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STUDIA MATHEMATICA 105 (1) (1993)

Metrically convex functions in normed spaces
by

STANISEAW KRYNSKI (Warszawa)

Abstract. Properties of metrically convex functions in normed spaces (of any di-
mension) are considered. The main result, Theorem 4.2, gives necessary and sufficient

conditions for a function to be metrically convex, expressed in terms of the classical con-
vexity theory.

Introduction. The concept of metric convexity follows ideas introduced
by Menger for metric spaces ([6], see also [2]). An important and inescapable
question is how it corresponds to the standard convexity. The appropriate
field for investigating these relations are normed spaces.

Let {X, ||-||) be a normed linear space. The metric is defined in the usual
way: d(@,y) = ||z — y|| for z,¥ € X. The two notions of convexity can be
introduced parallelly via two different concepts of a segment, as follows.

In algebraic convexity, the line segment connecting points z,y € X is
the set {z,y] = {{1 - Az + Ay | 0 € A € 1}. Then a subset 4 C X is
said to be convez if for all z,4 € A the segment [z, 9] is contained in A.
A function f : X — R, where R = R U {400}, is said to be convez if
A =Nz + Ay) < 1—)\)f( )+ Af(y) for all z,y € X and A € [0, 1].

In metric convexity [8], by the metric segment (or briefly: d-segment)
connecting z,y € X we mean the set [z,y]q = {2 € X | d(z,2) + d(z,9) =

d(w,y)}. A subset A C X is metricolly convez (or d-conver) if [x,y]y C A
for all 2,y € A. For A € [0,1] and z,y € X we define the A-layer of [z, y]q
to be [z,9]} = {# € [z,¥]q | d(z,2) = Md(z,y)}. A function f : X — R is
said to be metrically convez {or d-convex) if f(z) < (1—A)f(z)+ Af(y) for
all A e [0,1], z,y € X and = € [z,9]}.

Remarks. (1) Menger's original definitions [6] concerning metric con-
vexity in general metric spaces, when applied to normed linear spaces, im-
ply weaker notions than ours. For instance, from [6] ome can derive the
following: a subset A C X is metrically convex (in Menger's sense) if
([z.y]a\{z,y}) N A # B for every pa,lr of dlstmct points x Y € A.
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2 5. Kryfiski

(2) Metrically convex functions were discussed for the first time in [1],
for some particular subspaces of R™ with the Manhattan metric.

Several immediate consequences can be derived from the definitions for-
mulated above. For instance, if 2,y € X and A € [0,1] then (1 Az + Ay €
[,9]%, and [z,y] C [z, y]a. Moreover, if C(X), Ca(X) denote the families
of, respectively, convex and d-convex subsets of X, and F(X), F4(X ) the
families of, respectively, convex and d-convex functions, then Ca(X) C C(X)
and F(X) ¢ F(X).

Many interesting results concerning properties of C4(X) can be found in
[3] and [8]. Almost nothing is known, however, about the structure of the
family Fa(X) (cf. [8]).

The aim of the present paper is to characterize d-convex functions in
normed spaces, in terms of the standard convexity theory. The central part
in our characterization is played by affine subspaces parallel to extremal
subsets of the closed unit ball B = {z € X | ||lz|| < 1}. The main result
is Theorem 4.2, where necessary and sufficient conditions for a function
f: X — R to be d-convex are formulated.

The organization of the paper is the following. In the next section we
recall some necessary definitions and basic facts from the theory of convexity.
In Section 2 two new lernmas concerning convex sets and functions in Bnite-
dimensional spaces are proved. Basic facts from metric convexity theory are
covered by Section 3. Important properties of d-convex functions in R? are
also proved there. They are principal steps in proving, in Section 4, the main
theorem, which concerns general normed spaces. Some corollaries from this
theorem are also contained in Section 4.

1. Preliminaries. The material exploited here is standard and belongs
partly to the theory of normed spaces (cf. [4]) and partly to convex analysis
(cf. [7]). The notation used throughout the paper follows, in principal, the
two monographs.

We consider a normed space (X, || -||) with the zero-vector ¢, the induced
metric d, and the closed unit ball B. The open segment with endpoints
2,y € X'is (z,y) = {(1 - Az + Ay | 0 < X < 1}, Other types of segments
are [z,y} = (z,y) U {z}, etc.

For a subset C in X, cor C is its algebraic interior (core of ('), icr ' is
its relative algebraic interior (intrinsic core). The family of all convex C-
extremal sets is denoted by Ext €. If z € € then Te(z) and No(2) denote,
respectively, the tangent and normal cones at ¢ € C. By A(C) we denote the
family of all affine subspaces parallel to aff C, i.e. ACY={LCc X |3ac X
L=a+aff C}.

We shall distinguish several special objects connected with extremal sub-
sets of the unit ball B, essential for our results. By & we denote the family
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of extremal proper subsets of B with nonempty intrinsic core, S = {E €
ExtB | E # B, ict B # 0}. For any nonzero « € X, S(z) denotes the
smallest B-extremal set containing z/||z||. One can show that S{X) € S.
The convex cone spanned by S{z) will be denoted by K(z). Similarly, for
any B-extremal set E € 8, K(E) is the convex cone spanned by E. For
any E € S the linear subspace paraliel to E will be denoted by P(E), i.e,
P(E) = span(E — F). Finally, the linear subspace spanned by all P(E),
E € S, will be denoted by P, i.e. P = span | J{P(E)} | E € S}.

Note that the subspace P is uniquely determined by the family of B-
extremal sets which are not extreme points of B. Moreover, one can easily
prove that B is strictly convex if and only if P = {#}.

For a function f : X — R and a point # € X, lev, f denotes the level set
determined by the value f(z), i.e. lev,f = {2 € X | f(2) < f(z)}.

The set of points minimizing a funetion f on a given C C X will be
denoted by argmin, f, i.e.

argmingf = {z € C|Vy € C f(y) > flz)}.

The set of global minima is argminf = argminy f.

2. Two technical IemmasJ

LemMa 2.1. Let X be a finite-dimensional linear space, C and I) convex
subsets of X, and M o conver cone. Suppose that
(i) int C#0, cdC =,
(ii) (int C)N D #§;
(i) ¥z € C N D Ng(z) C M*.
Then (C+M)NDcCC.

Proof Supposey ¢ Candy € (C+ M)N D. Fix z € int C'N.D. Then
there is a unique = € [z,3] N bd C. Since y and z are in D, also z € D,
Moreover, bd C' C C, therefore z € C N D, and (iii) gives Ng(z) C M™.

We have z + To(z) D € and ] Tg(z) = No(2)* D M** D M. It follows
that z+cl Te(z) = z+cl Te(z)+ M D C+ M. But we also have y € C'+ M.
Hence y — z € cl T (). -

Since z € int €, z — is in int To(z), and therefore z — & € int(cl To(x)).
Finally,

(2 —m,y—z) Cint(cl Te(x)) =int Tg(z) .
But z € [2,y], 50 0 € [z—2,y—x). It follows that # € int Tc(z). This is only
possible in'case T (z) = X, or, equivalently, when & € int U, contradicting
z€hdC. m

LEMMA 2.2. Let X be o finite-dimensional linear space, f: X — ﬁ a
convez funclion, @ € cor(dom f), and w € X\{0}. Assume thot there is a
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neighbourhood U of z and & € (0, %) such that for every z € [z, x4+ w| N U,
() F(5+e)z+ (3 -€)2) < 5f(@) +55(2).
Then fl,(z) = 0.

Proof. We may assume that I/ is convex. The finite derivative f! (x)
exists (cf. [7], Theorem 23.4). Suppose that f,(z) < 0. Then there exists
zp € UN [z,2 + w] such that f(z) < f(z).

Consider the sequence {z;}§2,, where 2z = (} + &)z + (§ — &)z for i =
1,2,... From (x) one obtains f(z;) < %f(fc) + 1 fz11) foralli=1,2,...,
which gives f(z) < (1 =279 f(a}+ 27 f(zg) < (1~ 27 f(z) + 27 f(x) =
f(z).

The above relations imply for all i = 1,2, ...,

(a) |f(z) = f(@)] = fla) ~ flz) 2 27 (f(2) ~ F(20)) -
Note that ||z — z;|| = (} — €)[|z — 21|, hence for i = 1,2,...,

(b) Iz — 2ill = (3 — &)'ll= — 2ol -

! e = ol L 20 = £(@) o [2-i(L @) = fa)
el = ol f =5 ot i [274(3 ) SR
= o L) i (1 30) = e,

a contradiction. =

3. Metric convexity in a normed space

3.1. Basic properties of metric segments. We discuss the metric convexity
in a normed linear space (X, ||-||) with the distance d induced by the norm.
In addition to notions introduced previously we shall consider here metric
segments without one or both “endpoints”, defined as follows: (z,1)q =
UD(A(l[xu y]é: [«”3, y)d = UD§A<1[$:ym a‘nd (%?}}d = U0<A51[$:y]2' NOtE
that {z,2)y = {z} and if & # y then (z,y)s = [z, y]a\ {2, ¥}

ProposiTIoN 3.1 ([8], Theorem 11.22). If =,y € X, © # y, then [z,y)q
=@E+Ky-2)Ny+K(z—y) a

CoroLrary 3,1.1 ([8], Corollary 11.11). Every metric segment is a con-
ver set. m ' ' '

COROLLARY 3.1.2. For every z,y € X, icr[z, y]q # 0.

‘Proof. By Proposition 3.1, (2 + 39) + [z, 9]a is absolutely convex,
which yields. the assertion. = :
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From Proposition 3.1 one obtains the following characterization of a
Mlayer.

PROPOSITION 3.2. For every zyeEX and0 <A <1,
[, y]2 = (o -+ Ad(2,1)S(y - 2)) N (v + (1 - N(e, y)S(z — ). =

COROLLARY 3.2.1. The A-layer {z,y]} is contained in an affine subspace
parallel to P{S(x ~ y)). =

PROPOSITION 3.3, If 2,9 € X and § € R are such that d(z,y) < § then
[#,9]la Cz+68.

Proof From z € [z, it follows that d(z,z) = d(z,y) — d{z,y) < 6. =

3.2. Metrically conves functions in the 2-dimensional space. We prove
two lemmas describing important properties of d-convex functions in X =
R?. In the next section they will be used for proving much stronger results
concerning general normed spaces of any dimension.

LEMMA 3.4. Let f 1 R? — R be d-conver and x,y €Edom f, x #y. Then
[ is continuous on (z,y)q.

Proof. Define g: R* — R by g(z) = f(2) for 2 € (,y)a, g{z) = +oo for
z € R®\(2,y)q. Then, clearly, g is a convex function and domyg = (2,1)q.
By Theorem 10.2 of {7}, ¢ is upper semicontinuous on (2,y)q- It suffices to
prove that g is lower semicontinuous or, equivalently, that f(z) = clg(z) for
every z € (2,¥)a. _

By Theorem 7.4 of [7], since dom g = (z,y)a we obtain f(z) = g(z) =
clg(z) for z € lev(z, y) 4.

If the B-extremal set S(z — y) is a singleton then [z,y]q = [z, y] and
(z,y}a = (2,y) = ier(z,y)q. Hence, in this case, F(z) = glz) = clg(z) as
required. It follows that only the case of S(x —y) being a nondegenerate line
segment deserves attention.

The metric segment [z,y]4 is a parallelepiped, and z, y are its opposite
vertices. Let vy and ve denote the other two vertices.

Consider the set D = (2,y)q\icr(#,y)q. It may be expressed as the
digjoint union D = D; U Dy U D3, where Dy = (z,v) U (z, va), Dy =
(y,v1) U (3, v3), and Dy = {v1,va}. -

Fix & € Dy. There exist bp € icr(x,y)q and sequences {ax}$S,, {5},
converging to z such that ay € (2, 2), b € [bo, 2) and 2 € [ag, bk];"z. Then,
by metric convexity of f,

9(z) = f(2) € §Far) + 35 (bs) = F9(ar) + Sa(bx).
Since a convex function is continuous on every open subset of its domain
(relative aff(dom f)), we have limy_.o g(ax) = g(z). Moreover, by Theorem
7.5 of [7], limg—co g{bx) = clg(z). Hence g{z) < Lg(2) + Lclg(z). Tt follows



6 8. Kryiski

that g(z) < clg(z). The reverse inequality is true by the definition of the
closure of a convex function. Therefore f(z) = g(z) = clg(z).

The same can be shown analogously for z € Ds.

If 2 € D3, Le. 2 = vy or 2 = w9, then similarly to the former case two
sequences will be considered: {cg}32, and {e;}$2,, both converging to z,
but now ey, € (2,2), ex € (y,2) and z € (ck,ek);/g.

The first part of the proof yields g(ci) = clg(ci) and glex) = clg(e).
By Corollary 7.5.1 of [7] we get limp_,oc g(ck) = ¢l g(z) and limg..o, glex) =
clg(z). Hence

g9(z) = f(2) < 37 (ex) + 3 F(ex) = 39(ck) + $(er) = clg(er) + clgler).

It follows that g(z) < clg(z), and, finally, g(z) = clg(z), This finishes the
proof. =

If X is a finite-dimensional space then its dual space X* can be identified
with X, Therefore all subsets of X* appearing in the next lemma (where
X = R*) will be treated as subsets of X. For z € X and ¢* € X*, (m,27%) is
the usual scalar product in R2.

LEMMA 3.5. Let f: R — R be a d-convex function such that cor(dom f)
# 0, let E be a B-extremal set, B € S, and L € A(E). Then f|1ncor(dom 5) =
const.

Proof. Let Ly = LN cor{dom f). If Ly is empty or contains exactly
one element, then the assertion is trivially satisfied. Therefore assume that
dim I = dim Ly = 1. It follows that F is a line segment, dim E = 1, and
cor K(E) # 0. Recall that P(E) denotes the linear subspace parallel to 1
(in this case it is a line). Note that for every L € A(E) and every a € L, the
normal cone Ny, () is the subspace orthogonal to P(E), i.e. Ny (a) = P(E)L.

Suppose that f|z, # const. It follows that there exists z € Lq such that
x & argming, f. We shall show that this leads to a contradiction. The proof
will consist of three steps. In the first step it will be proved that there exist
a convex cone M and a neighbourhood U, of & such that cor M N P(E) # §
and (levy f +~ M)NU, C lev, f for every y € U,. In the second step we shall
show that f,{x) > 0 for every a € cor K (E), or, equivalently, f(y) > f(x) for
¥ € =+ cor K(E). The third step will be the proof that Huane reor & (2y) =
const' = f(z). This immediately yields z ¢ argmin .. contradicting our
assumption.

Step 1. We have assumed that z € Ly and z ¢ argming, f. By Thecrem
27.4 of [7], 8f(z) NN, (2) = 0, and so df(z) N P(E)* = since Ny, (z) =
P(E)*.

Let- 4 = inf{d(z1,23) { z1 € Bf(z), 22 € P(E)*}. By compactness of the
subdifferential 8f(z) (cf. Theorem 23.4 of [7]), 4 > 0. Let ¢, = £A. From
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Corollary 24.5.1 of [7] there exists a neighbourhood U7, of = such that

(4) VyeU. Of(y) Cof(z)+eB.
Again by [7, Theorem 27.4] we get
(B) YyelU, y¢ argming , pgy f .

(This fact will be used in step 3 of the proof.)

Without loss of generality we may assume that ¢lU, C cor{dom f) and
that [z, 2]q C U, for every z € U, (cf. Proposition 3.3).

Let G = cl(8f(z) +£1B). The set @ is convex and satisfies
(C) GNPE)=9.

It follows from (A) that cone@f(y) C cone @ for every y & U,. Since
y ¢ argmin, | pg) f, and therefore y ¢ argminf, from [7, Corollary 23.7.1]
we get

(D) Yy €Uz Niey, s(y) C coneG.

Let M denote the dual cone, M = (cone G)*. It is clear from (D) that
Niev, f(¥) C M* for every y € U,. Now, if we put C = lev,f NclU, and
D = U,, then the assumptions of Lemma 2.1 are satisfied, thus

(E) Yy €Uy (levyf+M)nU, Clevyf.

The cone M has one more property which is important for further steps
of the proof, namely from (C) and the closedness of M* = cone (3 it follows
that P(E)Ncor M # @. Let b € P(E) N cor M. Obviously & # 6.

Step 2. Fix any point yg in Uy N{z+cor K(E)). It follows that [z, yg]s C
U,. The %-layer [z, yo]i/ % is not a singleton, thus it is a line segment.
Corollary 3.2.1 implies that it is parallel to P(S(yo — z)) = P(E). Let
wp = %z + 1yo. Since b € P(E), there exists w), € icr[m,yg]:!/2 such that
wp = wg ~ 7h for some 7 > 0.

Let y{ be a point in (wy + M) N [z, yo! closest to x. Since b € cor M,

and [z, y()}yz is a line segment parallel to b, y{, # wo and hence d(z, yj) <
d(z,wq) = ;la‘d(m,yo). Obviously wy € levy, f. It follows that

Yo € (levyy f+ M) N [z, 30] € (levy, f+ M)NT;

From (E) we get yo € levy, f. The function f is d-convex and wy € (s, ‘yg]‘]i/ 2
therefore
(F) Flue) < Flwp) € 5£(e) + 5 (vo)-

If y§ = = then (F) implies f(z) < f(yo). If yp # x, let

- _ 1 d{x,yp)
e=elw) =5 - o ve)
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Then y) = (% + &)z + (3 — e)yo and from (F), f((3+ &)z + {5 — ) <
1f(z) + £ (vo).

The same argument can be carried out for every y € [x,yo]. If we let
w= %z py and w' € [z, wp]N {w~ 7b | 7 > 0} be the counterparts of wy
and wj, then we get a point ¥’ and a number £(y) with analogous properties
to 4 and £ = e(yq).

By the Thales theorem, for every y € [z,y0] and the corresponding ' we
have

(G Y =z & yy=a,
(6" ely) =¢.
Therefore, for every y € [z, yo,

(H) ' v =G re)et+ -y,
(1) F) < 5f@) +110).

If z = yp, then from (G') and (I}, f(z) < f(y) for every y € [z, o], which
implies f, _.(x) > 0. If = # y;, the same conclusion can be obtained by
Lemma 2.2.

We have thus proved that f,(z) > 0 for every a € cor K(E). Since f is
convex, it follows that f(y) > f(z) for every y € z + cor K(E).

Step 3. Let o’ € U, N (z + cor K(E)). By (B), 2’ ¢ argming: . p( gy f,
which immediately yields ' ¢ argmin ryf, where Ljy = (2’ + P(E}) N dom f.
The same can be repeated with = replaced by 2/, K(E) by —K (E), and L
by Lj. One can prove that way that f(y) > f(z') for every y € 2'—cor K ().
Note, however, that 2 € &' — cor K(E), hence f(z) > f(z'). Consequently,
f(z) = f(2') for every 2’ € U, N (z + cor K(E)), i.e.

Flvanietcor k(By) = const = f(z).
By convexity of f it follows that f(z) > f(z) for every z € aff (U, n

(#+cor K(E))) = R?. An immediate conclusion is z € argmin Lo S, and this
contradicts the initial assumption. =

4. A characterization of metrically convex functicns in normed

spaces. Let X be a normed space of any dimension. Let E € S. For a
d-convex set A C X we define

Ig(A) = U{(x,y)d =,y €A, z—yeicK(E)}.
The set 1g(A) can be expressed as the disjoint union
Tp(A) = Ip(A) UTh(4),
where I3 (A) = {z € A| Ta(2) > spanE} and T4 (4) = Ip(ANIG(A).
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Note that if z,y € A, © # y, are such that ¢t —y € icr K{E), then
ict[z, yla C I%(A) (since aff[z,y]s € A(spanE)). Tt follows that I5(A) # # if
and only if I3(A) # @. However, it may happen that IL(A) = @ even when
Ig(A) #0 (e.g for A= X).

THEOREM 4.1. Let f : X — R be d-convez and E € S be such that
Lg(dom f) # B. Then flrrig(aom f) = const for every I € A(E).

1 Proof. Letw lg, 1%, Ik denote respectively Iz(dom f), 1% (dom f) and
I} (dom f). We first show that fanI% = const. Let 2,y € LNIY, z # y. Put
Lo = (aff{z, y})NI%. We prove that f|,, = const. Without loss of generality
we may agsume that Ly Nicr E # @ (if necessary, the linear transformation
z z+ (e—a) for z € X can be applied, where e €icr F and a € Ly are
chosen arbitrarily).

It is easy to see that 2 and y are linearly independent (since z,y € aff E,
and E € §8). Therefore the subspace X; = span{z,y} is 2-dimensional. Tt
is a normed space with norm || - [l = - || |x,. The corresponding metric in
X1 will be denoted by dy, and the closed unit ball is By = BN X. The set
By = FENX is By-extremal. Note that £, € §(By) and dim E; = 1.

The function fy == f|x, is di-convex. It is clear that Ly € LN X; €
A1(By), where Ay (E)) is the family of affine subspaces in X, parallel to
E\. Moreover, Ly C cor(dom fy). From Lemma 3.5 we get f1|n, = const. It
follows that f{z} = fi(z) = fuly) = fly)-

Thus we have shown that f|pne = const = c.

Now let ¢ € L NIk, There exist a,b € dom f such that b — ¢ € icr K(E)
and z € (a,b)q. Then z & icr(a,b)a, since z & I%. Without loss of generality
it may be assumed that @ = #. Consider the 2-dimensional subspace X1 =
span{z, b}, with || -||1, d1 By, By defined as above. Note that icrfa, bla, C 1%,
hence filicr(ap)y, = const = c¢. By Lemma 3.4 we have f(z) = fi(z) =
cl{f1](a,by4, }{z} = ¢. This finishes the proof: we have shown that flrnr, =
const. m

THEOREM 4.2. A function f: X — R is metrically convez if and only

if: :
(1) F s conver;

(i) dom f is a metrically convez set;

(i) VE € SYL € A(E) f|rnig(dom 5} = cODSt.

P roof. The necessity of (i) and (ii} is obvious. Condition (iii) is necessary
by Theorem 4:1. : :

Now assume that f satisfies (i)—(iit). Take z,y € X, z #y, and consider
the A-layer [2,y]3 for any A € (0,1). If z ¢ dom f or y ¢ dom f then clearly
F(2) < (1= XN f(z) + Af(y) for every z € ENIEE
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Therefore, let x,% € dom f. Note that if £ € & is such that B =
S(y — ), then [z,y)} C L for some L € A(E) (cf. Corollary 3.2.1). More-
over, if 0 < A < 1 then [z,y]) C Ig(dom f). From (iii) and (1 ~ M)z
+ Ay € [z,9]} it follows that f(2) = f{(1 — Az + Ay) for every z ¢
[z,y]3- But, from (i), f((1 = ANz + Ay) < (1~ A)f(z) + Af(y). Finally,
fz) < (1= X)f{z) + Af(y) for every z € [z,y]). Thus f is metrically con-
VEeX. @

CoOROLLARY 4.2.1. A function f : X — R is metrically conver if and
only +f

(i) f s convez;
(ii) f| = const.

Proof. The domain of f is now the whole space, dom f = X. We shall
prove that in this case the present condition (if) is equivalent to (iii) of
Theorem 4.2.

Recall that P = span Upes P(E). It follows that if f| % = const then
flp(g) = const for every E € § and

(a) YE € SVYL € A(E) f|L = const.

This is condition (iii) of Theorem 4.2, since now Iz(dom f) = X,

Conversely, assume that (a) is satisfied and consider any = € P. There
existn € N, By € S and z; € P(E;) for i = 1,...,n such that z = 2z, +
oot zn. Define yop =0, y; = g1+ 2 for s = 1,...,n. Then 4, %i—1 € L;
for some L; € A(E;), i = 1,...,n, and, by (a), f(y:) = Flyi=1) for all 4.
More precisely, f(z) = f(yn) = f(yn—1) = ... = f(31) = f(8). Thus flg =
const = f{f). =

COROLLARY 4.2.2. The family of finite and metrically convex functions
in a normed space separates points of the space if and only if the unit ball
is strictly convez.

Proof. If the unit ball B is strictly convex then every proper B-extremal
set is a singleton and metric segments coineide with line seginents. By the
definition of a d-convex function it follows that both families, of convex and
of d-convex functions, are equal. Finite convex functions separate points of
the space.

Conversely, if B is not strictly convex then there exists E € S such that
dimE > 0. Hence dim P(E) > 1 and, by Corollary 4.2.1, Flpigy = const
for every d-convex function f. It follows that neither points of the sub-

space P(E) nor points of any I € A(E) can be separated by d-convex
functions. m

icm
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