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Markov’s property of the Cantor ternary set

by

LEOKADIA BIALAS (Krakow)
and ALEXANDER VOLBERG (Fast Lansing, Mich.)

Abstract. We prove that the Cantor ternary set B satisfies the classical Markow
inequality {see [Ma]): for each polynomial p of degree at most n (n=10,1,2,...)

(M) [2'(2)] € Ma™supjp| forzeE,
B

where M and m are positive coustants depending only on E.

0. Introduction. In 1889 A. A. Markov proved (M) for E = [~1;1].
Since that time it has become the object of extensive research (see e.g.
[R-S] in the one-dimensional case and [Pa-P11] for R™). In particular, it has
appeared that the inequality plays an important role in the approximation
and extension of ¢ functions defined on compact subsets of R™ to C*
functions on the whole space (see [Pa-Pl 1], [Pa-P12] and [P14]).

The question about Markov's property for the Cantor ternary set has
remained unanswered for many years. J. Siciak [Si 3] showed that there exists
a Cantor type set £ C R such that Leja’s extremal function Ly (see [Lj 2],
p. 261) has the following Holder continuity property:

(HCP) Lp(s) €L+ Ms™ i dist(z, B) <8< 1,

with some posilive constants M > 0 and m > 0 depending only on E,
which, by Cauchy’s integral formula, is sufficient for E to preserve Markov’s
inequality (M) (see [Si 2], Remark after Lemma 1 and [P11], Lemma 3.1). On
the other hand, Pleduniak [P12) constructed a Cautor type set E such that
Leja's extremal function is continuous on € but £ does not satisfy (M).
These results have given no answer to the question of whether the Can-
tor ternary set has Markov’s property. In this paper we prove that the an-
swer is affirmative. Actually, we show that this set even has the (HCP)
property. ' ' o s
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1. Leja’s extremal function. Let K be a compact subset of the con-
plex plane C. For each n € N and (25,2475 2%) € Kn c €M owe put

Ve, = 1 15—kl

0<j<hksn
n
if.m n nY o n ) . - \
A(2f, 20,2y = H lef ~ 25 forj=0,1,...,n
=0,

There exist n + 1 points ¥, 47, ..., ¥ in K such that
Vgl yl, ..yt = max{V{al, 20, ..., 25) 28,40, € K}
and
Ay, .y < minf A (ygw, . w) G €{L . md)
F. Leja proved (see e.g. [Lj 2], p. 258) that for each compact set K the limit

of the sequence [A%(y, 37, ..., )]/ is equal to the transfinite diameter
of K, introduced by M. Fekete [Fe]:

d(K) = lim (AR, i, )"

One can prove that for each compact subset of the complex plane the trans-
finite diameter is equal to the logarithmic capacity (see [La], Ch. 11, Sec. 4).
Let the polynomials L} be defined by

n - Z— Y

T g
Km0kt 91 T Yk

They are called the Lagrange extremal polynomials corresponding to the
nodes yi, y7, . ..,y Suppose that d(K) > 0. Then the limit

Li(z) = lim |Lj(z)/"'"

exists for z € C (see [Lj 2}, p. 261, 265, 267), and is called Leja’s extremal
function associated with K.

Denote by Do (K) the unbounded component of the complement C\ B
of E. In 1933 P. Leja [Lj 1] proved the following

LEJA’S THEOREM 1.1, If K is a compaet subset of C, regular in the sense
of Dirichlet, then

InLg(z) = g(z,00) forze Dy (K),
where g(-,00) is Green’s function of Do (K) with pole at co.
We 'recall that Green’s function of a regular domain D with pele .at‘
zg € D is the unique function g(-, zg) : D\ {20} — (0, c0) such that -
(1) g(-, z0) is harmonic in D\ {zg},
(i) g(2, z0) tends to zero as z tends to the boundary of D,

icm
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(iii) g(z, zo) has a logarithmic pole at 2o, i.e.

lim [_q(z, zg) — o

Iy

<oa forzy #F oo,
= °7

and

lim [g(z, zp) ~In|z|]] < 0o for zp=o0.
A

metrie in the sense that

It is known (see e.g. [La], Ch. TV, Sec. 2) that Green’s function is sym-

(1.1) 9(z, z0) = glz0,2)

for every z, 2y in 22,

2. Constructing a Cantor set. Given a sequence (Ix)k=0,1,2,... such
that for every k,
lh41 < —é—l;‘, and Ip =1,
let {T b hen,1,2,... be a family of subsets of [0; 1] such that Ip = (05 1) and Jx41
is obtained from Iy by deleting the open concentric subinterval of length
Iy — 2t Trom each interval (component) of I We call

[ o]
E = ﬂf;,-

k=0
a gencralized Cantor sel.
Consider the sequence (I;)i=0,1,2,... such that

(2.1) I, = g%, where ¢ € (0; 1/2).
Then every set [j, consists of 9% gubintervals Iy 1. .., [y,z+ of length g* each.
We denote by Qg the closed ball with center at the middle point of Inn
and radius §(lg., — ) (welet Ly = ¢~ 1) and we set

',2"’

By, = U Qpn and Ay = By — Bt -

el
By Wicner's criterion (see e.g. [La], Th, 5.6 or [Ts], Th. I11.62), the Cantor
set B corresponding to the sequence (2.1) is regular in the sense of Dirichlet.

3. Harmonic measure of a Cantor set. HheNgandn e {1,...,2%},
then the characteristic function X1, , of the interval Iy, is continuous on
the Clantor set B. Since E is regular in the sense of Dirichlet, there exists a
unique function h harmonic in €\ E and continuous in C such that

Wz) = Xnpa(2) Torz€E.
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We call this function b the harmonic measure of the set I, N E. Let us
introduce the following notations:

w(lpnNE)=h(), w(linNE)= h{oo) .

By the maximum principle for harmonic functions, b takes values only
from [0;1]. Furthermore,

(3.1) g E=>0<h(z)<1

for k# 0 (if k = 0 then h = 1).
We shall need the following property of the harmonic measure. Let k €
Np, 1€ {1,...,2"" Y and n € {1,...,2%} be such that

(3.2) Tpt1,0 U Tggriaet © L -
Then
(3.3) w(Ik_;_lJ n E) + w(1k+1’1.|.1 N E) = w(I;c,,,»,, M E) .

To see this, it is sufficient to notice that the function

Wh1 N E, )+ w T4 N ES )
is the harmonic measure of I, N E and so
"-'-’(Ik+1,l NnE, z) e w([k+1=1.|.1 NnE, Z) = u)(I,lc,n N E, Z)
forall z € C, in particular for z = co.
4. Harmonic measure and Green’s function. For k,{, n such that
condition (3.2) holds, we set
Ak = Qun \ (Qip1,0 U Qrsr i) -
‘We shall need the following

LemMMA 4.1 ([M-V], Lemma 3.4). There exist positive constants cy,cy
such that for every k € N and n € {1,.. 28Y, and every z € Ay, we have

(4.1) clw(Ik,,n M E) < g(z, OO) < 62w(f}c,n M E) ’
where g(-,00) is Green's function of © \ E with pole at 0.

Proof Fix k € Npand n € {1,...,2¥}. Let v, be the circle with
center at the middle point of Iy ,, and of radius

s-o1s %)
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Fig. 1

Lot Mg (see Fig. 1) lie on the diameter of ¥4.n including Iy , and satisfy
' 1 1
dist (Ag,ns Yien) = 3 k(1—yq) (% - 1)
(there are two such points; we take the one which is closer to (1,0)).

We now replace €\ E by the smaller domain int @, \ E, which is also
regular in the sense of Dirichlet (notice that regularity is a local property of
the boundary and every continuum is regular). Let & n(lkn N E, -} be the
unique harmonic function in int Q4. \ £ continuous in Qk,n such that

B (Lo N By 2) = X1y, (7)
for all z on the boundary of int Qg »\E. Consider the function &o,1 (Io1NE, -)-
By (3.1) there exists a positive constant dy guch that for every z € 70,1,
dy < o, (Joa N B, 2).

For each k € N and n € {1,...,2%} the function ©y,a(len N E,.) can be
recovered from &g 1(Jo,) M E, ) by a translation and homothety of ratio ¢*,
because the Dirichlet problem has a unique solution. The circle 7yo,1 can be
obtained from «yi ., by the same translation and homothety. Hence for every

k,n and z € yim,
dy & @pn(Ton N B, 2) -
By the maximun principle, we obtain
OpallenNE, ) S wllin NE, J
for every z € Qp.n, it particular for z € Yi,n. Thus by (3.1) we have
(4.2) dy £ w(len N B 7) <1 |

for each k € Ng, n € {1,...,2%} and z € . Analogously, there exists
dy > 0 such that for each k,n and 2 € Vi,n, : :

(4.3) dy < g6z, Mhm) -
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Fix k € Ny and n € {1,...,2%}. Let Grn(-, @) be Green’s function of
C\(IxnNE) with pole at . Let ug,,, be the composition of some translation
and homothety such that ugo(C\ (Ipy N E)) = C\ (Ig,, N E). It is casily
seen that
(44) ﬁk,n(/\k,m OO) = ﬁk,1‘t(74k,¢L(A(J,l), 00) == 5{1,1 (/\[),1: DO)
for all k& and n. By the maximum principle we have

Q(Z, )\k,n) = .ak,n(z: Alﬂ,n)
for each k,n and z ¢ C. Hence by (4.4) and (1.1), the estimate
(4.5) gz, dun) S M,

with some positive constant A4 independent of &,n and z € 7, will be
proved if we show that there is a b > 0 such that for every k € Ny, n &
{1,...,2%} and z € vy,

ﬁk,‘n(zz )\k,n) < b@k,n(OO, )\k,n) .
Let ay,n be the middle point of the interval Iy , (see Fig. 2).

Fig. 2

Let Dy, ,, denote the complement in C of Blay ., i) (the closed ball with
center ax n and radius ri), where

= 21 ~q)(;_1j; ¥ 2)-

Tk
Branle) = ™ 4 g

<&

We consider the function

It is easily seen that
hk,n(int B(O 1)) = D;c "

The composition of hy ,, and 3 Grn (s Ap,n) defined on int B(0, 1) is harmonic
and takes only positive values, Thus, by Harnack’s inequality (sece e.g. [H-K],
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Th. 1.18),

1
fjl. n(hk ,,(w) Ak n) =71 gk n(h"k 'n( ) )\k,n)

where [w] = r = (3¢ 6)/ (47" + 4). Observe that the image under hg
of the circle with center at 0 and radins r is the circle «yg . Hence if 2 € 3 5,
we have

Lfr

(Ik n(*»AI\ n) > fl ‘gk n(ooy)\k,n)

which gives inequality (4.5).
It follows from (4.2), (4.3) and (4.5) that there exist positive constants
by, by independent of &, n and 2z € vy, such that

hlw(’rk:,rr. N L, z) < g(z, A,\‘.‘N) = bQW(Ik,n nEe, Z) .
By the maximum principle, these inequalities also hold for z = oo, i.e.
(4.6) biw(Ip. N E) € gloo, Aga) € baw(len N E).

Now we consider the set Ag;. By Harnack’s inequality we see that for
every w & Aq. 1,
myu(Aoa) € wlw) € mau{ro)

for every harmonic positive funclion u defined in some open neighborhood
of Ay,1. Let wp,,, be the composition of some translation and homothety such
that m,,n(AD,]) s Agne Then

1y g (e (Ao, ) 00) € 9t (w), 00} € Mag(uam(Ro,1), o0)

for every k,n and w € Ag,1, because the composition of ugn and g(-,c0) is
harmonic, Thus

"T?rlﬂ()\k:,n: 00) < Q(za OO) < 'ng()\,lgm, OO) ,

Hence by (4.6) and (1.1), we obtaln inequality (4.1) and the proof of Lemma
4.1 18 complete,

COROLLARY 4.2. There exist positive constants Cy and Cly such that for
every k and ., if Ay 1 Ak # 0 then

{4.7) T 1 EY % w(Dpar N E) S Cow(lhn N E)
Prool, By Lemma 4.1 applied (o 2 € Az N A np1 We get
erd (L N E) € 9(z00) £ caw(lpn NE)
and
crw(lpmir NE) < 9(z, o0} £ eow (g mapr N E),
which gives (4.7).
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5. (HHCP) property of a Cantor set. The main result of this paper
is the following

ProrosITION 5.1. The Cantor set E consiructed in Section 2 has the
(HCP) property, i.c. there exist positive constants M and m such that for
every § € (0; 1] we have

Lp(z) <1+ M if dist(2,E) <6 <1,
Proof By Theorem 1.1, it is sufficient to prove that

(5.1) g{z,00) € Myé™  if dist(z, B)=6<1,

where My and m are positive constants independent of & and z.

Fix z € C such that dist(z, E) = § > 0. If z & By, then § > %q”l -1
and we obtain inequality (5.1) with

2
My = 1 _ng max {g(w,oo) : -2—15 -1 < dist(w, E) < 1}, mo=1.

If z € By, then there is exactly one k € Ny such that z € Ay. Hence
§ = dist(z, E) > dist(Ag, F) = %qk s
whence
S Iné— 11’1(1/2 — q)

k

Ing
By (4.7), there exists a positive constant ¢ such that for every k,! and n, if
I # nand A, N Ag, # @ then

(5.2) cw(lyn NE) < w(l NE).

Choose n € {1,...,2%} such that z € Ay .. Let [ and ny be positive integers
such that ! # n and It n U Ity C Ty1,n, . Then, by (5.2) and (3.3), we have
W(Ik,n, i E) -+ cw(ijn n E) < w([k,,,-,, N E) 4+ w(I;ﬁlg n E) = w(I)ﬂ_Lnl N E) .
Hence

1
'W(Ik,n M E) < mu)(l’k“]‘,ﬂ,l N E) f
Analogously, for some no,

1 ‘
W(ly1my N EY < mw(fk:-z,m nE).

Consequently, by Lemma 4.1 we get

1
9(z,00) < eaw(li, N E) € o T c‘”(Ikwlm NE)< ...
1 1
) — - = o e
SO gr o) = arEe®)
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1 1
nr < ey ) =M 6.m
IET e Wi ey 0

(1+¢) Tn g
with
n(1fa—yq) 1 1
My = eall 4 e) v and m = ____n( t+e) .
_ Ing
The proof of Theorem 5.1 is complete.

Repeating Lhe previous proof one can get the (HCP) property for a
Santor set in OV,

8. Gieneralizations. The obtained result can be generalized to higher
dimensions. Then Leja’s extremal function is replaced with Siciak’s extremal

funetion defined for a compact subset K of CN by
B (2) == sup{|p{z) 1/dog® + p iy a nonconstant polynomial

such that supip] < 1}.
K

If N == 1 then the two extremal functions are equal {see [Si1]), Siciak proved
(see (S 1], Sec. 8, Th. 1) that if K1,..., K, are compact subsets of C then

B, ity (21, oo 2n) = max{ B, (=1), ..., Bx, (2n)}

for z = {z1,...,2y) & C* This implies that if Ky,..., Ky have the (HCP)
property, then so does the set Ky »... % K,

Pladniak proved [P13] that the (HCP) property is invariant under regular
holomorphic mappings, via. '

If K is a polynomially convex (HCP) compact subsel of C™ and h =
(hi,..., hi) i an anolytic mapping defined in an open neighborhoed of K,
with values in CF (k < n), such that for some permutation o on k letters
we have

x;l ;
(let [A:fw)z.“(g)] # 0
j gl k

for cach 2z € K (the differentiol is onto), then hE) is an (HCP) subset
of Ck.

Using these two rosults and starting from the Cantor $et constructed in
Section 2 one can provide various examples of sets in C* with the_ (HCP)
property and consequently, preserving an. analogue of Markov’s inequal-
ity (M).

Acknowledgments. The authors wish to express their grati.tude to Pro-
fessor Wiestaw Pledniak for his valuable remarks concermng this paper.
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Representations of bimeasures
by

KART YLINEN (Tuarku)

Abstract. Separately o-additive and separately finitely additive complex functions on
the Cartesian product of bwo algebras of sets are represented in terms of spectral measures
and their finitely adcditive counterparts. Applications of the techniques include a hounded
joint convergence theorewn for bimeasure Integration, characterizations of positive-definite
himeasures, and n theorem on decomposing a bimeasure into a linear comhination of
positive-definite ones.

1. Introduction and notation. Throughout this paper, S; is a non-
empty set and I an algebra (field) of subsets of S; for i = 1,2, Unless
specified otherwise, 8 : ) x T3 — C is an arbitrary bounded separately
(finitely) additive function. In case 8 is separately o-additive (i.e., 8(X, ))
and A(-,Y) are countably additive for all X € Xy, ¥ € Da), 8 will be
called a (complex) bimeasure. For the basic theory of bimeasures defined on
products of o-algebras we refer to [1] and [13]. The C*-algebra theory we
need may be found e.g. in [12].

All vector spaces will be complex. For any Hilbert space H, (- | -) or
(| Jg denotes its inuer product, and L(H) the space of bounded linear
operators on H.

Our main results depend on the Grothendieck inequality, “the fundamen-
tal theorem in the metric theory of tensor products” of Grothendieck [7]:
For the spaces (7(£2;) of continuons complex functions on compact Hausdorfl
spaces {2, L= 1, 2, and any bounded bilinear form. B : (1) x C(f2) - C
there are posilive linear forms ¢ : C(£2,) — C and 4 : C'({22) — C such that

IB(f, )|* < o(1F 1P (lgl?)

for all f € C'(f21), g € (!({22). (We do not normalize ¢ and 4, and do not
display the Grothendieck constant.) As noted by several authors (see e.g. 5],
[6], [10]), Grothendieck’s theorem implies that B can be expressed in terms of
Hilbert space representatious of the commutative C'*-algebras C(§2;): There
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