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Weakly normal ideals on Pκλ

and the singular cardinal hypothesis

by

Yoshihiro Abe (Numazu)

Abstract. In §1, we observe that a weakly normal ideal has a saturation property; we
also show that the existence of certain precipitous ideals is sufficient for the existence of
weakly normal ideals. In §2, generalizing Solovay’s theorem concerning strongly compact
cardinals, we show that λ<κ is decided if Pκλ carries a weakly normal ideal and λ is
regular or cf λ ≤ κ. This is applied to solving the singular cardinal hypothesis.

0. Preliminaries. A strongly compact cardinal introduces certain
regularities in the universe of set theory. For example, Solovay showed that
the singular cardinal hypothesis holds above a compact cardinal.

If κ is λ-compact, Pκλ carries a weakly normal fine ultrafilter. So, the
existence of weakly normal ideals is a weaker hypothesis than the existence
of strongly compact cardinals. In this paper, we use a weakly normal ideal
to reprove those results of [14] for which Solovay used a strongly compact
cardinal.

We would like to express our gratitude to Yo Matsubara for his helpful
comments.

Our set theory is ZFC and much of notation is standard (see [4], [8],
[15]). Throughout the paper κ is a regular uncountable cardinal and λ is
a cardinal ≥ κ. Unless specified otherwise, every ideal on Pκλ is assumed
to be κ-complete and fine. So, every ideal I contains the smallest ideal
Iκλ = {X ⊂ Pκλ : X is not unbounded}. Set I+ = P(Pκλ) − I and let
I∗ be the filter dual to I. The sets in I+ and I∗ are called I-positive and
I-measure one respectively. NSκλ is the ideal of nonstationary sets, and
SNSκλ is the ideal of strongly nonstationary sets. For each x ∈ Pκλ, x̂ is
the set {y ∈ Pκλ : x ⊂ y}. If f is a function, f ′′A is the image of A under f .
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1. Weakly normal ideals and saturated ideals. Weakly normal
fine ultrafilters as well as weakly normal ideals defined below can be seen
as a weak version of normal ultrafilters. On the other hand, the form of
weak normality proposed by Mignone [10], which we call here “semi-weak
normality”, is a weakening of normality of filters.

Definition. An ideal I on Pκλ is weakly normal if for every regressive
function f : Pκλ → λ, {x ∈ Pkλ : f(x) ≤ γ} ∈ I∗ for some γ < λ. I is called
semi-weakly normal if for all X ∈ I+ and all regressive functions f : X → λ,
there is a γ < λ such that {x ∈ X : f(x) ≤ γ} ∈ I+.

Our weak normality is a Pκλ generalization of weak normality for filters
on κ due to Kanamori [7]. It appears in the proof of Theorem 2.1.

We begin by showing that weak normality is a combination of semi-weak
normality and a saturation property.

Lemma 1.1. I is weakly normal iff I is semi-weakly normal and there is
no disjoint family of cf λ-many I-positive sets.

P r o o f. Suppose that I is weakly normal. Let X ∈ I+ and f : X → λ
be regressive. We extend f to g : Pκλ → λ that is also regressive. Using
weak normality of I, we can find Y ∈ I∗ and γ < λ so that f(x) ≤ γ for all
x ∈ Y . Set Z = X∩Y . Then g|Z = f |Z and Z ∈ I+. Thus I is semi-weakly
normal.

Next, assume that there exists a disjoint family {Aα : α < cf λ} of
I-positive sets. Let {λα | α < cf λ} be a cofinal increasing sequence in λ.
We may assume that Aα ⊂ {̂λα} for any α < cf λ. Define a regressive
function f : Pκλ → λ by f ′′Aα = {λα}. Since I is weakly normal, B = {x :
f(x) ≤ γ} ∈ I∗ for some γ < λ. Now pick a λα > γ. By the definition of f ,
Aα ⊂ f−1({λα}) and f−1({λα}) ∩B = ∅. This contradicts Aα ∈ I+.

Conversely, suppose that I is a semi-weakly normal ideal with no disjoint
family of cf λ-many positive sets. If I is not weakly normal, there is a
regressive function f : Pκλ → λ such that {x : f(x) ≥ γ} ∈ I+ for any
γ < λ. Since I is semi-weakly normal, we can find a γ0 < λ such that
A0 = {x : f(x) < γ0} ∈ I+ − I∗. Since Pκλ−A0 ∈ I+, we have a γ1 < λ so
that A1 = {x : γ0 ≤ f(x) < γ1} ∈ I+−I∗. In the same way, for any α < cf λ,
we can define γα+1 < λ such that Aα+1 = {x : γα ≤ f(x) < γα+1} ∈ I+.
For α a limit ordinal less than cf λ, let ηα = sup{γβ : β < α} < λ. Since
{x : ηα ≤ f(x)} is I-positive, there is a γα so that Aα = {x : ηα ≤ f(x) <
γα} ∈ I+ − I∗.

Contrary to our hypothesis, we now have a pairwise disjoint family {Aα :
α < cf λ} of I-positive sets.

Corollary 1.2. If cf λ = κ, then I is weakly normal iff it is semi-weakly
normal and κ-saturated.
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Corollary 1.3. Let cf λ < κ. Then I is weakly normal iff I is cf λ-
saturated.

P r o o f. It is easy to show that every ideal is semi-weakly normal if
cf λ < κ. For more on semi-weak normality, see [10] and [11].

1.2 and 1.3 show κ is large in some inner model if Pκλ carries a weakly
normal ideal provided that cf λ ≤ κ. It will be shown in [3] that the existence
of weakly normal ideals on Pκλ is possible for κ with various degree of
largeness.

Here we only state that some familiar ideals are not weakly normal.

Corollary 1.4. None of Iκλ, SNSκλ, NSκλ is weakly normal.

P r o o f. It is known that Pκλ is a disjoint union of λ stationary subsets
(see [8] for example) and every extension of a weakly normal ideal is also
weakly normal.

For normal ideals, easy observations suggest that:

Corollary 1.5. Every cf λ-saturated normal ideal is weakly normal.

P r o o f. Let f : Pκλ → λ be regressive and A = {γ < λ : f−1({γ}) ∈
I+}. Since I is cf λ-saturated, |A| < cf λ. Set δ = supA. Then δ < λ and
it is clear that {x : f(x) ≤ δ} ∈ I∗.

Conversely, saturated ideals produce weakly normal ideals under cer-
tain conditions. We already know some cases (1.3, 1.5). In fact, Corollary
1.8 below was proved in [2] using an analogue of Solovay’s construction of
incompressible functions (see [13]).

We use here a generic ultrapower which makes the proof much simpler.

Definition. Let I and J be ideals.

(1) J ≤RK I if J = f∗(I) = {X : f−1(X) ∈ I} for some f : Pκλ → Pκλ.
(2) For X ∈ I+, I|X = {Y ⊂ Pκλ : Y ∩X ∈ I}, which is also an ideal.
(3) Iδ = f∗(I) for f : Pκλ → Pκδ such that f(x) = x ∩ δ.

Proposition 1.6. Suppose that I is a precipitous ideal on Pκλ. Then
there is a semi-weakly normal ideal J ≤RK I|X for some X ∈ I+.

P r o o f. Let G be a generic filter for PI , the poset of I-positive subsets
of Pκλ, and let j : V → M be the corresponding generic elementary em-
bedding. Pick a name f such that 1 
PI

f represents sup j′′λ in M . There
are X ∈ I+ and f : X → V with X 
PI

f = f̌ . Note that for every α < λ,
{x ∈ X : f(x) ≤ α} ∈ I.

Suppose Y = {x ∈ X : g(x) < f(x)} ∈ I+. Since Y ≤PI
X, Y 
PI

f̌
represents sup j′′λ and [g]G < [f ]G. Thus Y 
PI

∃α < λ ([g]G < j(α)). So,
{x ∈ Y : g(x) < α} ∈ I+ for some α < λ.
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Now if h is defined by h(x) = x∩ f(x) for x ∈ X, the above observation
shows that J = h∗(I|X) is a semi-weakly normal ideal.

As a corollary, we get the next theorem.

Theorem 1.7. If I is a precipitous ideal on Pκλ with no pairwise disjoint
family of cf λ-many I-positive sets, then for any X ∈ I+ we can find a
Y ∈ P (X) ∩ I+ and a weakly normal ideal J ≤RK I|Y .

P r o o f. Use Lemma 1.1 and Proposition 1.6.

Yo Matsubara taught the author a simpler construction. Let J = {Y ⊂
Pκλ : 1 
PI

[id] ∩ j′′λ ∈ j(Pκλ− Y )}. Then J is weakly normal.
Recall that any countably complete ideal with the disjointing property

is precipitous, and every κ-complete κ+-saturated ideal has the disjointing
property. (See Foreman [5].)

Corollary 1.8. (i) If cf λ ≥ κ and Pκλ carries a κ-saturated ideal ,
then there exists a κ-saturated weakly normal ideal.

(ii) If cf λ ≥ κ+ and there is a κ+-saturated ideal on Pκλ, then there
exists a weakly normal ideal on Pκλ.

If κ is λ-compact, then it is δ-compact for all κ ≤ δ < λ. So, one can ask
whether the existence of a weakly normal filter on Pκλ assures the existence
of one on Pκδ for any δ < λ.

If I is a normal ideal on Pκλ, then Iδ is also normal. But the situation
is not clear for weak normality. We can only prove:

Theorem 1.9. (1) If I is a weakly normal ideal on Pκλ and cf λ ≤ κ,
then there is a weakly normal ideal for any κ ≤ δ < λ such that cf δ ≥ κ.

(2) If there is a κ+(κ)-saturated ideal on Pκλ, then we have a weakly
normal ideal on Pκδ for all δ < λ with cf δ ≥ κ+(κ).

(3) If Pκλ carries a weakly normal ideal and cf λ > κ, then Pκ cf λ also
bears a weakly normal ideal.

(4) If κ < δ < λ, κ < cf δ = cf λ and Pκλ carries a weakly normal ideal ,
then there exists a weakly normal ideal on Pκδ.

P r o o f. (1) and (2) are clear from 1.2, 1.3, 1.8, and the fact that Iδ is
also κ+(κ)-saturated for any κ+(κ)-saturated ideal I on Pκλ.

(3) Let κ < δ = cf λ < λ, let {λα | α < δ} be a cofinal normal sequence
in λ, and Kα = [λα, λα+1). If f(β) = the unique ordinal α such that
β ∈ Kα, then f is a mapping from λ onto δ, and g : Pκλ → Pκδ defined by
g(x) = f ′′x is also onto. For a weakly normal ideal I on Pκλ, define J by

X ∈ J iff X ⊂ Pκδ and g−1(X) ∈ I .
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Then J is a κ-complete proper ideal. For α < δ,

g−1({x : α 6∈ x}) = {x ∈ Pκλ : f(β) 6= α for all β ∈ x}
= {x : x ∩Kα = ∅} ∈ I .

So, J is fine.
To see that J is weakly normal, let h : Pκδ → δ be regressive. We have

h ◦ g(x) ∈ g(x) for all x ∈ Pκλ and g(x) = f ′′x. Thus h ◦ g(x) = f(γx)
for some γx ∈ x. Using weak normality of I, we can find a γ < λ such
that X = {x : γx ≤ γ} ∈ I∗. By our definition, f is increasing. Hence
f(γx) ≤ f(γ) for all x ∈ X, which means that {x ∈ Pκδ : h(x) ≤ f(γ)} ∈ J∗.

(4) Set η = cf λ, let {λα | α < η} and {δα | α < η} be cofinal normal
sequences of cardinals in λ and δ respectively such that λ0 ≥ δ, and let
Kα = [λα, λα+1) and Lα = [δα, δα+1) for each α < η.

Define f : λ → δ and g : Pκλ → Pκδ so that f ′′Kα = Lα and g(x) = f ′′x.
Then g is surjective and J = g∗(I) is weakly normal if I is weakly normal.

For the existence of weakly normal ideals, we give another construction
in 2.7 and 2.10.

2. λ<κ and the singular cardinal hypothesis. Solovay [14], using
fine ultrafilters, proved that the size of Pκλ is decided if κ is λ-compact.
Here we show that the existence of weakly normal filters is enough to get
his results in several cases; we also consider the singular cardinal hypothesis.

Theorem 2.1. If λ is regular and there is a weakly normal filter U on
Pκλ, then λ<κ = λ · 2<κ.

We just follow Solovay’s argument. For the reader’s convenience, we
present the complete proof.

A minor observation on weakly normal filters is needed.

Lemma 2.2. {x : cf(supx) < κ} ∈ U for every weakly normal filter U .

P r o o f. We only have to show that {x : supx ∈ x} has U -measure 0.
Then {x : x is cofinal in supx} ∈ U and the lemma is proved.

Suppose that {x : supx ∈ x} ∈ U+. Since U is semi-weakly normal,
there is a γ < λ such that {x : supx ≤ γ} ∈ U+. Now {x : x ⊂ γ +1} ∈ I+,
contrary to U being fine.

We define a filter D on λ by

X ∈ D iff X ⊂ λ and {x : supx ∈ X} ∈ U .

Lemma 2.3. D is a κ-complete weakly normal filter on λ and {α : cf α <
κ} ∈ D.

P r o o f. It is clear that D is a κ-complete filter. For any α < λ, {x :
supx ≥ α} is a member of U , hence {β : β ≥ α} is in D. So D is uniform.
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Suppose that f : λ → λ is regressive. Define g : Pκλ → λ by g(x) =
f(supx). Then g(x) < supx for every x ∈ Pκλ. Pick a γ < λ such that
A = {x : g(x) ≤ γ} ∈ U . Then B = {supx : x ∈ A} ∈ D and f(α) ≤ γ for
any α ∈ B. This says that D is weakly normal.

By the previous lemma, {x : cf(supx) < κ} ∈ U . This obviously yields
{α < λ : cf α < κ} ∈ D.

Let Aα be a cofinal subset of α whose cardinality is less than κ if cf α < κ,
and Aα = 0 otherwise.

Since D is uniform, Xη = {α : Aα−(η+1) 6= ∅} ∈ D for every η < λ. By
the weak normality of D, there is an η′ < λ such that {α : Aα ∩ [η, η′) 6= ∅}
∈ D. With this in mind, we can define inductively a sequence {ηξ | ξ <
λ} ⊂ λ as follows:

η0 = 0,

ηξ = sup{ηβ : β < ξ} for ξ a limit ordinal,
ηξ+1 is chosen so that {α : Aα ∩ [ηξ, ηξ+1) 6= ∅} ∈ D.

Let Iξ = [ηξ, ηξ+1) and Mα = {ξ < λ : Iξ ∩ Aα 6= ∅}. Since Iξ’s are
disjoint and |Aα| < κ, we have |Mα| < κ for every α < λ. Moreover, for
each ξ < λ, {α : Aα ∩ Iξ 6= ∅} = {α : ξ ∈Mα} ∈ D.

Let {xζ : ζ < δ} enumerate x ∈ Pκλ. Since D is κ-complete and |δ| < κ
and {α : xζ ∈ Mα} ∈ D for all ζ < δ, we have {α : x ⊂ Mα} ∈ D. Hence
Pκλ =

⋃
{P(Mα) : α < λ}. Now we have got λ<κ = |Pκλ| = λ · 2<κ. The

proof of Theorem 2.1 is complete.

Thus, as seen in [9], the following seems to be the most natural gen-
eralization of Solovay’s theorem: if λ is regular and there is a precipitous
λ-saturated ideal on Pκλ then λ<κ = 2<κ · λ.

Corollary 2.4. If Pκλ carries a λ-saturated normal ideal with cf λ ≥ κ,
then λ<κ = 2<κ · λ.

P r o o f. In case λ is regular, we can use the above theorem and Corol-
lary 1.5. Suppose that cf λ = δ, κ ≤ δ < λ, and I is a normal λ-saturated
ideal on Pκλ. Then I is in fact η-saturated for some regular cardinal η < λ.
For each regular cardinal % between η and λ, I% is also normal η-saturated,
hence weakly normal by 1.5. So, %<κ = 2<κ · %.

Since λ<κ = sup{%<κ : % is a regular cardinal < λ}, we get λ<κ =
2<κ · λ.

By a similar argument, we get

Proposition 2.5. If λ > cf λ = κ and there is a weakly normal ideal on
Pκλ, then λ<κ = 2<κ · λ.
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P r o o f. Let I be a weakly normal ideal on Pκλ. Then I is κ-saturated
and I% is also κ-saturated for all regular % between κ and λ. Hence we can
find a weakly normal ideal on Pκ% by Corollary 1.8, and %<κ = 2<κ · %.

Corollary 2.6. If there is a κ+-saturated ideal on Pκλ and λ is a limit
cardinal with cf λ ≥ κ, then λ<κ = 2<κ · λ.

The assumption of normality in 2.4 may be necessary to produce weakly
normal ideals on Pκ% for % < λ. The author was not able to get a weakly
normal ideal on Pκ% from one on Pκλ although we have a weakly normal
ideal on Pκ cf λ as seen in 1.9.

If κ is λ-compact and cf λ < κ, Solovay’s theorem says that λ<κ = λ+.
We propose a generalization with a somewhat complicated proof. Note that
it is easier when κ is inaccessible.

Theorem 2.7. Assume that Pκλ bears a weakly normal filter and cf λ <
κ. Then λ<κ = (λ+)<κ = 2<κ · λ+.

P r o o f. Without loss of generality we may assume that 2<κ < λ.
Note that λ<κ ≥ λ+. Let {xα : α < λ<κ} be an enumeration of Pκλ

and U a weakly normal filter on Pκλ. For each x ∈ Pκλ we define f(x) =
{α < λ+ : xα ⊂ x}. Thus, f(x) ⊂ λ+ and |f(x)| ≤ |P(x)| = 2|x|. Let δ be
the least cardinal such that 2α < δ for every α < κ. Since cf λ < κ ≤ cf δ
and we have assumed that 2<κ < λ, we obtain δ < λ.

Now f is a function from Pκλ into Pδλ
+. In the following, we also use

cf δ ≥ κ.
Let F be defined by

X ∈ F iff X ⊂ Pδλ
+ and f−1(X) ∈ U .

Lemma 2.8. F is a κ-complete filter with the following properties:

(i) {x : α ∈ x} ∈ F for all α < λ+.
(ii) F is cf λ-saturated.

P r o o f. (i) For every α < λ+, {x ∈ Pκλ : xα ⊂ x} ∈ U , and α ∈ f(x) if
xα ⊂ x.

(ii) is clear since U is cf λ-saturated.

Now we apply Theorem 1.7. Since F is a κ-complete κ-saturated fine
filter on Pδλ

+, F is precipitous. We have a κ-complete weakly normal ideal
I on Pδλ

+ and a κ-complete uniform weakly normal filter D on λ+ such
that {α < λ+ : cf α < δ} ∈ D as in the proof of Theorem 2.1. Then we get
{Mα : α < λ+} such that |Mα| < δ for all α < λ+, and Pκλ+ =

⋃
{Pκ(Mα) :

α < λ+}.
Hence (λ+)<κ ≤ λ+ · δ<κ.

Lemma 2.9. δ<κ = δ.
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P r o o f. δ = 2<κ or (2<κ)+. If δ = 2<κ, then δ<κ = (2<κ)<κ = 2<κ = δ.
Otherwise

δ<κ = ((2<κ)+)<κ = (2<κ)<κ · (2<κ)+ = 2<κ · (2<κ)+ = (2<κ)+ = δ .

Now λ<κ ≤ (λ+)<κ = δ<κ · λ+ = δ · λ+ = λ+. The proof of Theorem
2.7 is complete.

Open question. Can one compute λ<κ if κ < cf λ < λ and there exists
a weakly normal filter on Pκλ?

Finally, we consider, normal λ+-saturated ideals. Before stating the
theorem, we need a definition and a lemma.

Definition. Let κ ≤ µ ≤ ν. An ideal I on Pκν is µ-normal if I is closed
under diagonal unions of < µ-sequences, that is, if {Xα : α < η < µ} ⊂ I,
then ∇{Xα : α < η} = {x ∈ Pκν : ∃α ∈ x (x ∈ Xα)} ∈ I.

Let η(µ) be the least cardinal ≥µ. (µ is not necessarily a cardinal.)

Lemma 2.10. Assume that κ ≤ cf δ ≤ δ ≤ cf ν and η(µ) ≤ cf ν. Every κ-
complete, fine, η(µ)-saturated , µ-normal ideal on Pδν is precipitous. Hence,
if such an ideal exists, then there is a weakly normal ideal on Pδν.

P r o o f. It suffices to show such an ideal I has the disjointing property.
Let {Xα : α < γ} be an almost disjoint family. We may assume γ ≤ µ and
Xα ⊂ {̂α} for all α < γ. Set Yα = Xα −∇{Xξ ∩Xα : ξ < α}. Since α < µ
and I is µ-normal, Yα is also in I+. It is routine to show that {Yα : α < γ}
is a pairwise disjoint family and (Yα −Xα) ∪ (Xα − Yα) ∈ I.

Lemma 2.11. Suppose that λ < λ<κ and δ is the least cardinal such that
δ > 2α for all α < κ. If there is a normal λ+-saturated ideal on Pκλ, then
there is a κ-complete, (λ + 1)-normal , λ+-saturated , fine ideal on Pδλ

+.

P r o o f. Let {xα : λ ≤ α < λ<κ} be an enumeration of Pκλ and f(x) =
x ∪ {α < λ+ : xα ⊂ x} for x ∈ Pκλ. By our assumption |f(x)| ≤ 2|x| < δ.
Hence f : Pκλ → Pδλ

+.
Suppose that I is a normal λ+-saturated ideal on Pκλ and define J by

X ∈ J iff X ⊂ Pδλ
+ and f−1(X) ∈ I. Since f−1(Pδλ

+) = Pκλ, J is a
proper κ-complete λ+-saturated ideal on Pδλ

+.
If α < λ, then {x ∈ Pκλ : α ∈ x} ∈ I∗. For λ ≤ α < λ+, {x : xα ⊂ x} is

also in I∗. Hence {x : α ∈ f(x)} ∈ I∗ for all α < λ+, which shows J is fine.
Suppose that {Xα : α < λ} ⊂ J and X = ∇{Xα : α < λ}. Then

f−1(X) = {x : f(x) ∈ Xα for some α ∈ f(x)}
= {x : f(x) ∈ Xα for some α ∈ f(x) ∩ λ}
= {x : f(x) ∈ Xα for some α ∈ x} = ∇{f−1(Xα) : α < λ} ∈ I .

Thus J is (λ + 1)-normal.
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Theorem 2.12. If Pκλ carries a normal λ+-saturated ideal , then λ<κ ≤
(λ+)<κ = 2<κ · λ+.

P r o o f. Without loss of generality, we may assume that 2<κ < λ < λ<κ.
By Lemma 2.11, there is a λ+-saturated κ-complete (λ+1)-normal ideal on
Pδλ

+ with κ ≤ cf δ ≤ δ ≤ λ+. Using Lemma 2.10, we conclude that there
is a κ-complete weakly normal ideal on Pδλ

+.
Note that δ<κ = δ. As an easy application of the Pκλ+ case, we have

(λ+)<κ = λ+ · δ<κ = λ+. Hence λ<κ ≤ 2<κ · λ+.

Corollary 2.13. If cf λ < κ and there is a normal λ-saturated ideal on
Pκλ, then λ<κ = 2<κ · λ+.

Note that Matsubara [8] already proved a somewhat stronger form of our
theorem: If Pκλ carries a normal λ+-saturated ideal and GCH holds below
κ, then 2λ = λ+. Furthermore, if this ideal is λ-saturated, then 2<λ = λ.

With these results, we consider the singular cardinal hypothesis (SCH):
if 2cf τ < τ , then τ cf τ = τ+.

Solovay’s result [14] is: SCH holds above a strongly compact cardinal.
We prove SCH holds in some interval under the existence of weakly normal
ideals on Pκλ.

Theorem 2.14. (i) If Pκλ carries a normal η-saturated ideal and η < λ,
then SCH holds between 2<κ · η and λ.

(ii) If there is a κ+-saturated ideal on Pkλ, then SCH holds between 2<κ

and λ.
(iii) If cf λ ≤ κ and there exists a weakly normal ideal on Pκλ, then SCH

holds between 2<κ and λ.

P r o o f. In any case, by Silver’s results [12], we only have to know that
δ<κ = δ for every regular δ in each interval.

(i) As we have already seen in Corollary 2.4, there is a normal δ-saturated
ideal on Pκδ. So, Theorem 2.1 and Corollary 1.5 work.

(ii) Pκδ also carries a κ+-saturated ideal, and hence, by Corollary 1.8, a
weakly normal ideal as well.

(iii) Here, every weakly normal ideal is cf λ-saturated and cf λ ≤ κ.
Thus, this is contained in (ii).

R e m a r k. It can also be shown that the combinatorial principle Eη
λ fails

for every regular η < κ if there is a weakly normal filter on Pκλ and λ is
regular.

Another weakening of strong compactness which implies the failure of
Eη

λ has been found in Johnson [6].
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