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Extreme points and descriptive sets
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Robert P. Kaufman (Urbana, Ill.)

Abstract. A class of closed, bounded, convex sets in the Banach space cg is shown
to be a complete PCA set.

Introduction. Let K denote a closed, bounded, convex set in a separa-
ble B-space X, and let ex K denote its set of extreme points. It is possible
that ex K = (), and also that ex K fail to be a Borel set ([5, 6]). Hence it is
natural to ask for the complexity of the set C'E of sets K in X having an
extreme point. This question will be answered for X = ¢g, after a digres-
sion on the class F'(M) of all closed subsets of a metric space (M, d). This
class can be quite mysterious ([4, 7]), but we mention only the rudiments.
When F(M) is provided with the Hausdorff metric—a minor adjustment is
necessary when d is unbounded—certain sets [U] in F'(M) are open. Here
U is open in M and

Ae[Ul = ANU #9.

When d is totally bounded—equivalently, when F'(M) is separable—the sets
[U] generate the field of Borel sets, called the Effros Borel structure, and
therefore the Borel structure in F'(M) has a definite meaning when M is
separable (since then there is some totally bounded metric). Some sets are
always closed, for example the subset of M x F(M) defined by m € A.
When X is a separable B-space, the convex sets form a Gs. To see this, let
(Up)22; be a basis for the open sets; then A is convex provided A meets
%(Un + U,,) whenever A meets both U, and U,,. The Hausdorff metric
in F(X), relative to the usual metric, will be called the strong metric; that
relative to a totally bounded metric in X will be called a weak metric. (This
has no relation to the weak topology.)

Let E be the subset of F'(X)x X x X x X containing elements (A, x,y, z)
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such that
reA yeA z€eA x#y, x#z xTEYZ.

Then E is a Gs (for any weak metric in F(X)) and its projection on the
first and second factors is the set of pairs (A, x) such that z € A and x is
not an extreme point of A. From this we conclude that C'E is of class PCA
(alias XJ) for a weak metric. Recent work on realization of PCA sets by
means of sets in classical analysis is presented in [1, 2].

THEOREM. Let S be a PCA set in a compact metric space M. Then
there is a mapping m — K(m) defined on M such that

(i) K(m) is a closed, bounded, convex subset of cg.
(ii) K(m) has an extreme point if and only if m € S.
(iii) The mapping is continuous from M to the strong metric in F(cg).

Proof. This begins with some elementary topology and a summary of
[6]. Being of class PCA, S is a continuous image f(S1) of a certain C'A set
81 in a compact metric space M;. By a device used in [6], matters can be
so arranged that f admits a continuous extension to all of M;, mapping
M; into M. Let P(Mj) be the set of probability measures in M, with its
w*-topology, and T" an affine homeomorphism of P(M;) onto a compact set
C in ¢g. Then there is a closed, bounded, convex set K in ¢y X ¢y such
that ([6])

(i) C x {0} is contained in Kj.
(ii) The extreme points of K are precisely the elements (T'(d,,, ),0) with
my € Sy.

Let h be continuous on M to [0, 1] and let K (h) be the convex subset of
co X ¢ X ¢g containing all (T'(p1), u, v) such that (T'(p), u) € Ko, ||v]| < [ hdp.
To determine ex K (h), we recall that the unit ball of ¢y has no extreme
points and therefore (T'(u), u,v) cannot be extreme if [hdp > 0. If, then,
(T'(),u,v) is extreme, then v = 0, whence (T'(u),u) is extreme in Ky, and
(as just observed) [ hdu = 0. Conversely, suppose (T'(),0) is extreme and
fhd/’L = 0; and suppose (T(M)7O7O) = %(T(M1)7 uy, v1) + %(T(:U’Q)ﬂ Uz, 1)2)'
Then gy = pe = p, w1 = ug = 0, and consequently v; = vo = 0. Thus, in
summary

K (h) has an extreme point < h has a zero in S .

Moreover, the Hausdorff distance between K (h1) and K (hs) is at most
h1 = ha]|.

Let o be a metric in M and suppose ¢ < 1, and let h(m,m;) =
o(m, f(mq)). Then h(m,-) is continuous on My, and h(m, -) has a zero in S;
< m € f(S1) =S. Using these functions for h in K (h) we obtain the theo-
rem.
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Conclusion. We mention some problems, of uncertain difficulty, related

to the main result; background material is presented in [3].

(i) Find other spaces X in place of ¢y. Since ' has RNP, the most

likely candidate is L'. Besides this, there are the separable subspaces of the
non-RNP spaces of Stegall ([3], Ch. 4).

(ii) What happens when extreme points are replaced by denting points,

exposed points, strongly exposed points, etc. ([3], Ch. 3)?

(iii) Classify the sets K such that K = co(ex K).
(iv) Fixing K, classify the set of points represented by an integral over

ex K ([3], Ch. 6).
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