icm

STUDIA MATHEMATICA 105 (1) (1993)

The decomposability of operators
relative to two subspaces
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Abstract. Let M and N be nonzero subspaces of a Hilbert space H satisfying
MnN = {0} and M VN = H and let T € B{(H). Consider the question: If T leaves each
of M and N invariant, respectively, intertwines M and N, does T décompose as a sum of
two operators with the same preperty and each of which, in addition, annihilates one of
the subspaces? If the angle between M and N is positive the answer is affirmative. If the
angle ig zero, the answer i still affirmative for finite rank operators but there are even
trace class operators for which it is negative. An application gives an alternative proof
that no distance estimate holds for the algebra of operators leaving M and N invariant if
the angle is wero, and an analogous result is obtained for the set of operators intertwining
M and N.

1. Introduction. Given a linear space A of operators on a Hilbert space,
an important question is whether it is possible to approximate an operator 7'
in A by simpler elements of A, or even better, to decompose T' as a {perhaps
finite) sum of such elements. For example, if A is a nest algebra, any finite
rank operator in A can be decomposed as a finite sum of rank one operators
in A -and these sums are ultraweakly dense in A4 [4]. If A = AlgL for a
complete atomic Boolean lattice £, the first property holds [16], but the
second does not [13] (see also {1, Addendum]). Related results are in [1, 5,
6, 8, 14, 17]. .

Another important possible property of an operater algebra A is the
estimation of, in the sense of Arveson [2], the (metric) distance of an operator
from A in terms of the invariant subspaces of the algebra. Arveson [3] showed
that this is equivalent to a decomposability property, this time of the pre-
annihilator +.4 of A. This holds, for instance, in nest algebras [2, 12], but
exactly which algebras have this property has proved an elusive question.

Questions such as the above are discussed in this paper. For instance,
given two subspaces M and N of a Hilbert space H such that M NN
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= {0} and M v N = H, we investigate the question of whether an operator,
which leaves them invariant or intertwines them, decomposes as a sum of two
operators with the same property and each of which, in addition, annihilates
one of the subspaces. If the angle between M and N is positive this can be
done for all such operators. On the other hand, if the angle is zero this
remains true for all finite rank operators but there exist even trace class
operators for which it fails.

As a corollary we give a transparent proof of the result of Papadalis [17]
that no distance estimate holds for the algebra of operators leaving M and
N invariant if M and N are at a zero angle. We also prove the analogous
result for the set of operators that intertwine M and N.

Throughout this paper we shall use the following terminology and nota-
tion. The letter H will denote a complex nonzero Hilbert space with inner
product denoted by (-,-). The orthogonal complement of a subset L of H
is denoted by L+. By a subspace of H we mean a closed linear manifold, If
K and L are subspaces of H, K vV I denotes their closed linear span. The
closed linear span of a family {L,}r of subspaces is denoted by \/ L, or
simply V L. The linear span of two vectors z and y is [z, y]. Two subspaces
K and L of H satisfying K N L = {0} are at a zero angle if sup |{z,y)| = 1
(equivalently, inf |# — y|| = 0) where the supremum (correspondingly, the
infimum) is taken over all unit vectors z of K and y of L. It is well known
that K and L are at zero angle if and only if the vector sum K -+ L is
not closed. Two subspaces M and N of H are in generic position (in H) if
MNN=MnNt=M'nN=MnNL={0}.

By an operator on H we mean an everywhere defined bounded linear
transformation from H to H. The set of operators on H is denocted by
B(I). A projection on H is a self-adjoint idempotent of B(H) and the pro-
Jection onto L, for a subspace L of H, is denoted by Pr. For an operator
A € B(H), its graph G(A) is the subset {(z,dz): 2z € H} of H$ H, its
adjoint is A* and its trace, if it is of trace class, is denoted by tr(A). If A is
a subset of B(H), A* is the set {A* : 4 € A} and the pre-annihilator +.A
of Ais {B € B(H) : Bis of trace class and tr(AB) =0, for all A & A}. The
renk of an operator on H is the algebraic dimension of its range, and for
vectors e, f € H the operator z — (z, ) f is denoted by e® f. If A € B(H)
and K, L are subspaces of H we say that A intertwines them if A(K) C L
and A(L) € K. The algebra of operators leaving invariant all the mem-
bers of a family F of subspaces of H is denoted by Alg . If a lattice F of
subspaces of H is complete with lattice operations (arbitrary) closed linear
spans and intersections and it contains the trivial subspaces {0} and H we
say that F is a subspace lattice on H. A totally ordered subspace lattice A/
is called a nest and the corresponding algebra Alg A is a nest algebra. Nests
are special cases of completely distributive subspace lattices. We shall not
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give the precise definition here but refer the reader to [15]. The following
characterization of complete distributivity is given in [15]. If K, L € F we
denote by L_. the subspace L = \/{M € F: L € M}, by K, the subspace

=[{L-:L € Fand L Z K}andby Ky the subspace Ky = \/{L € F:
K & L_}. Then the complete distributivity of F is equivalent to the con-
dition K = K, for all K ¢ F and is also equivalent to K = Ky for all
KeF.

2. Density. If F is a subspace lattice on the Hilbert space H we denote
by S(F) the set of all operators on H that annihilate all the operators of
rank at most one in Alg 7, that is,

S(F) = {8 € B(H): tx(SR) =0 for every R € AlgF of rank at most one}.
LeMMA 2.1, For any subspace lattice F on H,
S(F)={5eB(H): 5(K)CK_ for cvery K & F}.

Proof. It is shown in [15] that, for any vectors e, f € H, the operator
R=e® f is in Alg F if and only if there is a K € F such that f € K and
e € (K_)*. Thus tr(SR) = (S, e) vanishes for all such R in Alg F if a,nd
only if S{K) C K_ for every K € F.

The above lemma is not essentially new. The set S{F) has been investi-
gated in [5] and [6]. The following proposition and corollary can be deduced
from the former but we include a more direct proof here for the reader’s
couvenience and for future reference.

ProrOSITION 2.2. Let F be a subspace lattice on H and let e, f € H be
vectors. The following are equivalent.

(iye® [ € S(F),
(i} f € L and e € (Ly)* for some L € F,
(i) f € K. and e € K for some K € F.

Proof (i):}(ii). Let e® f €S Put L =[N € F: f € N}. Then

f € L. We claim that e € (Ly)*. Suppose that M € F and L € M... Then
F & M_ so, since by Lemma 2.1, e ® f(Mf) C M_, it follows tha.t e€ M+,
Hence e € N{M™*: L g M_} = (L#)

(ii)=>(ili). Suppose that f € L and e € (Lyx)* for some I. € F. Put
K=1Lg Thene € K*. By [15, Lemma 5.2, L C Ly, so L C K,. Thus
Fe K.

(iii)=(i). Suppose that f € K, and ¢ € K* for some K € F. Let
MeF IFMZ K then K, CM_soe® f(M) C[f] € K. C M_ and
e® f(M)C M_. Ifinstead M C K, thene € M+ and so e ® f(M) = {0}
C M.. By Lemma 2.1 we have e ® f € § as required.
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COROLLARY 2.3. Let F be o subspace lattice on H different from
{{0}, H}. If K € F and K # {0}, H then for every pair e,f of nonzero
vectors satisfying f € K, e € K+, the rank one operator e @ f belongs
to 8(F). Every rank one operator of S(F) arises in this way if and only if
F is completely distributive.

Proof. First, let e, f be nonzero vectors satisfying f € K, ¢ € K+ where
K ¢ Fand K # {0}, H. Then, as K C K, (see [15]) we have f ¢ K,. Hence
e® f € 8(F) by Proposition 2.2.

Next, assume that every rank one operator of S(F) arises in this way. To
show that JF is completely distributive it is enough to show that K = K, for
every K € F. As K C K, we need only show that K, C K, or equivalently,
that K, and K are orthogonal. Let f € K, and e € K. By the preceding
proposition, e® f € S(F). Ife =D or f = 0, e and f are certainly orthogonal.
Otherwise, by our assumption, f € L and ¢ € L* for some element I, € F.
In particular, e and f are orthogenal. Thus K, and K are orthogonal, as
required.

Finally, let F be completely distributive. Let e ® f € S{F) be a rank
one operator. By the preceding proposition, f € K, and e € K- for some
K € F. By complete distributivity K = K, and the proof is complete.

Remarks. 1. Clearly §(F) = {0} if F = {{0}, H}. Thus, for any
subspace lattice F, S(F) contains a rank one operator if and only if F #
{{o}, H}. _

2. It follows from [5, Theorem 9.4] that, for a completely distributive sub-
space lattice 7, Alg F is the set of operators that annihilate every operator
of rank at most one of S(F). Again, this is not difficult to show directly.

In the remainder of this paper we fix two arbitrary distinct subspaces
M and N of the Hilbert space H. To avoid trivialities we shall assume that
neither M nor N is {0} or H. We denote by £ the subspace lattice generated
by M and N so that generally £ = {{0}, M "N, M, N, MV N,H} although
some of these subspaces may coincide. However, whatever the case may be,
we always have (M NN)_ = {0} and H_ = MV N. By A we denote the
algebra Alg £ consisting of those operators leaving M and N invariant, and
by § we denote the set S(L) defined as above.

Our first result concerning the two subspaces M and N is the following.

THEOREM 2.4. The intersection, AN 8* 45 {0}.

‘Proof Tet Aec ANS. ¥f M and N are comparable, say M < N, we
have A3(H) = A*AH) C A%(N) = A(AN) C A(M) = {0} so A% = 0.
On the other hand, if M and N are noncomparable, we have A(M) C M
and A(M) C M. = Nso A(M) C M n N. Similarly, A(N) C M N, so
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A(MVN)C MNN. Thus A%(H) = AYHAH) C A2 MV N)= A(A(M V
N)) S AMNN) = {0} and again 4% = 0.

Now let T'€ ANS*. Then T*T € § s0 B = (T*T)* € A. But B= B* so
B € AN A*. The latter is a C™-algebra so the unique positive square root

of B, namely T*T', also belongs to AN A*. Thus T*T € ANS so (I*1)3 =0
and T = 0.

COROLLARY 2.5. Buery Hilbert-Schmidt operator in A (respectively S)
can be arbitrarily well approzimated in the Hilbert-Schmidt norm by finite
sums of rank one operators in A (respectively S).

Proof. If a Hilbert-Schmidt operator T in A (respectively 8) is orthog-
onal to the linear manifold of all finite sums of rank one operators in A4
(respectively S) then T annihilates all rank one operators in A (respec-
tively &). By the definition of S (respectively, the second Remark following
Corollary 2.3), T* € S (respectively T* € A} so that " € AN S* (respec-
tively T € ANS*). By Theorem 2.4, T = 0 (in either case). Since the linear
manifold of Hilbert-Schmidt operators in A (respectively S) is closed in the
Hilbert-Schmidt norm the required result follows.

The above density property for .4 can also be obteined, using an ap-
propriate decomposition of H and a duality argument, from a result of
Papadakis [17], who shows that in the case M NN = {0}and MVN =H
we can approximate in the ultraweak topology any operator in A by finite
sums of rank one operators in A. A result of Harrison quoted in [1] (see
also [11]) shows that these sums can be taken in the unit ball.

3. Decomposability and distance estimates. To motivate the results
that follow for our two subspaces M, N and for £ = {{0}, M N N,M,N,
MV N, H}, consider the special cases :

(a) M C N, in which case £ is a nest,
(b) MNN = {0}, MV N = H, in which case £ is a Boolean lattice.

In either case it follows from more general theorems of Ringrose [4] and
Longstaft [16] respectively (but also can be seen directly) that every finite
rank operator in A is a finite sum of rank one operators of .4, a property
not shared by all completely distributive lattices, as shown in [8]. It is not
difficult to extend this to the general A considered here, and we include a
short proof. It turns out that S also has this property. Indeed, Lemma 1.2
of [6] shows that, for any nest A, every finite rank operator of S(A) is &
finite sum of rank one operators of S(NV), so only the case where M and N
are noncomparable needs further consideration. :

Let us return to the general situation. By Corollary 2.5 every Hilbert—
Schmidt operator in A can be approximated by finite sums of rank one op-
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erators in A. In the special case (b) each rank one operator in A annihilates
precisely one of M and N. It is natural to ask whether every Hilbert—Schmidt
operator in A can be written as a sum of two others with thg same prop-
erty. Perhaps surprisingly, in view of the above, this is not true in g'eneral. It
holds precisely when the angle between M and N is positive (equivalently,
when the vector sum M + N is closed).

The following “replacement lemma” is the basis of the proof of Theo-

rem 5.2 of [16].

LEMMA 8.1. Let K and L be subspaces of o Hilbert space H and let
F=3%7"e® fi be a finite rank operator on H. If F(L) _g K and ey ¢ Lt
then F can be written as F = e, ® fi + 3 10 €l ® fi with f{ € K.

Proof. Since e; & L*, Pre; # 0. Now 0 = (I — Py }FPy = Pres @
(I*PK)f} +E?=2 PL61®(I—P}{)]E1‘, 50 PL61®(I*PK).701 = Ei:ﬂ Pre®
(I-— PK)f2 Hence (I--PK)f]_ = E?=2 )\i(f — P}()fi where

N = —(Pres, Pres)/|[Prer]®  (2<i<n).

Thus
T i3
F=e1®@Prfi+e® (Z)\i(f —-PK)fi) +Zﬁi®fi

i=Q S

—ere [Pe(fi - i: )|+ Zn:(ei +Nier) @ fi
=2

1=2

7
=61®f{+232®f1‘

=2
where fi = Pic(fi — Yo Mifi) € K.

THEOREM 3.2. Any nonzero finite rank operator in A (respectively S)
can be written as o finite sum of rank one operators in A {respectively S).

Proof If M and ¥ are comparable, £ is a nest and result follows from
Ringrose’s theorem [4] and [6, Lemma 1.2].

Suppose that M and N are noncomparable. Put M; = M & (M N N)
and Ny = Na (M N N). Then M, and N; are nonzero and My M Ny =
{0}, My v Ny = (M vV N)e (M N N). Relative to the decomposition H =
(MON)® (M v N) & (M v Nt operators on H are represented by
3 x 3 operator matrices. An operator iz of finite rank if and only if each of
the entrieg in its matrix is. Let I be a nonzero finite rank operator with
matrix [Fy;].

Suppose that F' € A. Since F leaves M NN and MV N invariant, [F};] is
upper triangular. Since F' leaves M and N invariant, Fpq leaves My and Ny
invariant. By [16, Theorem 5.2], Fy can be written as a finite sum of rank
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one operators in B(M; V Ny) cach leaving both M; and Ny invariant. The
desired result easily follows.

Suppose that # ¢ S. Then Fiy = Fyy = Fyy = Fag = Fyg = 0, and
Fy(Mq) C Ny, Fae(Ny) C M. Suppose that Fa5 has rank n > 1. Then
Fog =37 e; & f; for some nonzero vectors e;, fi (1 <4< n)in M; v Ny
The vector e; cannot beiong to both M1 VN; &M, and MV NG N7, Suppose
that e; & M, VN, & M. By Lemma 3.1, Fyy = e; ® N+l .e®fi for
some vectors fi, e} (2 < ¢ < n)in M; V N, with fi € Ny. Now f] # 0 so
fi & M;. By Lemma, 3.1, since F3, maps M) V Ny © M, into My V N, © Ny
and Fp = fi®e1+ 37, fi @ e}, we have Fy, = fl@el + I, fl @
for some vectors e, f/ (2 <i < n) in M; vV Ni with el € My Vv Ny © Ny
Then Foy = e1 @ f] + 3.0, el ® f] with fl € Nyand e} € M; VN, & Ny
Similarly, if e; & My v N, & N, then Fyy = el ® fi' + Yol ® fI' with

€My and el € My VNG M;. By induction, Fsp is a finite sum of rank
one operators R in B(M; vV N7) satisfying R(M;) C N; and R(N1) C M.
The desired result easily follows.

Remark. It is not known if this decomposability property of finite rank
operators of §(B) holds if B is an atomic Boolean subspace lattice with more
than two atoms.

Putting £y = {{0}, M NN, M, M V N, H} and L5 = {{0}, M NN, N,
Mv N,H}, sothat £; and Ly are nests, we write A4; = Alg £; and write S;
for the set of operators that annihilate all rank one operators in A4; (i = 1,2).
By Lemma 2.1, § € &; if and only if S(K) C K_ for every K € £;, where
K_ is now caleulated in £; (i =1, 2). Note that &; C .

COROLLARY 3.3. Let F' be a nonzero finite rank operator on H. Then

(i) If F € 8, there exist finite rank operators Iy € 81, Fu € Sg such
that F = F] + FQ,

(i) If F € A, there exist finite rank operators Fi, Fy € A such that
F=F+Faumd L(M)CMNN, iR(NNCMNN.

Proof If M C N take Fy = 0 in (i) and (it} If N C M take F| = 0.
Suppose that M and N are noncomparable.

(i) Let F € S. By Theorem 3.2, F = Y7 e; ® f; with each rank one
cperator ¢; ® f; in S. By Corollary 2.3 for every i, f; € K; and e € K,;L
for some K € L. Now either K; C M or N C K If K; € M it is easily
verified that ¢; ® f; € S;; if N C K then e; @ f; € Sy. By grouping terms
appropriately F = Fy + Fy with Fy € §; and Fy € &, finite rank opeérators.

(i) Let ' € A. By Theorem 3.2, F = 3.7 | ¢; ® f; with each rank one
operator e; ® f; in A. For each ¢, f; € K; and e; € (K; )* for some K; € [,
[15, Lemma 3.1]. Bither K; C M or N € K;. If K; C M, e; @ fi(N) C MON.
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If N C K, e;®fi(M) C MNN. By grouping terms appropriately the desired
result follows.

In spite of the fact that finite rank operators in A4 (respectively S) de-
compose as in Corollary 3.3, as soon as we allow infinite rank operators this
remains valid only when the vector sum M + N is closed (if M and N are
noncomparable, this is equivalent to M © (M N N) and N © (M N N) being
at a positive angle).

THEOREM 3.4. If the vector sum M + N s closed, then

(i) every operator T € A can be written in the form T = Ty + T, where
T, Toe AwithTi(M)C MNN, (NYCMNN, and

(ii) every operutor § € 8 can be writien in the form S = 8§ + Sy with
S; € 51, S € 85.

If M+ N is not closed, there exist trace class operators T ¢ A, S e 8
which do not decompose as in (1), (ii).

Proof Suppose first that M + N is closed. Let T & 4, § ¢ S§. I
M C Nitake Ty = 8; = 0. If N C M take Ty = 5; = 0. Suppose that M
and N are noncomparable. The (not necessarily orthogonal) projection Py
in B(MvN)e (MnN))onto M&MNN along N & MnNN is bounded,
hence extends to a bounded operator P on H defined to be the identity on
(MNN)® MV N)*. We may take Ty = T(I~P),To = TP, 5, = S(I-P)
and §3 = §P.

Suppose now that M + N is not closed. Then, letting My = M & (M N
NeMNN-) and Ny = No(MNN@MLnN) and observing that
MVN=(MVN)s (MnN)a(MnNYH® (M- nN) we conclude
that My 4+ N1 is not closed either. It may be verified that M; and N, are
in generic position in their span M7 V Ny so by [7,Theorem 3] we may take
MyV Ny = Hy & Hy, My = G(B) and N; = G(—B) where B € B(H;) is a
positive injective contraction. The fact that My + N7 is not closed implies
that B is not invertible, and since B is injective, zero is an accumulation
point of its spectrum. We may therefore choose a decreasing sequence {)\ﬂ,}
of positive numbers such that, for each n € Zt, ), < n™3 and the spectral
projection of B corresponding to the interval (An41,An] is nonzero, hence
contains a rank one projection P,.

Since (Apn®) | BE,|| € n™?, the sums

L2y —1 PnB 0 8y—1 Pﬂ.B 0
2 () (0 BPH>’ 2 (an) (0 —BPH)

converge in trace norm to trace class operators T and S respectively. Extend
T and S to the whole space by defining them to be zero on (My V Ny)*-. It
ig easily checked that T € A and S & S.
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Suppose that T = Ty + T} as in (i). We will arrive at a contradiction.
Indeed, the compression T3 of Ty to My Vv N1 must leave Ny invariant and
annihilate M7. A short calculation, using the fact that B is injective (hence
it bas dense range), shows that T3 must have the form

YB -Y
—-BYB BY
for some ¥ € B(H1). Since the _comf)ression Ty of Ty to My v Ny must leave
My invariant and annihilate Ny, it must have the form

ZB  Z
BZB BZ ]~

— 21 PnB 0
Ts+Ta=3 (Aan?) (0 BPn)

we obtain ¥ = Z and thus 2BY = Y (\,n?)"'BP,, hence 2BYP, =
(Aun®)"1BP, or 2Y P, = (Aan?)~1P,, since B is injective. But this is im-
possible, since ¥ is bounded while (A,n?)~" > n.

Finally, note that the compression of an operator in Sy to My V Nj is

easily seen to have the form
YB -Y
BYB —BY

while the compression of an operator of 53 has the form

ZB Z
—-BZB -—-BZ
where ¥ and Z are bounded operators on Hj. As above, we conclude that
the operator S cannot be decomposed as in (ii). This completes the proof.

Since

An important and much studied property of a reflexive algebra Alg F
is the validity of a “distance estimate” [2, 12], namely the existence of a
constant ¢ such that, for any operator 7', we have

d(T, Alg F) < csup{||P1TP||: P € F}

(where projections and subspaces are identified in the usnal way). Arve-
son [3] has shown that this is equivalent to the following decomposability
property for the pre-annihilator + Alg F: Every trace class operator which
annihilates AlgF can be written as an absolutely convergent sum (in the
trace norm) of rank one operators which annihilate Alg F.

As an application of our work, we show that Theorem 3.4 implies that
there is no distance estimate for our algebra A if M + N is not closed. If M
and N are comparable a distance estimate (with ¢ = 1) holds by Arveson’s
distance formula for nests [2, 3, 12]. If M is orthogonal to NV it is not hard to



34 A. Katavolos ef al.

see that a distance estimate will hoid with ¢ = 1. More generally, if A/ and
N are noncomparable and M + N is closed, then MM NN and N MNN
can be orthogonalized by a similarity. Thus a distance estimate will hold,
although the constant ¢ will depend on the norm of the similarity.

COROLLARY 3.5. A distance estimate holds for A if and only if M + N
is closed.

Proof. Suppose that every trace class operator X € 1.4 can be written
as X = Y R, where each R, is a rank one operator in +A and ¥ {| Ry
< co. Bach R, belongs to S, hence either belongs to &1 or Sz (or both).
Letting X; = » {R, : R, € 51}, absolute convergence ensures that X is a
well-defined trace class operator in &1, Then Xo =X - X; =3 {R, : R, €
&\ &1} must be in Sy. Thus, if a distance estimate holds, every trace class
operator X in +.4 decomposes as asum X = X1+ Xy, with X; € &; of trace
class.

However, the trace class operator § constructed in the proof of Theo-
rem 3.4 does not decompose as above if M + N is not closed. But § is in *.A.
Indeed, § is the trace-norm sum of operators of § each of which is of rank
at most two, hence each belongs to 1.4, by Lemma 2.1. This establishes the
failure of a distance estimate if M + N is not closed and the converse has
been observed above.

Remark. Corollary 3.5 was also shown by Papadakis [17] in the special
case M NN = {0}, M VN = H. His proof makes use of his ultraweak
density result, quoted after Corollary 2.5, and an elaborate application of
the spectral theorem. Our proof is simpler and more transparent.

Kraus and Larson [9, 10], extending Arveson’s work [2] described above
to (ultraweakly closed) subspaces 7 of B(H), show that the decomposability
of elements of +7 as absolutely convergent sums of rank one operators in
L7 is equivalent to the validity of a distance estimate for 7, that is, to the
existence of a constant ¢ such that

d(T,T) < csup{||Q T P| : P,Q projections with @*7 P = 0},

for every operator T'. :
Using these concepts, our work implies the following.

COROLLARY 3.6. 4 distance estimate holds for 8 if and only of M+ N
is closed.

Proof. Observe that a rank one operator R annihilates S if and only if
R € A Tt is not difficult to see that for such R, either R(M) C M NN or
R(N) € M NN. Now, as in Corollary 3.5, we can see that if a trace class
operator T & 18 can be written as an absolutely convergent sum of rank
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one operators in 8, then T can be written as a sum T = Ty + T3, where
TiEEAandTl(A/I)gMﬁNa,ndTg(N)QM‘ON. :

But if M + N is not closed, the trace class operator T' € A constructed
in the proof of Theorem 3.4 does not decompose as above. We claim that
T € +8. Indeed, T is the sum of rank two operators each of which belongs
to +S by Lemma 2.1. Hence T, being the trace-norm sum of these operators,
also lies in 1.8,

Thus, if M + N is not closed, the result of Kraus and Larson quoted
above implies that no distance estimate can hold for S. The converse is
easily seen, as for A.

Remark. It is perhaps interesting to observe that we have constructed
operators T' and § which are absolutely convergent sums of rank two op-
erators in +§ (respectively 1 A) but which cannct be written as absolutely
convergent sums of rank one operators in these spaces. However, T and S
can be approximated (in the trace-norm) by finite sums of rank one opera-
tors in & (respectively +A). Indeed, each of the sumirands in the definition
of T is a finite sum of rank one operators in A, by Theorem 3.2, hence is
in +8, by Lemma 2.1 (and similarly for §).
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Total subspaces in dual Banach spaces which are not norming
over any infinite-dimensional subspace

by

M. L OSTROVSKII (Kharkov)

Abstract. The main result: the dual of separable Banach space X contains a total
subspace which is not norming over any infinite-dimensional gubspace of X if and only if
X has a nonquasireflexive quotient space with a strictly singular quotient mapping.

1. Introduction. Let X be a Banach space and X* be its dual space.

Let us recall some basic definitions.

A subspace M of X* is said to be total if for every D # x € X there is
an f € M such that f(z) #0. '

A subspace M of X* is said to be norming over a subspace L C X if for
some ¢ > 0 we have

(Ve e I)( sup |f(z)] 2 cll=f)),
Fes(m)

where S(M) is the unit sphere of M. If L = X then M is called norming.
The following natural questions arise:

1) How far could total subspaces be from norming ones? {Of course, there
are many different concretizations of this question.) _

2) What is the structure of Banach spaces whose duals contain total
“very” nonnorming subspaces?

3) What is the structure of total subspaces?

These questions were studied by many authors: [Al], [B, pp. 208-216],
[BDH], (D3], [DLI, [D], [F, [G], [Ma], [Mc}, [M1], [M2], [O1], {02, [P, (PP},
[S1], [S2]. The results obtained find applications in the theory of Fréchet
spaces [BDH], [DM], [MM1], [MM2], [M2}; in the theory of improperly posed
problems [O3], [PP, pp. 185-196]; and in the theory of universal bases [P,
p- 31].

T]he present paper is devoted to the following natural class of subspaces
which are far from being norming. A subspace M of X* is said to be nowhere
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