R} \to Y$ such that $i(0) = \widetilde{0}$, where \mathbb{R} is the set of real numbers. Let $k: \mathbb{R} \to \mathbb{R}$ be defined by k(x) = 2x + 1 $(x \ge 0)$, $k(x) = \frac{1}{2}x + 1$ $(x \le 0)$. Define a homeomorphism $h: Y \to Y$ by $h(x) = \widetilde{g}(x)$ if $x \in (S^1, g|S^1) \subset X_1$, $h(x) = \widetilde{g}^{-1}(x)$ if $x \in (S^1, g|S^1) \subset X_2$ and $h(x) = i \circ k \circ i^{-1}(x)$ if $x \in i(\mathbb{R})$. Then h is an expansive homeomorphism. Note that if $x_0 \in i(\mathbb{R})$ and A is any nondegenerate subcontinuum containing x_0 , then $A \notin V^{\mathrm{s}} \cup V^{\mathrm{u}}$.

Remark. Instead of the solenoid (S^1, g) , one can construct the examples above with the help of an Anosov diffeomorphism, say $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ on the 2-dimensional torus T^2 , and a curve outside T^2 "unwinding" from an unstable manifold in T^2 .

A subset E of a space X is an F_{σ} -set in X if E is the union of a countable collection of closed subsets of X. A subset E of X is an $F_{\sigma\delta}$ -set in X if it is the intersection of a countable collection of F_{σ} -sets.

In this paper, we use a theorem of K. Kuratowski on independent sets [19]. A subset F of X is said to be *independent in* $R \subset X^n$ if for every system x_1, \ldots, x_n of different points of F the point $(x_1, \ldots, x_n) \in F^n$ never belongs to R. In [19], K. Kuratowski proved the following theorem.

(2.4) THEOREM ([19, Main theorem and Corollary 3]). If X is a complete space and $R \subset X^n$ is an F_{σ} -set of the first category, then the set J(R) of all compact subsets F of X independent in R is a dense G_{δ} -set in the space 2^X of all compact subsets of X. Moreover, if X has no isolated points, then almost every Cantor set of X is independent in R.

(2.5) PROPOSITION. Let $f : X \to X$ be a homeomorphism of a compactum X. Then $W^{\sigma}(x)$ is an $F_{\sigma\delta}$ -set in X ($\sigma = s, u$).

Proof. We prove the case $\sigma = u$. Let $x \in X$. For any natural numbers $m, n \geq 1$, consider the set

$$W_{m,n}(x) = \{ y \in X \mid d(f^{-i}(x), f^{-i}(y)) \le 1/n \text{ for } i \ge m \}.$$

Then $W_{m,n}(x)$ is closed and $W_n(x) = \bigcup_{m=1}^{\infty} W_{m,n}(x)$ is an F_{σ} -set. Hence $W^{\mathrm{u}}(x) = \bigcap_{n=1}^{\infty} W_n(x)$ is an $F_{\sigma\delta}$ -set in X.

(2.6) PROPOSITION. Let $f: X \to X$ be an expansive homeomorphism of a compactum X. Then $W^{\sigma}(x)$ is an F_{σ} -set in X ($\sigma = s, u$).

Proof. We prove the case $\sigma = u$. Let c > 0 be an expansive constant for f and let $0 < \varepsilon < c/2$. Note that if $y, y' \in X$ and $d(f^{-i}(y), f^{-i}(y')) \le \varepsilon$ for each $i \ge m$ (*m* is some natural number), then $\lim_{i\to\infty} d(f^{-i}(y), f^{-i}(y')) = 0$ (see [20, p. 315]). For any $m = 1, 2, \ldots$, put

$$W_{m,\varepsilon}(x) = \{ y \in X \mid d(f^{-i}(x), f^{-i}(y)) \le \varepsilon \text{ for } i \ge m \}$$

Since $W^{u}(x) = \bigcup_{m=1}^{\infty} W_{m,\varepsilon}(x)$ and $W_{m,\varepsilon}(x)$ is closed, $W^{u}(x)$ is an F_{σ} -set in X.

(2.7) PROPOSITION. Let $f : X \to X$ be a continuum-wise expansive homeomorphism of a compactum X. Then $V^{\sigma}(x)$ is an F_{σ} -set in X ($\sigma =$ s, u).

Proof. We prove the case $\sigma = u$. Let c > 0 be a continuum-wise expansive constant for f and let $0 < \varepsilon < c/2$. Note that if $A \in C(X)$ and diam $f^{-i}(A) \leq \varepsilon$ for any $i \geq m$, then $\lim_{i\to\infty} \operatorname{diam} f^{-i}(A) = 0$ (see [15, (2.1)]). For each $m = 1, 2, \ldots$, put

 $V_{m,\varepsilon}(x) = \bigcup \{ A \in C(X) \mid x \in A \text{ and } \operatorname{diam} f^{-i}(A) \leq \varepsilon \text{ for } i \geq m \}.$ Then $V^{\mathrm{u}}(x) = \bigcup_{m=1}^{\infty} V_{m,\varepsilon}(x)$ is an F_{σ} -set in X.

3. Striped structures of stable and unstable sets. In this section, we study striped structures of stable and unstable sets of expansive homeomorphisms and continuum-wise expansive homeomorphisms. The main result of this section is the following theorem.

(3.1) THEOREM. Let $f: X \to X$ be an expansive homeomorphism of a compactum X with dim X > 0. Then the decomposition $\{W^{\sigma}(x) \mid x \in X\}$ ($\sigma = s$ and u) of X is uncountable. Moreover, there exists σ ($\sigma = s$ or u) and $\varrho > 0$ such that the σ -striped set $Z(\sigma, \varrho)$ is not empty. In particular, almost every Cantor set C of $Z(\sigma, \varrho)$ has the property that for any $x \in C$, there exists a nondegenerate subcontinuum A_x of X such that $x \in A_x \subset W^{\sigma}(x)$, and if $x, y \in C$ and $x \neq y$, then $W^{\sigma}(x) \neq W^{\sigma}(y)$.

To prove (3.1), we need the following facts. The next lemma is obvious.

(3.2) LEMMA. Let $f: X \to X$ be a map of a compactum X and let $N \ge 1$ be a natural number. Suppose that there is $\gamma > 0$ such that $d(f^{iN}(x), f^{iN}(y)) \ge \gamma$ for each i = 0, 1, 2, ... Then there is $\eta > 0$ such that $d(f^i(x), f^i(y)) \ge \eta$ for each i = 0, 1, 2, ...

(3.3) LEMMA ([15, (2.3)]). Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with an expansive constant c > 0 and let $0 < \varepsilon < c/2$. Then there is $\delta > 0$ such that if A is any nondegenerate subcontinuum of X such that diam $A \leq \delta$ and diam $f^m(A) \geq \varepsilon$ for some integer $m \in \mathbb{Z}$, then one of the following conditions holds:

(a) If $m \ge 0$, then diam $f^n(A) \ge \delta$ for each $n \ge m$. More precisely, there is a subcontinuum B of A such that diam $f^j(B) \le \varepsilon$ for $0 \le j \le n$ and diam $f^n(B) = \delta$.

(b) If m < 0, then diam $f^{-n}(A) \ge \delta$ for each $n \ge -m$. More precisely, there is a subcontinuum B of A such that diam $f^{-j}(B) \le \varepsilon$ for $0 \le j \le n$ and diam $f^{-n}(B) = \delta$.

(3.4) LEMMA ([15, (2.4)]). Let $f, c, \varepsilon, \delta$ be as in (3.3). Then for any $\gamma > 0$, there is N > 0 such that if $A \in C(X)$ and diam $A \ge \gamma$, then either diam $f^n(A) \ge \delta$ for each $n \ge N$, or diam $f^{-n}(A) \ge \delta$ for each $n \ge N$.

Proof of (3.1). Let c, ε, δ be positive numbers as in (3.3). Suppose that there exists no nondegenerate subcontinuum A of X such that $\lim_{n\to\infty} \dim f^{-n}(A) = 0$, i.e., $V^{\mathrm{u}} = \{\{x\} \mid x \in X\}$. Let C be a nondegenerate component of X. Then for any $x \in C$, $W^{\mathrm{u}}(x) = \bigcup_{i=1}^{\infty} F_i$, where each F_i is closed (see (2.6)). Note that $\operatorname{Int}_C(F_i \cap C) = \emptyset$ for all i. By the Baire category theorem, $\{W^{\mathrm{u}}(x) \mid x \in C\}$ is uncountable, and hence $\{W^{\mathrm{u}}(x) \mid x \in X\}$ is uncountable. The case $\sigma = s$ is similar.

Next, we shall show the existence of a nonempty σ -striped set $Z(\sigma, \varrho)$. By [20, Lemma 3], there is a nondegenerate subcontinuum $A \in V^{s} \cup V^{u}$. From now on, we assume that there is a nondegenerate subcontinuum Asuch that $\lim_{i\to\infty} \dim f^{-i}(A) = 0$. In this case, $V^{u}(\delta, \varepsilon) \neq \emptyset$ (see (3.3)). Note that if $A \in V^{u}$, then $W^{u}(x) = W^{u}(y)$ for all $x, y \in A$.

For any closed subset M of $V^{u}(\varepsilon)$, we define

$$M^{f} = \{A \in C(X) \mid \text{for any neighborhood } \mathbf{U} \text{ of } A \text{ in } C(X) \text{ there is} \\ A' \in M \text{ such that } A' \in \mathbf{U} \text{ and } W^{\mathrm{u}}(a) \cap W^{\mathrm{u}}(a') = \emptyset \\ \text{for all } a \in A \text{ and } a' \in A'\}.$$

We can easily see that $M^f \subset M$ is a closed subset of C(X) and $(M^f)^f \subset M^f$. For any ordinal numbers, define $M_0 = M$, $M_1 = M^f$, $M_{\alpha+1} = (M_\alpha)^f$, and $M_\lambda = \bigcap_{\alpha < \lambda} M_\alpha$, where λ is a limit ordinal. From now on, we assume that

$$M = M(\delta) = V^{\mathrm{u}}(\delta, \varepsilon)$$

Now, we need the following claim which is directly proved by transfinite induction.

CLAIM (λ). Let λ be a countable ordinal. If $A \in M_{\lambda}$, then there are two subcontinua A_1 and A_2 of A such that $d(A_1, A_2) \geq \delta/3$ and $A_1, A_2 \in (M')_{\lambda}$, where $M' = M(\gamma)$ (= $V^{\mathrm{u}}(\gamma, \varepsilon)$) and $0 < \gamma < \delta/3$.

By transfinite induction, we shall prove $M_{\lambda} \neq \emptyset$ for any ordinal λ . Choose $\gamma > 0$ such that if A and B are any subsets of X with diam $A \ge \delta$ and diam $B \ge \delta$, then there are $a \in A$ and $b \in B$ such that $d(a, b) \ge 3\gamma$. Let N be a natural number such that if $A \in C(X)$ and diam $A \ge \gamma$, then either diam $f^n(A) \ge \delta$ $(n \ge N)$ or diam $f^{-n}(A) \ge \delta$ $(n \ge N)$ (see (3.4)). We may assume $\gamma \le \delta/3$.

First, choose $A \in V^{\mathrm{u}}(\delta,\varepsilon)$. Since diam $A = \delta$, we can choose two subcontinua A_1 , B_1 of A such that $A_1, B_1 \in M' = V^{\mathrm{u}}(\gamma,\varepsilon)$ and $d(A_1, B_1) \geq \delta/3 \geq \gamma$ (see Claim (0)). Since diam $f^N(A_1) \geq \delta$ and diam $f^N(B_1) \geq \delta$, we choose a subcontinuum A_2 of $f^N(A_1)$ and a subcontinuum B_2 of $f^N(B_1)$ such that $A_2, B_2 \in V^{\mathrm{u}}(\gamma,\varepsilon)$ and $d(A_2, B_2) \geq \gamma$. By induction, we can choose two sequences $\{A_n\}$ and $\{B_n\}$ of C(X) such that $A_n \subset f^N(A_{n-1})$, $B_n \subset f^N(B_{n-1}), d(A_n, B_n) \geq \gamma$ and $A_n, B_n \in V^{\mathrm{u}}(\gamma,\varepsilon)$. Also, choose a subsequence $n_1 < n_2 < \ldots$ of natural numbers such that $\lim_{i\to\infty} A_{n_i} = A'$ and $\lim_{i\to\infty} B_{n_i} = B'$. Then $d(f^{-Ni}(A'), f^{-Ni}(B')) \geq \gamma$ for each $i \geq 0$. By (3.2), $d(f^{-i}(a), f^{-i}(b)) \geq \eta$ for all $a \in A'$, $b \in B'$ and $i \geq 0$, and hence $W^{\mathrm{u}}(a) \neq W^{\mathrm{u}}(b)$. Note that for each $a_{n_i} \in A_{n_i}$ and $b_{n_i} \in B_{n_i}, W^{\mathrm{u}}(a_{n_i}) =$ $W^{\mathrm{u}}(b_{n_i})$. Hence either $A' \in (M')^f = (M')_1$ or $B' \in (M')^f = (M')_1$. We assume that $A' \in (M')_1$. By (3.3), $f^N(A')$ contains a subcontinuum A_1 such that $A_1 \in M_1$, which implies that $M_1 \neq \emptyset$.

For a countable ordinal λ , we may assume that for any $\alpha < \lambda$, M_{α} is not empty. We must consider the following two cases.

(I) $\lambda = \alpha + 1$. Claim (α) and an argument similar to the above show that M_{λ} is not empty.

(II) λ is a limit ordinal. In this case, take an increasing sequence $\alpha_1 < \alpha_2 < \ldots$ of countable ordinals such that $\lim_{i\to\infty} \alpha_i = \lambda$. Also, choose $A_i \in M_{\alpha_i}$ for each *i*. We may assume that $\lim_{i\to\infty} A_i = A_{\infty}$. Then $A_{\infty} \in \bigcap_{\alpha < \lambda} M_{\alpha} = M_{\lambda}$.

Thus we proved that $M_{\lambda} \neq \emptyset$ for any countable ordinal λ . Hence there is a countable ordinal α such that $M_{\alpha} = M_{\alpha+1} \ (\neq \emptyset)$. Put $Z = \bigcup \{A \mid A \in M_{\alpha}\}$. Since M_{α} is closed in C(X), Z is also closed in X. We can easily see that $Z = Z(\mathbf{u}, \delta)$ is a u-striped set of f. Put

$$A(n,\varepsilon) = \{(x,y) \in Z \times Z \mid d(f^{-i}(x), f^{-i}(y)) \le \varepsilon \text{ for each } i \ge n\}$$

Then $A(n,\varepsilon)$ is a closed subset of $Z \times Z$; put $R = \bigcup_{n=1}^{\infty} A(n,\varepsilon)$. Note that Int_Z $A(n,\varepsilon) = \emptyset$. Hence R is an F_{σ} -set of the first category in $Z \times Z$. By the theorem of K. Kuratowski on independent sets (see (2.4)), $\mathbf{S} = \{S \in 2^Z \mid S \text{ is independent in } R\} = \{S \in 2^Z \mid \text{for any } x, y \in S \text{ with } x \neq y, W^u(x) \neq W^u(y)\}$ is a dense G_{δ} -set in 2^Z . By (2.4), almost every Cantor set of Z is contained in \mathbf{S} . This completes the proof.

(3.5) COROLLARY. Under the assumption of (3.1), if moreover $V^{\rm s}$ and $V^{\rm u}$ contain nondegenerate subcontinua, then for both $\sigma = {\rm s}$ and $\sigma = {\rm u}$, the σ -striped set $Z(\sigma, \varrho)$ of f is not empty for some $\varrho > 0$.

By (2.7) and an argument similar to the above, we can prove the following theorem on continuum-wise expansive homeomorphisms.

(3.6) THEOREM. Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a compactum X with dim X > 0. Then the decompositions $\{V^{\sigma}(x) \mid x \in X\}$ ($\sigma = s$ and u) are uncountable. Moreover, there is σ ($\sigma = s$ or u) and a positive number $\rho > 0$ such that there is a nonempty closed set Z' of X such that (i) for each $x \in Z'$ there is a subcontinuum A_x of X with diam $A_x \ge \rho$ and $x \in A_x \subset V^{\sigma}(x)$, (ii) for any neighborhood U of x in X, there is $y \in Z' \cap U$ such that $V^{\sigma}(x) \ne V^{\sigma}(y)$. In particular, almost every Cantor set C of $Z(\sigma)$ has the property that for any $x \in C$, there is a nondegenerate subcontinuum A_x of X with $x \in A_x \subset V^{\sigma}(x)$, and if $x, y \in C$ and $x \ne y$, then $V^{\sigma}(x) \ne V^{\sigma}(y)$.

(3.7) THEOREM. Let X be a locally connected continuum (= Peano continuum). If $f : X \to X$ is an expansive homeomorphism (resp. a continuum-wise expansive homeomorphism) of X, then there is an uncountable subset Z of X such that $\operatorname{Cl}(Z) = X$, and

(1) for each $x \in Z$ and $\sigma = s$ and u, there is a nondegenerate subcontinuum $A_x \in V^{\sigma}$ with $x \in A_x$ and diam $A_x \ge \delta$ for some $\delta > 0$,

(2) if $x, y \in Z$ and $x \neq y$, then $W^{\sigma}(x) \neq W^{\sigma}(y)$ (resp. $V^{\sigma}(x) \neq V^{\sigma}(y)$) for both $\sigma = s$ and u.

To prove (3.7), we need the following.

(3.8) LEMMA ([16, (1.6)]). Let $f: X \to X$ be a continuum-wise expansive homeomorphism of a Peano continuum X. Then there is $\delta > 0$ such that for each $x \in X$, there are two subcontinua A_x and B_x such that $x \in A_x \cap B_x$, $A_x \in V^{\rm s}$, $B_x \in V^{\rm u}$, diam $A_x = \delta$ and diam $B_x = \delta$. In particular, $\operatorname{Int}_X(W^{\sigma}(x)) = \emptyset$ for each $x \in X$ and $\sigma = {\rm s}$, u. Proof of (3.7). Suppose that f is an expansive homeomorphism. The case of continuum-wise expansive homeomorphism is similarly proved. Let $\mathcal{B} = \{U_i\}_{i=1}^{\infty}$ be a base of X. We use the Baire category theorem. By induction, we obtain a countable subset Z_{ω} of X such that $U_i \cap Z_{\omega} \neq \emptyset$ and if $x, y \in Z_{\omega}$, then $W^{\sigma}(x) \neq W^{\sigma}(y)$ for $\sigma = s$ and u, because $\operatorname{Int}_X(W^{\sigma}(x)) = \emptyset$ and $W^{\sigma}(x)$ is an F_{σ} -set (see (2.6)). By transfinite induction, for any countable ordinal λ we have a countable set Z_{λ} such that (1) if $x, y \in Z_{\lambda}$ and $x \neq y$, then $W^{\sigma}(x) \neq W^{\sigma}(y)$ for both $\sigma = s$ and u, and (2) if $\alpha < \beta$, then $Z_{\alpha} \subsetneq Z_{\beta}$. Put $Z = \bigcup_{\lambda < \omega_1} Z_{\lambda}$. Clearly, Z is the desired set.

Let $f: X \to X$ be a homeomorphism of a compactum X. For $\sigma = s$ and u, let $M_{\sigma}(f)$ be the maximal element of the family $\{Z \mid Z \text{ is a closed} subset of X such that for any <math>x \in Z$ and any neighborhood U of x in X there is $y \in Z \cap U$ such that $W^{\sigma}(x) \neq W^{\sigma}(y)$. Clearly, $M_{\sigma}(f)$ is f-invariant. It is called the σ -mixed set of f.

By (3.1) and (3.7), we have the following corollary.

(3.9) COROLLARY. If $f: X \to X$ is an expansive homeomorphism of a compactum X with dim X > 0, then the σ -mixed set $M_{\sigma}(f)$ is not empty and hence it is a perfect set. Moreover, if X is a Peano continuum, then $M_{\sigma}(f) = X$.

Proof. By (3.1), there is an uncountable subset H_{σ} of X such that if $x, y \in H_{\sigma}$ and $x \neq y$, then $W^{\sigma}(x) \neq W^{\sigma}(y)$. Then $\operatorname{Cl}(H_{\sigma})$ is a closed and uncountable set, hence it contains a Cantor set C. Then $C \subset M_{\sigma}(f)$.

For the case of inverse limits of graphs, we have the following theorem.

(3.10) THEOREM. Let $f: G \to G$ be a map of a graph G (= finite connected 1-dimensional polyhedron). Suppose that the shift map $\tilde{f}: (G, f) \to (G, f)$ is expansive. Then for each $\tilde{x} \in (G, f)$, (a) $W^{\mathrm{u}}(\tilde{x})$ is equal to the arc component $A(\tilde{x})$ of (G, f) containing \tilde{x} , and (b) $W^{\mathrm{s}}(\tilde{x})$ is 0-dimensional.

To prove (3.10), we need the following notations. Let A be a closed subset of a compactum X. A map $f: X \to X$ is called *positively expansive* on A if there is c > 0 such that if $x, y \in A$ and $x \neq y$, then there is a natural number $n \ge 0$ such that $d(f^n(x), f^n(y)) > c$. If a map $f: X \to X$ is positively expansive on the whole space X, we say f is *positively expansive*. Let A be a finite closed covering of X. A map $f: X \to X$ is *positively pseudo-expansive with respect to* A if the following conditions hold:

 (\mathbf{P}_1) f is positively expansive on A for each $A \in \mathcal{A}$.

(P₂) For all $A, B \in \mathcal{A}$ with $A \cap B \neq \emptyset$, either f is positively expansive on $A \cup B$, or there is a natural number $k \geq 1$ such that for any $A', A'' \in \mathcal{A}$ with $A' \cap A'' \neq \emptyset$, either

 $f^k(A' \cup A'') \cap (A - B) = \emptyset$ or $f^k(A' \cup A'') \cap (B - A) = \emptyset$.

(3.11) THEOREM ([13, (2.5)]). Let G be a graph and let $f : G \to G$ be an onto map. Then the shift map $\tilde{f} : (G, f) \to (G, f)$ is expansive if and only if f is positively pseudo-expansive with respect to \mathcal{A} , where $\mathcal{A} = \{e \mid e \text{ is an edge of some simplicial complex } K \text{ with } |K| = G\}.$

(3.12) PROPOSITION ([13, (2.9)]). Let $f: G \to G$ be an onto map of a graph G. If the shift map $\tilde{f}: (G, f) \to (G, f)$ is expansive, then there is $\alpha > 0$ such that if A is a subcontinuum of (G, f) with diam $A \leq \alpha$, then $A \in V^{\mathrm{u}}$, i.e., $\lim_{n\to\infty} \operatorname{diam} \tilde{f}^{-n}(A) = 0$.

Proof of (3.10). We may assume that $f: G \to G$ is an onto map, since so is $f|G': G' \to G'$, where $G' = p_n((G, f))$ and $p_n: (G, f) \to G$ is the natural projection.

(a) Let \tilde{y} be any point of the arc component $A(\tilde{x})$ of (G, f) containing \tilde{x} . Choose an arc A from \tilde{x} to \tilde{y} in $A(\tilde{x})$. Choose points $\tilde{x} = \tilde{x}_0, \tilde{x}_1, \ldots, \tilde{x}_m = \tilde{y}$ of A such that diam $[\tilde{x}_i, \tilde{x}_{i+1}] \leq \alpha$ for each $i = 0, 1, \ldots, m-1$, where $\alpha > 0$ is as in (3.12) and $[\tilde{x}_i, \tilde{x}_{i+1}]$ denotes the arc from \tilde{x}_i to \tilde{x}_{i+1} in A. By (3.12), $[\tilde{x}_i, \tilde{x}_{i+1}] \in V^{\mathrm{u}}$ for each i, hence $\tilde{y} \in W^{\mathrm{u}}(\tilde{x})$. This implies that $A(\tilde{x}) \subset W^{\mathrm{u}}(\tilde{x})$.

We show the converse inclusion. Let $\tilde{y} \in W^{\mathrm{u}}(\tilde{x})$. Suppose that $\tilde{x} = (x_i)_{i=0}^{\infty}$ and $\tilde{y} = (y_i)_{i=0}^{\infty}$. Since $\lim_{i\to\infty} d(x_i, y_i) = 0$, there is $m \geq 0$ such that if $n \geq m$, then $x_n \in e_n$ and $y_n \in e'_n$, where K is a simplicial complex as in (3.11) and e_n, e'_n are edges of K such that $e_n \cap e'_n \neq \emptyset$. Also, we assume that $d(x_n, y_n) < \min\{d(e, e') \mid e \text{ and } e' \text{ are edges of } K \text{ with } e \cap e' = \emptyset\}$ for each $n \geq m$.

Since $f: G \to G$ is positively pseudo-expansive with respect to $\mathcal{A} = \{e \mid e \$ is an edge of $K\}$, it is positively expansive on $e_n \cup e'_n$ for each $n \ge m$. We may assume that $f([x_n, y_n])$ does not contain a simple closed curve, where $[x_n, y_n]$ is the arc in $e_n \cup e'_n$ from x_n to y_n . It follows that $f([x_{n+1}, y_{n+1}]) = [x_n, y_n]$ and $f|[x_{n+1}, y_{n+1}] : [x_{n+1}, y_{n+1}] \to [x_n, y_n]$ is a homeomorphism for each $n \ge m$, because $f|[x_n, y_n]$ is locally injective and $f([x_n, y_n])$ does not contain a simple closed curve. Consider the subset $A = \{(z_i)_{i=0}^{\infty} \mid z_i \in G, z_n \in [x_n, y_n] \text{ for each } n \ge m \text{ and } f(z_{i+1}) = z_i \text{ for each } i \ge 0\}$ in (G, f). Clearly, Ais an arc from \tilde{x} to \tilde{y} in (G, f). Hence $\tilde{y} \in A(\tilde{x})$. Note that $V^u(\tilde{x}) = W^u(\tilde{x})$.

(b) By (3.12), $W^{s}(\tilde{x})$ contains no nondegenerate subcontinuum. Since $W^{s}(\tilde{x})$ is an F_{σ} -set in (G, f), $W^{s}(\tilde{x}) = \bigcup_{i=1}^{\infty} F_{i}$, where each F_{i} is closed. Since dim $F_{i} = 0$ for each i, by the sum theorem of dimension theory we see that dim $W^{s}(\tilde{x}) = 0$.

(3.13) Remark. Of course (3.10) is not true for general expansive homeomorphisms. Consider for example an arbitrary Anosov diffeomorphism. Even in the 1-dimensional case (3.10) is not true. Let $g: G \to G$ be the map as in (a) of (2.3). Let $Y = ((G,g), 0) \lor ((G,g)', 0')$ be the one-point union of $((G,g), \widetilde{0})$ and $((G,g)', \widetilde{0}')$, where $((G,g)', \widetilde{0}')$ is a copy of $((G,g), \widetilde{0})$. Define a homeomorphism $f: Y \to Y$ by

$$f(y) = \begin{cases} \widetilde{g}(y) & \text{if } y \in (G,g), \\ \widetilde{g}^{-1}(y) & \text{if } y \in (G,g)' \end{cases}$$

Then f is an expansive homeomorphism and for both $\sigma = s$ and u, $W^{\sigma}(0)$ is not equal to the arc component A(0).

Also, (3.10) is not true in the case that the shift map $\tilde{f} : (G, f) \to (G, f)$ of f is continuum-wise expansive, where $f : G \to G$ is a map of a graph G. In fact, there is a map $f : I \to I$ of the unit interval I such that $\tilde{f} : (I, f) \to (I, f)$ is a continuum-wise expansive homeomorphism and (I, f) is a pseudo-arc (= hereditarily indecomposable arc-like continuum) (see [16, (2.3)]). Since (I, f) contains no arc and $W^u(\tilde{x})$ contains a nondegenerate subcontinuum of (I, f) for each $\tilde{x} \in (I, f)$ (see the proof of [15, (3.2)]), $W^u(\tilde{x})$ is not equal to the arc component $A(\tilde{x}) = {\tilde{x}}$.

In connection with (3.10), we have the following questions.

QUESTION 1. In the situation of (3.10), under what assumptions does X = (G, f) admit a closed neighborhood base $\{B_n\}_{n=1}^{\infty}$ such that each B_n is the product of an arc in W^{u} and a Cantor set in W^{s} ? Is the condition that X is σ -mixed sufficient? For Williams' mixing expanding maps on 1-dimensional branched manifolds, the answer is positive [27].

QUESTION 2. Does "positive pseudo-expansiveness" imply "pseudo-expanding" in a metric giving the same topology as the original metric (cf. [3])?

The author wishes to thank the referee for his helpful and kind remarks.

References

- N. Aoki, *Topological dynamics*, in: Topics in General Topology, K. Morita and J. Nagata (eds.), Elsevier, 1989, 625–740.
- B. F. Bryant, Unstable self-homeomorphisms of a compact space, thesis, Vanderbilt University, 1954.
- M. Denker and M. Urba/nski, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent periodic points, Forum Math. 3 (1991), 561–579.
- R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley, 1989.
- W. Gottschalk, Minimal sets; an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336–351.
- [6] W. Gottschalk and G. Hedlund, *Topological Dynamics*, Amer. Math. Soc. Colloq. Publ. 34, Amer. Math. Soc., 1955.

- K. Hiraide, Expansive homeomorphisms on compact surfaces are pseudo-Anosov, Osaka J. Math. 27 (1990), 117–162.
- [8] J. F. Jacobson and W. R. Utz, The nonexistence of expansive homeomorphisms of a closed 2-cell, Pacific J. Math. 10 (1960), 1319–1321.
- H. Kato, The nonexistence of expansive homeomorphisms of Peano continua in the plane, Topology Appl. 34 (1990), 161–165.
- [10] —, On expansiveness of shift homeomorphisms of inverse limits of graphs, Fund. Math. 137 (1991), 201–210.
- [11] —, The nonexistence of expansive homeomorphisms of dendroids, ibid. 136 (1990), 37–43.
- [12] —, Embeddability into the plane and movability on inverse limits of graphs whose shift maps are expansive, Topology Appl. 43 (1992), 141–156.
- [13] —, Expansive homeomorphisms in continuum theory, ibid. 45 (1992), 223–243.
- [14] —, Expansive homeomorphisms and indecomposability, Fund. Math. 139 (1991), 49–57.
- [15] —, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), 576– 598.
- [16] —, Concerning continuum-wise fully expansive homeomorphisms of continua, Topology Appl., to appear.
- [17] H. Kato and K. Kawamura, A class of continua which admit no expansive homeomorphisms, Rocky Mountain J. Math. 22 (1992), 645–651.
- [18] K. Kuratowski, Topology, Vol. II, Academic Press, New York, 1968.
- [19] —, Applications of Baire-category method to the problem of independent sets, Fund. Math. 81 (1974), 65–72.
- [20] R. Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc. 252 (1979), 313–319.
- [21] S. B. Nadler, Jr., Hyperspaces of Sets, Pure and Appl. Math. 49, Dekker, New York, 1978.
- [22] R. V. Plykin, Sources and sinks of A-diffeomorphisms of surfaces, Math. USSR-Sb. 23 (1974), 233–253.
- [23] —, On the geometry of hyperbolic attractors of smooth cascades, Russian Math. Surveys 39 (1984), 85–131.
- W. Reddy, The existence of expansive homeomorphisms of manifolds, Duke Math. J. 32 (1965), 627–632.
- [25] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer, 1982.
- [26] R. F. Williams, A note on unstable homeomorphisms, Proc. Amer. Math. Soc. 6 (1955), 308–309.
- [27] —, One-dimensional non-wandering sets, Topology 6 (1967), 473–487.

FACULTY OF INTEGRATED ARTS AND SCIENCES HIROSHIMA UNIVERSITY 1-7-1 KAGAMIYAMA, HIGASHI-HIROSHIMA 724 JAPAN

> Received 19 November 1992; in revised form 15 March and 6 April 1993