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On the eigenvalue asymptotics
of certain Schrodinger operators

by

WIESLAW CQUPALA (Wroclaw)

Abstract. Subelliptic estimates on nilpotent Lie groups and the Cwikel-Lieb-Rosen-
blum inequality are used to estimate the number of eigenvalues for Schrédinger operators
with polynomial potentials.

Introdiuction. The Bohr-Sommerfeld quantization principle, according
to which volume h? in the phase space corresponds to one bound state of
the quantum system, has been fully mathematically expressed in the form
of the Cwikel-Lieb-Rosenblum inequality.

For the Schrodinger operator —A+V, denote the dimension of the image
of the spectral projector P(—oo, A) by N{A, V) and let

Vol(A, V) = [{(2,€) : € + V(z) <A}
THE CwIKBL-LIEB-ROSENBLUM INEQUALLITY [3]. For d > 3, there ex-

ists a constant C = C(d) such that for every potential V on R® and for
every A, N(\, V) < C'Vol(x, V).

If p is a positive polynomial on R? such that for every & # 0 there exists y
with p(z + y) # p(y) then, as is proved in (1], N(A, p) < oo for every A > 0,
but there exists a wide range of polynomials (e.g. p(z) = z%z3...z3) for
which Vol(A, p) = co. Let n(A,r, p) denote the maximal number of disjoint
balls with radii r > 0 contained in the domain {z : p(z} < A}. The following

theorem of Fefferman [2] gives a qualitative description of the elgenvalue

. asymptotics of —A -+ .

THE FEFFERMAN ESTIMATES. There exists a constant C, depeﬁdz'ng on
the dimension d, and a constant ¢, depending on d and the degree of p, such
that for every A > 0,

n(X, CA72,p) < N(X,p) < n(A,cA™"2,p).
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The aim of this paper is to estimate the number n(A, 7, p) and thus to
give a quantitative upper bound for N (A, p).

The estimates. Let (f be a stratified nilpotent Lie group, i.e. thereis a
decomposition of the Lie algebra of G as a vector spacesum g = V1 @.. @V,
such that [V4,Vj] = V41 for 1 < j < m and [V;,Vm] = {0}. Fix any linear
basis X1, ..., Xn of V; and set H = —X§ —...— X2_; — X2. The following
lemma is proved in [3].

LeMMA 1. Let I = (41,...,%x) be a k-tuple of integers wz‘th, k arbitrary
and1 <i; <nforj=1,....k Set|I| =k and X7 = Xy, ... Xy, . For every
natural k there exists a constant C' such that

[(H+ 12 = C > I1Xif

115k
for every f € C°(G), where || - || denotes L*-norm.

LEMMA 2. Let p be a olynomial on RY. There exists ¢ constant ¢ such
that if deg(p) < N then

(—Aa+p28,0) ¢ [ > [8rp(e) 0 p(z) P dz — || 4
lI|sN
for every ¢ € CP(RY). The constant ¢ depends only on d and N.

Proof Let g be a free nilpotent Lie algebra with free generators
X1,..., X411 and with nilpotence class N-+1.Let H = ~Xf—. . ~X3—X2 |
be viewed as an operator on L?(exp(g)). By Lemma 1 there exists a constant
¢ such that

(1) I+ DI > o XS
Let 7 be the representation of & defined by

. 63', j=1,....4d,
Xi """’{ip, j=d+1.

Then (1) implies that
eyl 2 erflmx, 4
for ¢ € C°(R%). Hence, if we put ¥ = [Xy,,... [ Xy, Xg1].. ], with L €
i; < d, we obtain |7y 2 ¢f 7y ¢fj, and thus
(A +9 + 1)1, ¢) > c(|8rpl*e, 6) -
This implies (see [4]) that
(~Aa+9*+1)8,8) 2 ¢ [ [Bip(e)/¥ V7 |p(a) 2 da,
which completes the proof.
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ProrosIiTIiON 1. For d > 3 and any notural number N there exist con-
stants C = C(d) and ¢ = ¢(d, N} such that, for every polynomial p on RY,
if deg{p) < N then

N2 < OH{(@ 0 € +p@) +e 3 arp(a) /00D < 2 ,\+1)}]
IHES
for every A > 0.

Proof. Let ¢ be the constant from the previous lemma. For A > 0 we
define

rioy < [ O Tiaiaw 0ep() P/ > 2702+ 1),
* (¢/2) 2211w [O1p(2 YR UIFY X\ — 1 for the remaining =.

Hence, using Lemma 2 we obtain
(—A-+p")¢,¢) = ((—27 A +271p% = 1), ¢)
+((=2~ 1A + 271" 14, 9)
2 Mgl + ((—271 A + 27197 + 1), 9)
for ¢ € C°. By the minimax principle
NP2 < N0, -271A +274p% & n)
and the Cwikel-Lieb-Rosenblum inequality finishes the proof.

PROPOSITION 2. For d > 3 and any natural number N there exist con-
stants C' = C(d), c1(d) and c3(d, N) such that for every polynomial p on R,

if deg(p) < N then
n(Aira [pD S C‘{(T,f) EZ —|—C 11(2 )2 +CZ Z ?L(m) o S %+2}I

[7]1<N

Jorany A, r > 0.
Proof. Noticing that
n(hpl) = nler=r, er 2N 2R
we can use the lower bound in the Fefferman estimates and Proposition 1.

The following theorem is an easy consequence of the upper bound in the
Fefferman estimates and of Proposition 2.

THEOREM. For d > 3 end any natural number N there exist constants
C = C{d), ey = c1(d, N} and ca = ca(d, N) such that for every positive
polynomial p on RY, if deg(p) < N then
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N(X\p) "
217+ 1
< {0+ pla) +a Y A Pp(e) T < 0 + 1)}
[{EN

for any A > 0.
Proof. In order'to replace p(x)? by p(z) we use the inequality

ga? < (g}aﬂ)z-
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