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Fragmentability and σ-fragmentability

by

J. E. J ayne (London), I. Nam i oka (Seattle)
and C. A. Rog e r s (London)

Abstract. Recent work has studied the fragmentability and σ-fragmentability prop-
erties of Banach spaces. Here examples are given that justify the definitions that have
been used. The fragmentability and σ-fragmentability properties of the spaces `∞ and
`∞c (Γ ), with Γ uncountable, are determined.

1. Introduction. In a series of papers we [5–8] and others [3, 4, 9, 10,
12–15] have discussed fragmentable and σ-fragmentable spaces. In this note
we discuss some examples that illuminate these concepts.

Let Z be a topological space and let % be a metric on Z that is not
necessarily related to the topology of Z. If ε > 0, the space Z is said
to be fragmented down to ε when each non-empty subset of Z contains a
non-empty relatively open subset of %-diameter less than ε. The space Z
is said to be fragmented if it is fragmented down to ε for each ε > 0. The
space Z is said to be σ-fragmented if, for each ε > 0, Z can be written as

Z =
∞⋃

i=1

Zi ,

with each set Zi fragmented down to ε. In the special case when Z is
a norm closed bounded subset of a Banach space Y taken with its weak
topology and % is the restriction of the norm metric to Z, the condition
that Z be fragmented by % is equivalent to the point of continuity property
for Z (see, for example, [9]). In many applications, and in particular when
%(x, y) = ‖y−x‖ and X is a Banach space with its weak topology or a dual
Banach space with its weak∗ topology, the metric % is lower semi-continuous
as a function from X ×X to R.

Our first two examples, discussed in detail in §2, relate to the defini-
tions. It would, at first sight, seem to be more natural to define a set to be
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σ-fragmentable if it can be expressed as a countable union of fragmentable
sets; and this concept might seem likely to be equivalent to the concept
that we have in fact introduced. We give an example to show that these two
concepts are different: our experience justifies the choice that we have made.

Example 2.1. Let Z be the Banach space c0 taken with its weak topology
and let % be the norm metric on Z. Then Z is σ-fragmented by %, but Z
cannot be expressed as a countable union of sets that are fragmented by %.

In some definitions that require consideration of a space as a countable
union of sets, for example, the definition of a space of the first category, one
can, without loss, confine one’s attention to countable unions of topologically
respectable sets, indeed to countable unions of closed sets in the case of
spaces of the first category. Our next example shows that this is not possible,
in general, for the concept of σ-fragmentation. Recall that a set S in a
topological space Z is said to be countably determined by open sets if it
is possible to choose a sequence G1, G2, . . . of open sets in Z, in general
depending on S, with the property that any two points of Z that lie in
precisely the same sets of the sequence G1, G2, . . . either both lie in S or
both lie in Z \ S. Note that any Borel set is countably determined by open
sets. It will be convenient to say that a set D of Z is strongly σ-fragmented
by the metric % if, for each ε > 0, it is possible to express D as a countable
union

D =
∞⋃

i=1

Di

of sets that are countably determined by open sets and fragmented down
to ε.

The “double arrow” space D is the set of points

((0, 1]× {0}) ∪ ([0, 1)× {1})
in R2 endowed with the order topology from the lexicographical order:
(s, i) < (t, j) if either s < t or s = t and i < j. This space D is com-
pact and Hausdorff.

Example 2.2. The “double arrow” space D is a compact Hausdorff space.
Let % be the metric that D has as a subset of R2. Then D is the union of
two sets that are fragmented by %, but D is not strongly σ-fragmented by %.
Further , for no metric τ on D, is D fragmented by τ .

We remark that in the special case when X is a Banach space with a
Kadec norm and % is the norm metric, then X is strongly σ-fragmented (see
[6, Theorem 2.3]).

Ribarska [15] has shown that if a topological space Z is σ-fragmented by
a lower semi-continuous metric %, then there is a second metric τ on Z with
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Z fragmented by τ . It is easy to see that the metric % in Example 2.2 is not
lower semi-continuous for the topology of D. Example 2.2 shows that the
condition that % be lower semi-continuous in Ribarska’s theorem cannot be
omitted.

In [6, Lemma 2.1] we proved that if ε > 0 and A and B are two sets in
Z that are fragmented down to ε for some lower semi-continuous metric %,
then A ∪B is also fragmented down to ε by %. Example 2.2 shows that the
condition that % be lower semi-continuous cannot be omitted in this result.

In §3 we consider three examples of a rather different nature.
In [7, Theorem 4.1, (c)⇒(a)] we show that if every compact subset of a

Čech-analytic space Z is fragmented by a lower semi-continuous metric %,
then Z is σ-fragmented by %. By a well-known result of Gödel it is consis-
tent with the usual axioms of set theory (ZFC) to suppose that the Cantor
ternary set C contains an uncountable co-analytic set A, with the property
that each compact subset of A is countable. The following example shows
that in the result quoted from [7] the condition that Z be Čech-analytic
cannot be omitted.

Example 3.1. Let A be an uncountable co-analytic subset of the Cantor
ternary set with the property that each of its compact subsets is countable.
Let d be the discrete metric on A. Then d is lower semi-continuous. Each
compact subset of A is fragmented by d but A is not σ-fragmented by d.

The next example asserts that the Banach space `∞ with its weak topol-
ogy is not σ-fragmented by its norm. This is proved in [6, Theorem 5.1].
However, the very complicated proof that we give in [6] was an elaboration
of the much simpler proof (contained in the original version of [7]) that we
include here.

Example 3.2. Let E denote the Banach space `∞ taken with its weak
topology. Then each compact subset of E is fragmented by the norm met-
ric, but E itself is not σ-fragmented by the norm metric. However , E is
fragmented by the lower semi-continuous metric τ defined by

τ(x, y) =
∞∑

i=1

2−i min{1, |xi − yi|} .

Taken together with Theorem 4.1 of [7] this shows that (`∞, weak) is not
Čech-analytic and so is not a Souslin (F ∪G) set within its second dual with
its weak∗ topology. This example suggests that the condition that a Banach
space with its weak topology be σ-fragmented by its norm is much stronger
than the condition that it be fragmented by some lower semi-continuous
metric.

Our final example is a natural space that is neither σ-fragmented by any
lower semi-continuous metric nor fragmented by any metric. This example
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was considered by Hansell, Jayne and Talagrand [3] but their proof contains
a lacuna.

Example 3.3. Let Γ be an uncountable set and let E = `∞c (Γ ) denote the
Banach subspace of `∞(Γ ) consisting of all bounded real-valued functions on
Γ having countable support. Then (E, weak) is neither σ-fragmented by any
lower semi-continuous metric nor fragmented by any metric.

We are grateful to the referee both for explaining the “folklore” result
that we have included in §3 and for providing the much simpler verification
for Example 3.3 that we now give in §3.

2. Examples 2.1 and 2.2

V e r i f i c a t i o n o f E x a m p l e 2.1. Let x1, x2, . . . be a countable dense
sequence in c0 and let B be the unit ball. For each ε > 0, the sets

1
3
εB + xi , i ≥ 1 ,

form a cover of c0 by weakly closed sets of diameter less than ε. Hence c0

with its weak topology is σ-fragmented by the norm metric %. (Of course
this argument applies in each separable Banach space.)

Now suppose that we have c0 =
⋃∞

i=1 Ei, with each set Ei fragmented
by %. Then by the Baire category theorem, at least one of the sets Ei is norm
dense in some non-empty open ball. Since the property of being fragmented
by % is invariant under translations and dilations, one sees that the unit
ball B = {x : ‖x‖ ≤ 1} of c0 contains a norm dense subset D which is
fragmented by %. However we show that, for each u ∈ D and for each weak
open neighbourhood V of u, %-diam(V ∩ D) ≥ 1. This contradiction will
prove the second statement about c0.

Given u ∈ V ∩D, we define a sequence {uj} in c0 as follows:

uj(n) =
{

u(n) if n 6= j,
u(j) + εj if n = j,

where εj = 1 or −1 whichever satisfies |u(j) + εj | ≤ 1. The last condition
is possible because |u(j)| ≤ 1. Then uj ∈ B for all j ∈ N, and for each
y ∈ `1 = (c0)∗,

|〈uj − u, y〉| = |y(j)| → 0 as j →∞ .

Therefore, the sequence {uj} converges to u weakly as j → ∞. Conse-
quently, there exists a j such that uj ∈ V ∩B, and so

%-diam(V ∩B) ≥ ‖uj − u‖ = 1 .

Being weak open, V is also open in the norm topology. Hence, V ∩ D is
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norm dense in V ∩B. It follows that

%-diam(V ∩D) = %-diam(V ∩B) ≥ 1 .

V e r i f i c a t i o n o f E x a m p l e 2.2. We remark that D with its order
topology is separable and hereditarily Lindelöf but is not metrizable.

First write

D0 = (0, 1]× {0} and D1 = [0, 1)× {1} .

Then D = D0 ∪ D1. Since {(s, t] × {0} : 0 < s < t ≤ 1} is a base for the
induced topology on D0, D0 is fragmented by %. Similarly, D1 is fragmented
by %. Consequently, D is σ-fragmented by %.

Recall that order intervals of the form

[(0, 1), (t, j)) , ((s, i), (t, j)) or ((s, i), (1, 0)]

constitute a base for the order topology of D. Call such an interval a basic
interval . Then each basic interval I has the property that the projections
of I ∩ D0 and I ∩ D1 on [0, 1] differ by at most a finite number of points.
Since D is hereditarily Lindelöf, each open subset G of D is the union of a
countable family of basic intervals, and therefore the projections of G ∩D0

and G ∩D1 on [0, 1] differ by at most a countable number of points.
Now consider any set C in D that is countably determined by open sets.

Let G1, G2, . . . be a sequence of open sets in D with the property that two
points that lie in just the same sets of the sequence G1, G2, . . . either both
lie in C or both lie in D \C. Let S be the union for i ≥ 1, of the countable
sets in [0, 1] where the projections of Gi ∩ D0 and Gi ∩ D1 on [0, 1] differ.
Then S is countable and the projections of the sets

(C \ (S × {0, 1})) ∩D0 , (C \ (S × {0, 1})) ∩D1 ,

on [0, 1] coincide.
Suppose that we can write

D =
∞⋃

i=1

Ei ,

with each set Ei, i ≥ 1, countably determined by open sets and with the
property that each non-empty subset has a relatively open subset that is
non-empty and of %-diameter less than 1. We seek a contradiction. Choose
i ≥ 1 so that Ei is uncountable. Since Ei is countably determined by open
sets, we can choose an uncountable set H in [0, 1] with H × {0, 1} ⊂ Ei.
We use the real topology on H. By removing from H at most a countable
set, we obtain an uncountable subset K of H with the property that each
point of K is both a limit point of an increasing sequence in K and also a
limit point of a decreasing sequence in K (see, e.g. [11, p. 59]). Consider
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the subset
F = K × {0, 1}

of Ei. Each non-empty relatively open subset of F contains a pair of points
(k, 0) and (k, 1) with k ∈ K. Hence this relatively open subset has %-
diameter greater than or equal to 1. This contradiction shows that D is not
strongly σ-fragmented by %.

Finally, suppose that τ is any metric on D and that D is fragmented
by τ . We again seek a contradiction. We construct, inductively, sequences
I1, I2, . . . and J1, J2, . . . of subsets of D of the forms

Ii = (ai, bi)× {0, 1} , Ji = [ci, di]× {0, 1} , i ≥ 1 ,

with I1 ⊃ J1 ⊃ I2 ⊃ J2 ⊃ . . . , and

τ -diam Ii < 2−i , i ≥ 1 .

We start by taking J0 = D. When Ji has been defined for i ≥ 0,
since D is fragmented by τ , we can choose a non-empty relatively open
subset Ki of [ci, di] × {0, 1} of τ -diameter less than 2−i−1. We can choose
ai+1, bi+1, ci+1, di+1 with ai+1 < ci+1 < di+1 < bi+1 and (ai+1, bi+1) ×
{0, 1} ⊂ Ki ⊂ Ji.

The corresponding sets Ii+1 and Ji+1 then satisfy our requirements, and
the construction follows by induction. Now we can choose a real number `
with

{`} × {0, 1} ⊂ Ji ⊂ Ii for i ≥ 1 .

Hence
0 < τ((`, 0), (`, 1)) ≤ τ -diam Ii < 2−i

for all i ≥ 1. This contradiction shows that D is not fragmented by τ .

3. Examples 3.1, 3.2 and 3.3

V e r i f i c a t i o n o f E x a m p l e 3.1. As we have already remarked, by
a well-known result of Gödel, it is consistent with the usual axioms of set
theory to suppose that the Cantor ternary set C contains an uncountable co-
analytic set A, with the property that each compact subset of A is countable.
We suppose that A is such a set in C.

Let K be a non-empty compact subset of A and let L be a non-empty
subset of K. If L has no isolated point, then cl L, and so also K, must be
uncountable, contrary to the choice of A. Hence L must have an isolated
point, and so K is fragmented by any metric on C.

Let d be the discrete metric on C with d(x, y) = 1 whenever x 6= y. This
metric d is lower semi-continuous on C. Consider any representation of A
as a countable union A =

⋃∞
i=1 Ai. Since A is uncountable we can choose

i ≥ 1 so that Ai is uncountable. Then Ai has an uncountable subset, Bi say,
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that is dense-in-itself. Hence Bi has no non-empty relatively open subset
with d-diameter less than 1. This shows that A is not σ-fragmented by d.

Before we give the detailed verification of Example 3.2 we describe some
of the properties of the Banach space `∞ consisting of all bounded sequences
x = x1, x2, . . . of real numbers, with the supremum norm. It is convenient,
when considering the dual space (`∞)∗ of `∞, to identify `∞ with the space
C(βN) of continuous functions on the Stone–Čech compactification of N.
Then (`∞)∗ becomes the space M of signed Radon measures on βN.

If x ∈ `∞ and µ ∈M, then

µ(x) =
∫

βN
x̂ dµ ,

where x̂ is the continuous extension of x on βN. It follows that the sets of
the form

{x ∈ `∞ : |λi(x)| < 1 , i = 1, . . . , n} ,

with λ1, . . . , λn finite positive Radon measures on βN, form a base for weak
neighbourhoods of 0 in `∞.

Our first approach to the verification of Example 3.2 was based on an
attempt to prove that the Baire Category Theorem holds for the unit ball B
of `∞ with its weak topology. This we could not do and we had to formulate
and establish a weak and peculiar form of the Baire Category Theorem for B.

We are grateful to the referee for providing us with the statement and
proof of the following result that he attributes to “folklore”.

If K is any infinite compact Hausdorff space, then the unit ball B of
C(K) with its weak topology does not satisfy the Baire Category Theorem.

P r o o f. First consider the case when K is not a scattered space. Then
there is a continuous map p of K onto the unit interval I = [0, 1] (see [16,
§8.5.4, (i)⇔(ii)]). By Zorn’s lemma we can choose a minimal compact set
P that is mapped by p onto I. Let V1, V2, . . . be an open basis for I, and
write

Gi = {f ∈ B : for some x ∈ p−1(Vi) , f(x) > 3/4} ,

Hi = {f ∈ B : for some x ∈ p−1(Vi) , f(x) < 1/4} ,

for i = 1, 2, . . . Then Gi and Hi are weakly open in B. If µ1, . . . , µj is any
finite set of Radon measures on K, since Vi is uncountable, there is always
a point t in Vi with

µk(p−1(t)) = 0 , 1 ≤ k ≤ j .

This enables us to show that both Gi and Hi are weakly dense in B. If
the Baire Category Theorem were to hold for B, then the intersection of
the sets Gi, Hi, i ≥ 1, would be dense in B. Consider any function f in
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i=1 Gi ∩Hi, and any point q in P . Since the map p is irreducible, for any

open neighbourhood N of q, the open set I \ p(P \N) is non-empty, and so
contains the set Vi for some i. Thus p−1(Vi) ⊂ N , and we can choose points
x, y in N so that the chosen f satisfies f(x) > 3/4, f(y) < 1/4. Hence the
oscillation of f at q is at least 1/2 contrary to the continuity of f at q. This
shows that the Baire Category Theorem does not hold.

The case of an infinite compact scattered space K is similar but simpler.
Every non-empty closed set C in such a space has a singleton that is a clopen
set in C. A simple argument (see for example [12, Lemma 5.3]) shows that
each infinite sequence in K has a convergent subsequence. Thus we can
choose a sequence k1, k2, . . . of isolated points of K converging to a point q
of K. For each i ≥ 1 we introduce the sets

Gi = {f ∈ B : for some j ≥ i, f(kj) > 3/4} ,

Hi = {f ∈ B : for some j ≥ i, f(kj) < 1/4} .

It is easy to check that each set Gi, i ≥ 1, Hi, i ≥ 1, is weakly open and
weakly dense in B. If the Baire Category Theorem were to hold for B, then
there would be a function f in

⋂
{Gi∩Hi : i ≥ 1}, which would have to have

oscillation at least 1/2 at the point q. Thus the Baire Category Theorem
does not hold.

We return from this digression to the verification of Example 3.2. It will
be convenient to say that a set S in `∞ is a set with infinitely many free
coordinates the others being fixed or just a coordinate set if for some ξ in `∞

and some subset M of N with N \M infinite, we have

S = {x : xm = ξm for m ∈ M} .

We prove a lemma about the intersections of such sets with the unit ball B
of `∞.

Lemma 3.1. Let U be a weakly open set in `∞, and let S be a coordinate
set in `∞ with B ∩ S ∩U 6= ∅. Then there is a coordinate set T with T ⊂ S
and

∅ 6= B ∩ T ⊂ B ∩ S ∩ U .

P r o o f. We take S to be the coordinate set

S = {x : xm = ξm for m ∈ M} ,

with ξ in `∞ and M a subset of N with N \M infinite. Take η to be any
point in the non-empty set B ∩ S ∩ U . Then ‖η‖ ≤ 1 and

ηm = ξm for m ∈ M .
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Let V be a weakly open neighbourhood of η contained in U and of the form

V = {x : |λi(x)− λi(η)| < 1 for i = 1, . . . , n}

where λ1, . . . , λn are positive Radon measures on βN.
We claim that there is an infinite subset P of N\M such that λi(P ) < 1/2

for i = 1, . . . , n where P is the closure of P in βN. First partition N \M as

N \M =
∞⋃

k=1

Pk ,

where each Pn is infinite and Pk ∩ Pl = ∅ if k 6= l. Then {P k : k ∈ N} is
a mutually disjoint family of subsets of βN. Since λ =

∑n
i=1 λi is a finite

positive measure, λ(P k) < 1/2 for some k. Let P = Pk. Then for each i,
λi(P ) ≤ λ(P ) < 1/2 as desired.

Let T be the coordinate set

T = {x : xm = ηm for m ∈ N \ P} .

Then, since M ⊂ N \ P and ηm = ξm for m ∈ M , T ⊂ S. Hence B ∩ T ⊂
B ∩ S. Furthermore, if x ∈ B ∩ T , then x̂− η̂ = (x− η)∧ ≡ 0 on (N \ P )−.
Hence for each i ∈ {1, . . . , n},

|λi(x)− λi(η)| =
∣∣∣ ∫ (x̂− η̂) dλi

∣∣∣ =
∣∣∣ ∫

P

(x̂− η̂) dλi

∣∣∣
≤
∫
P

|x̂− η̂| dλi ≤ 2λi(P ) < 1 .

It follows that η ∈ B ∩ T ⊂ V ⊂ U and therefore

∅ 6= B ∩ T ⊂ B ∩ S ∩ U .

Our next lemma provides the form of the Baire Category Theorem that
we have promised. We say that a subset E of B is nowhere dense on coor-
dinate sets if for every coordinate set S with B ∩ S 6= ∅, there is a weakly
open set U of `∞ with

B ∩ S ∩ U 6= ∅ but E ∩ S ∩ U = ∅ ,

that is, E ∩ S is not weakly dense in B ∩ S.

Lemma 3.2. The unit ball of `∞ cannot be contained in a countable union
of sets that are nowhere dense on coordinate sets.

P r o o f. Let S0 be an arbitrary coordinate set and suppose that

∅ 6= B ∩ S0 ⊂
∞⋃

i=1

Ei ,
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where, for each i, Ei ⊂ B and Ei is nowhere dense on coordinate sets. We
seek a contradiction. Since E1 is nowhere dense on coordinate sets, there is
a weakly open subset U1 of `∞ with

B ∩ S0 ∩ U1 6= ∅ and E1 ∩ S0 ∩ U1 = ∅ .

By Lemma 3.1, there is a coordinate set S1 with

S1 ⊂ S0 and ∅ 6= B ∩ S1 ⊂ B ∩ S0 ∩ U1 .

Next, since E2 is nowhere dense on coordinate sets there is a weakly open
subset U2 of `∞ with

B ∩ S1 ∩ U2 6= ∅ and E2 ∩ S1 ∩ U2 = ∅ .

Then by Lemma 3.1, there is a coordinate set S2 with

S2 ⊂ S1 and ∅ 6= B ∩ S2 ⊂ B ∩ S1 ∪ U2 .

Proceeding in this way we can find a decreasing sequence {Si : i = 0, 1, 2, . . .}
of coordinate sets and a sequence {Ui : i ∈ N} of weakly open sets in `∞

such that for each i ∈ N,

Ei ∩ Si−1 ∩ Ui = ∅ and ∅ 6= B ∩ Si ⊂ B ∩ Si−1 ∩ Ui .

Therefore Ei ∩ Si = ∅ for each i, which implies that

B ∩
∞⋂

i=0

Si ⊂
( ∞⋃

i=1

Ei

)
∩
∞⋂

i=1

Si = ∅ .

But we show that B∩
⋂∞

i=0 Si 6= ∅, which establishes the lemma. For each i,
since B ∩ Si 6= ∅, there are ξ(i) ∈ B ∩ Si and Mi ⊆ N with N \Mi infinite
such that

Si = {x : xm = ξ(i)
m for m ∈ Mi} .

We may assume that ξ
(i)
m = 0 for m 6∈ Mi. Since Si+1 ⊂ Si, we must have

Mi ⊂ Mi+1 and ξ(i+1)
m = ξ(i)

m for m ∈ Mi .

Define ξ ∈ `∞ by ξm = limi→∞ ξ
(i)
m for each m ∈ N. Then ξ is well-defined

and clearly ξ ∈ B ∩
⋂∞

i=0 Si.

V e r i f i c a t i o n o f E x a m p l e 3.2. We know that each weakly com-
pact subset of E is fragmented by the norm metric. Since E =

⋃∞
n=1 nB, it

suffices to prove that B is not σ-fragmented by the norm metric.
We suppose that B =

⋃∞
i=1 Bi, where, for each i ≥ 1, each non-empty

subset of Bi has a non-empty relatively weakly open subset of norm diameter
less than 1. By Lemma 3.2 we can choose i ≥ 1 so that Bi 6= ∅ and Bi

fails to be nowhere dense on coordinate sets. This ensures the existence of
a coordinate set S with B ∩ S 6= ∅ such that Bi ∩ S is weakly dense in
B∩S. By the choice of the decomposition of B, we can choose a non-empty
relatively weakly open subset of Bi∩S of the form Bi∩S∩U , with U weakly
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open in `∞, and of diameter less than 1. Since Bi ∩ S ∩ U is weakly dense
in B ∩ S ∩ U and since the norm is weakly lower semi-continuous,

diam(B ∩ S ∩ U) = diam(Bi ∩ S ∩ U) < 1 .

By Lemma 3.1, we can choose a coordinate set T with T ⊂ S and

∅ 6= B ∩ T ⊂ B ∩ S ∩ U .

Then diam(B ∩ T ) < 1.
Now we can choose points ξ+, ξ− in B ∩ T of the form

ξ±n = ξn for n 6= m ,

ξ±m = ± 1 .

Hence diam(B ∩ T ) ≥ ‖ξ+
m − ξ−m‖ = 2. This contradiction establishes the

first statement of the example.
It is easy to see that each point of `∞ has weak neighbourhoods of

arbitrarily small τ -diameter. Hence the second statement.

Before we give the detailed verification of Example 3.3 we describe some
of the properties of the Banach space E = `∞c (Γ ). We take Γ to be an
uncountable discrete set. As usual, `∞(Γ ) denotes the Banach space of all
bounded real-valued maps x : Γ → R with the supremum norm

‖x‖ = sup{|xγ | : γ ∈ Γ} .

The support of an element x of `∞(Γ ) is defined to be the set

suppx = {γ : γ ∈ Γ and xγ 6= 0} .

We take `∞c (Γ ) to be the set of all elements x of `∞(Γ ) with countable
support. It is easy to verify that `∞c (Γ ) is a closed linear subspace of `∞(Γ )
and so is a Banach space in its own right under the supremum norm. This
Banach space E = `∞c (Γ ) is studied in §5 of the paper [3] by Hansell, Jayne
and Talagrand. In particular, they show that, for each linear functional µ
in the dual E∗ of E, there is a countable subset Θ = Θ(µ) of Γ such that

µ(x) = 0 for all x in E with (suppx) ∩Θ = ∅ .

It is convenient to introduce another topology τ on E = `∞c (Γ ) whose
base consists of all the sets of the form

U(x,Θ) = {y ∈ E : y(γ) = x(γ) for all γ ∈ Θ} ,

where x ∈ E and Θ is a countable subset of Γ . Suppose that µ ∈ E∗ and
Θ(µ) is the corresponding countable set provided by the result quoted at the
end of the last paragraph. Then, for y ∈ E, the function µ is constant on
the τ -open neighbourhood U(y, Θ(µ)) of y. Thus µ is τ -continuous. Hence
the τ -topology is at least as strong as the weak topology on E. From the
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definition of τ it is clear that a τ -Gδ-set is τ -open. We need the following
two lemmas, both of which are known.

Lemma 3.3. The space (E, τ) is Baire.

P r o o f. In fact, (E, τ) is α-favourable in the sense of Choquet [1]. A
winning strategy is given by associating to each non-empty set V a basic
open set contained in V . That this function is winning is based on the fact
that if {U(xn, Θn) : n ∈ N} is a decreasing sequence of basic open sets, then
its intersection is non-empty. Indeed, in this case

Θn ⊂ Θn+1 and xn+1|Θn = xn|Θn ,

for each n. Hence if x is defined to be the common extension of {xn|Θn : n ∈
N} on Θ =

⋃∞
n=1 Θn and to be null on Γ \Θ, then x ∈ U(xn, Θn) for each n.

Using this property of basic open sets and mimicking the usual proof of the
Baire Category Theorem, one can also prove directly that (E, τ) is Baire.

The next lemma is an immediate consequence of (a)⇒(b) in Theorem 3.1
of [6]. However, we give a proof for the convenience of the reader.

Lemma 3.4. Let % be a lower semi-continuous metric on a Hausdorff
Baire space Z. If Z is σ-fragmented by %, then there is a dense Gδ-subset
D of Z such that the identity map Z → (Z, %) is continuous at each point
of D.

P r o o f. For ε > 0, let

Oε =
⋃
{U : U open in Z and %-diam U < ε} .

Since Z is a Baire space, it suffices to prove that Oε is dense in Z. Since
Z is σ-fragmented by %, Z =

⋃∞
n=1 Zn where each Zn is fragmented by %

down to ε. Let U be a non-empty open set in Z. Then U is a Baire space
in the induced topology, and hence, for some n, the closure of Zn contains
a non-empty open subset V of U , i.e. Zn ∩ V is dense in V . Then there is
an open subset W of Z such that

Zn ∩ V ∩W 6= ∅ and %-diam(Zn ∩ V ∩W ) < ε .

Thus V ∩W 6= ∅, and since Zn ∩ V ∩W is dense in V ∩W and % is lower
semi-continuous,

%-diam(V ∩W ) = %-diam(Z ∩ V ∩W ) < ε .

It follows that V ∩W ⊂ Oε and hence Oε ∩ U 6= ∅.
V e r i f i c a t i o n o f E x a m p l e 3.3. Assume that (E, weak) is σ-frag-

mented by a lower semi-continuous metric %. Then since τ is stronger than
the weak topology, % is τ lower semi-continuous and (E, τ) is σ-fragmented
by %. By Lemma 3.3, (E, τ) is a Baire space, and therefore by Lemma 3.4 the
identity map (E, τ) → (E, %) is continuous at some point, say x, in E. Then
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the singleton {x} is a τ -Gδ-set and hence τ -open. But this is impossible,
since Γ is uncountable. This proves that (E, weak) is not σ-fragmented by
a lower semi-continuous metric.

Similarly suppose now that (E, weak) is fragmented by a metric %, not
necessarily lower semi-continuous. Then (E, τ) is fragmented by %. By
induction, we can choose a decreasing sequence {U(xn, Θn) : n ∈ N} of
basic τ -open sets with %-diam U(xn, Θn) → 0. As remarked in the proof of
Lemma 3.3, the intersection of this sequence is open, and not empty; it is
also of %-diameter 0. Thus we are again led to a contradiction.

As we have already remarked, Hansell, Jayne and Talagrand [3] discuss
this example and give a proof, that is not quite complete, of the second
statement. The lacuna is on page 218 where they claim that W ⊂ Vn

apparently because they believe that they have ensured that z0 belongs
to Vn, a belief that seems hard to justify.

An alternative verification for Example 3.3 can be obtained by proving
just the second assertion in the example by the method used above and
by then appealing to the general result of Ribarska [15] mentioned in the
introduction.
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