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Integral formulae for special cases of Taylor’s functional calculus
by

D. W, ALBRECHT (Clayton, Vic.)

Abstract, In this paper integral formulae, based on Taylor's functional calculus for
several operators, are found. Special cases of these formulae include those of Vagilescu and
Janas, and an integral formula for commuting operators with real spectra.

Introduction. Let X be a complex Banach space and 2 be an open
subset in C". Suppose that

a=(a1,.-.,a,)

is a tuple of commuting bounded operators on X.

Assume Taylor’s joint spectrum, Sp(a, X) (see [9]), is a subset of £2 and
J is a holomorphic function on £2, Then Taylor (see [10]) defines his analytic
functional caleulus for a in terms of an abstract Cauchy-Weil integral:

fla)e = Eﬁlz)g [ (RagF(2)2) Adzi Ao A da,
e}

where # € X, R,y is a homomorphism of cohomology, and
alz): X @ Als] - X @ Als],
a(z)(z®E) = (m—a)z@s A+ + (2n ~ aa)2 ® 85 AL,
where A[s] is an exterior algebra, over C, generated by s1,...,8,.

Thiy means that, in contrast with the Dunford-Schwartz calculus, the
functional caleulus of Taylor’s is rather inexplicit.

In this paper, we show that (see Theorem 3.8) if there exist % L{X)-
valued functions, (by,...,b,), defined on 2\ F (where F' is a compact subset
of £2) and such that

(1) B(2) = by(2)sy + ... +bp(2)8n,

(2) (by(2),...,bu(2)) is & commuting tuple,

(3) a(z) + B%(2) is invertible on X @ Afs],
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52 D. W. Albrecht

for all z € 2\ F, then

_ 1 TN-1(5 Th—1yn—1
f(a)*WajD‘ (@+ A7) Y B (a+ A7) )" f(z)s1 A A spdz,
where D is an open subset of 2 which contains F', with compact closure
and a piecewise C! boundary.
We then show that under certain circumstances, which include the fol-
lowing cases:

(1) X is a Hilbert space,

(2) a has real spectra, i.e. Sp(e, X) CR,

(3) Sprayr{a) € £2,
we can define a tuple (by,...,bn) on 2\ Sp(a, X) which satisfies the above
conditions. We illustrate how the above integral formula rednces to some
well known results, including the integral formulae for an analytic functional
calculus, found in Vasilescu [11] and Janas [5], and Martinelli-Bochner’s and
Henkin’s integral representations, and obtain some new results.

1. Algebraic notation. Taylor uses homological techniques to define
his functional calculus (see [10]). This requires a considerable amount of
algebraic notation and terminology, most of which (together with some new
definitions) is reproduced here for convenience.

Let K represent a commutative ring with identity, and A[s] denote the

exterior algebra generated by the indeterminates s = (sy,...,8,) over K.
Then
72
Als] = €D 47151,
p=0

where AP[s] is the K-module of elements of degree p in Als] ().

Moreover, if X is a K-module, then we will denote X ® A[s] and X ® AP[s]
by Ais, X] and AP[s, X] respectively, and write z ® 55, A ... A 55, € AP[s, X]
as x85; A...Asj,. 80,ift = (f1,...,1m) are indeterminates distinct from s,
then

ki1
Alsut, X} = P 47[s, Alt, X]).
p=0
Now we will introduce an operator, |, which is not mentioned by Taylor.
It is a linear operator defined on A{s] and has the following properties:

1 ifi=y
1 f e { )
(1) sils 0 otherwise.

(2) If o,w € Als] then o|w = w]o.

(') For convenience, we will define A™s] = A™*[s] = 0.
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(3)If o € A"[s], w € Als] and £ € A%[s], then
o]§ Aw) = (0]&) Aw+ (—~1)PE A (o]w).
Let A be an algebra of endomorphisms on X. Then Afs, A] can act on
Als U t, X| via two operations, ety and a1, as follows (2). Let

o= Z Gj1gpSin N N84, € AP[S,A],
Fiyedp

1 s Z Ll kgly oSk Ao At € Af[s Ut X
k‘lu---alr
Then we define ash and ol as follows:

o= > (@55 et )55 A A Sy A S AL Al
Jiyendy

o= > {ag 5yt )i A A8 (kg A As) Aty At
jl)-'-:lwv
If a = (01,...,an) is & commuting tuple in A (a;a; = aja;, for 1 < 4,7
< n) and @ = 419y + ... + ansy, then the following sequence is called a
complez (since @ = 0), and will be denoted by F(X,e) (*):

0— A8, X] 5 AMs, X] 5 ... S 4" s, X] 5 A5, X] — 0.
Moreover, the cohomology of F(X,a) is the graded module H(X, o) =
{HP(X, o)}y Where

Hp(X, a) =
Ker{a : AP[s, X] — 4P"![s, X]}/Im{o : AP7'[s, X] — AP[s, X]}.
DrrFNITION 1.1, o is called non-singular on X if the complex F({X, o)
is exact, i.e., if HP(X, a) = 0 for each p.

DEFINITON 1.2, Suppose F(X,«) and F(Y, ) are complexes of K-
modules, where o = a181 4. ..+ 8n, 8 = b1ti+. .. Fbmim; a = (@1,...,8n)
and b = (by,...,by) are commuting tuples; and s = (s1,...,8,) and t =
(fi,...,%m) arve indeterminates. Then we say f : F(X,a) — F(Y,8) is a
morphism (of complexes) of degree r if for all p the following diagram of
homomorphisms 18 commutative: o

As, X] o AT Y]
| I
s X) A APV

(*} The latter operation is a generalisation of &p, defined in [95.
(3) Note also that (mT)z = 0 and that we can define a similar complex for a” .
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If f : F(X, o) — F(Y,3) is a morphism then it induces a homomorphism
fi: H(X, o) — H(Y, 8) of cohomology (cf. [6]).

Let {ai1,...,an,d1,-..,dm) be a commuting tuple of elements in B, a K-
module, which leave the submodule Bg C B invariant. Set oo =181+ ...+
n8n and § = dit| + ...+ dmtm, where s = (51,...,8,) and t = (t1, -+ -atm)
are indeterminates.

DEFINITION 1.3. (B, By, o, 6) is called a Couchy-Weil system if « is
non-singular on the quotient module B/Bjy.

We would now like to define the Cauchy- Weil resolvent homomorphism,
R,,. To do this we need to define three homomorphisms, $y, 44, and 7., each
one induced by a morphism of complexes.

s. : H(B,§) — H(B,a+ &) is induced by the morphism s : F(B,§) —
F(B,a + 6), which, for each 0 <p <m, is defined as follows:

s: AP, B] = AP sU,B], f—fAsiA.. Asy.

The inclusion map ¢ : By — B induces the inclusion morphism 4 :
F(By,a + ) — F(B,a + §), which in turn induces the homomorphism
is: H(Bg,a +8) — H(B,a + §).

Note that since, by hypothesis, ¢ is non-singular on B/By, o+ 6 is also
non-singular on B/Bp (by [9], Lemma 1.3). Hence (by [9], Lemma 1.2}, 4
is an isomorphism.

Finally, the homomorphism 7, : H(Bp,a + § — H(Bp,6) is induced
by the morphism = : F(Bg,a + §) — F(Bg,§), which has the following
properties:

(1) n{s;)=0,foreack 1 i<,
(2) w(t;) =t;, foreach 1 £ j < m,
(3) mlwsy, Ao A sy, A, Al At =am(sp) AL AT ()

DEFINITION 1.4. If (B, By, &, &) is a Cauchy-Weil system, and s, ., and

7. are defined as above, then R, = (—1)"m,i7 s, is called the Cauchy-Weil
resolvent homomorphism for this system.

Yince the integral kernel of Taylor’s Cauchy-Weil integral is a Cauchy-
Weil resolvent homomorphism, it is important to know how to evaluate
R,[f], where f € AP[s Ut, B] and [ ] represents cohomology class. This

means we need to know how to evaluate i71[f].

Let r be a morphism defined by the exact sequence

(1) 0 — F(Bg, o0+ 8) % F{B,a+6) -2 F(B/By,ct+8) = 0
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and consider the following commutative diagram:
0 0 0

! ! !

- s Bl 0 APlsue By S 4Ptlgug, By o L

J,i li li

@) o= asue B S runp o AP Ut B

l'r I Ir

+ = AP s Ut B/Bo) %55 AP(sut, B/By] X8 APHs Ut BBy — ...

| | |

— ...

0 0 0
If [f] € HP[B, & + 6], then we could evaluate i7[f] by a diagram chase:
F—(a+b)g
) X a+6
g — (a+8)y fo= o0
R N P
ROER ) = o) oo

Since [f] € H?[B,a + &), we have f € AP[s Ut, B] and (a -+ 8)f = 0.
This gives (o +6)r(f} = 0, since diagram (2) commutes. Since (B, By, a, §)
is a Cauchy-Weil system, the bottom sequence of diagram (2) is exact;
this means there exists b € AP~'[s U ¢, B/Bqg] such that f = (a - 6)h.
However, diagram (1) is exact, hence there exists ¢ € AP~1[s U ¢, B] such
that h = r(g). So (since diagram (2) commutes) we have r(c + §)g = r{J).
Hence, r(f ~ (o + §)g) = 0, and since diagram (1) is exact and i is an
inclusion, we have f — (x+§)g € AP[s Ut, By]. So

W[f = (et 8)g] = [f — (a+ 8)g] = [f].
This means
i [F] = [f = (o + 8],
where
(@ 8)r(g) =7(f),
(a+8)yr(f)=0.

Thus, the question of an explicit expression for 17! is closely tied to the
finding of an explicit expression for (o +8)1.

2. Algebraic results. Let A be an algebra of endomorphisms on X,
a K-module, and o = a8y + ... + ansy € Afs, 4], where (21,...,a,) is a
commuting tuple, and s = (81,..., 8n).
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DEFINITION 2.1, We say 8 = bis1 + ... + bndy € Afs, A] splits o (over
Als, XT) if

(1) (b1, ..., by) is a commuting tuple, i.e. (8T)% =0,

(2) @+ BT is invertible on A[s, X].

Let t = (f1,...,%m) be indeterminates distinct from s.

PROPOSITION 2.2. If § splits o over Als,X|, then B splits o over
Alsut, X].

Proof Since e + A7 is invertible on Afs, X}, o + A7 is invertible on
AP]t, Als, X]], for each p. Hence, as

v
AlsUt, X] = P 47[t, Als, X]],
p=0
a + BT is invertible on A[s U t, X].

LEMMA 2.3. Let 8 split o, and & € Ker(a); then z = ale + 7)1z
Moreover, F(X, ) 13 exact.

Proof Let y = (¢ + 87) . Then since (47)? = 0 and az = 0, we

have
(a+ )y = ala+ )y + (e + 8" )y
=az+ Al ay = 8 ay.

Hence, since o? = (87)2 = 0, we have

z=(c+pT)y=(a+8 ) a+p") 28 ay

= (a+ ") Paffay = (a+ 1) Ha+ 7)oy = ala + §7) e,

However,  was an arbitrary element of Ker(a), so Ker(a) C Im(a), and,
since o = 0, F(X, ) is exact.

LEMMA 2.4. Let 8 split o over A[s, X, y € AlsU ¢, X], and ay = 0. If
y € AP[s, Alt, X]] then there emist & € AP~ s, Alt, X]] such that az = y.

Prool. Since 8 splits & over Afs, X], by Proposition 2.2, 4 splits « over
Als U, X]. Hence, as ay = 0, by Lemma 2.3, if z = (a -+ 87)'y then
az = y. Therefore

ar=y and (a+8)x=y.
Hence
ar=y and ATz=0.

Let z = zp + ... + &y, where 2, € AP[s, Alt, X]], for each p. It follows
that

n agy =0 fork#p—1, [T2,=0for0<k<n.
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However, since a? = (57)? = 0,'
(a+ ) =ap” + "a,
and 80
(a+ 87 (af” + fTa)zs =

for each k. So, by (1), it follows that z = z,_;.

The [ollowing result was suggested by results in Vasilescu [11].

THEOREM 2.5, Let § = dity + ... dmtm, (d1,...,dn) be o commuting
tuple in A, 8 split o, b+ 8a =0, and (a+8)y=0. Lel y = yo + ... + Yn,
where yy @ AP[s, A[t, X]), for each p. Then

el o fo—1
ey Y (F0™ak BN E e BT M e
k=0 m=0

18 a solution of (o + &z = y.

Proof. Ifweletzp,=0andfor0<p<n—1,

7 1
(2.6) zp=» (=)™a+BT) (e + ) ) Yprmt
rn={

then all we need to show is the following:

(1) m‘." € AP[S, A[bi X“a

(2) ity + Emp-l-l = Ypp1s

(3) bzo = yo,
foreach 0 <p<n-~1

First, however, we will prove
(2.7) 2y = (4 B7) Hypt1 — 82p41), for0<p<n—1.

Let p = n — 1. Since, by definition, z, =0 and z,—1 = (@ + A7) ym,
we have
En—1 = (C‘t + 5T)m1(yn. - 5:12,,_) .
So, the result holds for p = n — 1. Now, assume the result holds for p = k.
Then we have

(o + 7)Y yw ~ bz
= (o A7)y

P fym ], :
+ 3 (=1)" o+ A7) 8t BT) T ykprem by (1)

rrreal) '
n—k

= Z (1) (o + B7)7H(8(a + BT N Ykerm = k1
=0 o .

and so, by induction, (2.7) follows.
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We will now prove the following for each p:
(1) zp € A7[s, Aft, X]],
(2.8) (2) amp+b6Tpr1 = Yptis
(3) olyp — bzp) = 0.

Let p = n — 1. Then, by Lemma 2.4 and (2.7), since ay, = 0, and g
splits « over A[s, X, we have

Ty = (e + A7)y, € AV s, AL X,
and since z,, = 0, ‘
aZn_1 + 62y = ol + 7)Y Yyn =y, by Lemuma 2.3.

Also, since abd + da =0,
0(Yn—1 — 6Zpn_1) = Y1+ bTp 1
= ayn_i + 0yn =0 since (o + 8y =0.
Now assume the result holds for p = k + 1. Hence we have
alyps1 — 6zig1) =0 and  yeiy — Sz € AT, Alt, XT].
So, since 3 splits -, by Lemma 2.4 and (2.7), we have
zx = (o + 87) Hypr1 — bzpgr) € A¥[s, Aft, X]]
and
QTp = Ye41 — ETp41 -
Hence, since af + o = 0, it follows that
ofyy — bg) = ayy + baxy
= oy + OYr1 — 6°@ps1 =0  since 82 = (a+8)y=0.
So, by induction (2.8) is proved.
It only remains to prove that ézg = yo.
Since o = 0, and 3 splits «, by Lemma 2.3, F(Al, X], o) is exact.
However, by (2.8),
alyp — 6xg) = 0 and yo — Szo € A°[t, X].
So, yg — fxg = 0.

3. Cauchy—Weil integral. We now need to define the function spaces
used in the definition of Taylor’s functional calculus.

Let C3°(f2) denote the set of infinitely differentiable functions with com-
pact support on an open subset, f2, of C™.

If X is a Banach space, then C'(£2, X) and C°°(§2, X) represent, respec-
tively, the set of continuous X-valued functions defined on {2, and the set
of infinitely differentiable X-valued functions defined on 2.
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Lat B(U""I'”)(Q, X) = (2, X), where (0, ...,0) has length m. Moreover,
if f,g € BUuIn)(2 X) we shall say f € BUditlinin)(Q X)) and
(8/82;)f = g provided (*)

nf (B%_i’z[))fdz/\d"z“:*!!zbgdz/\d'z"
for every ¢ € CF°(12}, where
de=du A.. . ANdty,, dE=dEiN...ANdZE,.
Let
B(2,X)= () BUndn)(0,X),

.'ils-“ljm

and let Bo(£2, X) be the set consisting of elements of B({2, X'} with compact
support,

PROPOSITION 3.1. fé € B(12,X), for every f € B(12,X) and ¢ €
(2, X).

Proof Let f € BO-0(2,X) = C(12,X), and ¢ € C=({2, X); then
fo e BO-0(Q X).

Now, suppose f¢ & Bliu-dm) (2. X3, for every f € B(£2,X), and ¢ €
C*=(£2,X); and that 1 <4 <m.

Let f € B(£2,X) and ¢ € C*°(£2, X). Then since f € B({2, X), for each
¥ € C5°(02, X}, we have

J(%)f@ﬁdz/\diz!(%@)fdz/\dz—g(gi)ﬁbdz/\dz

8f | 0¢ . -
:_J¢(¢};+-ﬁf)dzAdz.

i

Moreover, since f € B(2,X), 8f/8% € B(2,X); and hence, by hypo-
thesis ¢Of/0%;, + 8¢/0zf € BULim) (2, X). Therefore, f¢ €
Blivewditlecul (2, X); and by induction the result follows.

Let
'ECM aa 1 aa‘« m

S I A

where o = (@, .., ¥m)-

(%) This is well defined, see [10].
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DEFINITION 3.2. We give B({2, X) the Fréchet space topology in which a
sequence { fp}52.; in B(f2, X) converges to 0 in B(£2, X) if for every compact
set F in 12, and for every & = 0 (ie. a1 2 0,..., 0, 2> 0), we have

lim sup |85 fp(2)| =0.
P08 2 P

LeMMA 3.3. If f € B{2,X) then there evists a sequence, {fplps., in
C°°(, X) which converges to f in B(£2, X).

Proof Since 2 C C™, there exists a sequence of compact subsets,
{Fp}52,, of {2 such that, for each p 2 1, ) C int(Fpr1), where int(Fy.1)
is the interior of Fpy1, and 2 = | 72, Fp. For each p, let v, € 52 (42) such
that u, = 1 on F,. Then, by Proposition 3.1, upf € Bp(£2,X). Let F be a
compact subset of £2; then there exists P such that F' C Fp. Hence, ifp 2 P
then f = fu, on F; and so fu, converges to f in B(£2, X).

So, now suppose f € By(2,X) and let ¢ € C§°(C™) such that

[wdendz=1.
C‘i’ﬂ
Then, for each p > 1, we define for £ € {2

BE = [ 0P p(p(e - 2)) f(z)dz A dE.

It follows, by the properties of convolutions, that f, € C%°(£, X), and f,
converges to f in B(£2,X).

ProrosiTION 3.4. Let X and Y be Banach spaces, and {2 an open sub-
set in C™. Suppose L ¢ C(,L{X,Y)) and f € B(£2,X). Then Lf €
B(2,Y).

Proof. Since f € B(£2,X), by the last proposition there exists a se-
quence {fp}52; in C°(£2,X) which converges to f in B(f2,X). Then for
each compact subset, F', of {2, and each «, we have

Hm sup [[BSLf(z) — 02 Lfo(=)|

Pro0 zeF

el — _ y
= Y -t AT i e f) . Ro-g , =0.
S 2 Bl — gy sp 1= 1t sup |92 () = B2 )l = 0

LeMMA 3.5 ([10], Lemma 3.3). The quotient space B(12,X)/Bo(2,X)
is the inductive limit, denoted by lim, of the system {B(V,X) : V C 2,
2\V compact}, where {V : V < 2, 2\ 'V compact} is directed downward
by inclusion and for Vi C Vo we map B(Va, X) into B(Vy, X) by restriction.

icm

Taylor’s functional calculus 61

Let
re: B2, X) — Um{B(V,X):V C 2, 2\V compact},
where r. is induced by the restrictions r : B(2,X) — B(V, X). Then by
the last lemma, r, is surjective.

Let X be a Banach space, (a1,...,a,) be a commuting tuple in L(X),
and (81,...,4,) & tuple of indeterminates. Then we will write, for z € C®,
ofz) = (21— a))s1+ ...+ (2n — ap)8n.

LuMmma 3.6, Suppose §2 is on open subset in C", F a compact subset of
£2, and @ & O[O\ F,L(Als, X)), where 8(2) splits a{z) over Als, X, for
cach z € 2\ F. Then @ splits o over Afs, B(£2, X)/Bo(2, X)].

Prool Take any f € Als, B(£2,X))], and let

hz) = (a(z)+ 67 (2)) 7 f(z) Vze 2\ F.
Then, since cv, 8 € C=(2\ F, L(A[s, X])) and f € A[s, B(£2, X)], by Propo-
sition 3.4, h &€ B(£2\ F, X). Moreover, (& + 87 )r.h = 7. f. So, since r, is
surjective so is a + g7

Now suppose there exists k € B(£2, X) such that

(a4 8Tk =0.
Therefore
(a(z) + BT (2))k(z) =0 Vze R\F,
k(z)=0 Vze\F.
Thus r.k = 0, and since r, is surjective, o + BT is injective.

and hence

Corresponding to the coordinates in C* we choose the tuple of indetermi-
nates dz = (dz), . .., dZ,)- Also, we consider 8/0%y,...,8/0Zy, on B({2, X},
and define

a, = T4+ -6—dzﬂ, e Aldz, B(?, X))].

F ER _
One can show (%) that (B(£2,X), Ba(2, X), @, 8.) is a Cauchy-Weil system.
Let {2 be an open subset of C", and A(f2,X) represent the set of X-
valued analytic functions defined on (2.
DerNrrioN 3.7. I f € A2, X) then
1
: = d ,
166) = G | Rel
where R, is the Cauchy-Weil resolvent homomorphism for {B(R,X),
B(](Q,X),a,gz) and a = (a1,...,_an').

(%) See [10], Lemma 3.4.
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THEOREM 3.8. Let 12 be an open subset of C", D C 2 be o open subset,
with compact closure and a piecewise O boundary, F C D a compaé:t set,
and « and B be as in the last lemma. Suppose f € A2, X). Then (°)

1 -1
(3.9) f(a):@w_i)—n f (edz) + B(2)")

oD
% (0 (c(z) + B2)")y W f(z)su AL Asnda.
Proof. Since s.f = fs1 A...A gy, and f € A(2,X), we have
(a+8)m(fsr A Asn)=0.
Now let Fy and Fy be compact subsets of {2 such that
Fcint(R) c A cim(F)C RcD.
Let ¢ € 0°°(£2) such that ¢ =0 on F1 and ¢ =1on 2\ Fy; and let
o(z) = (“1P () (@l2) + B
% (Dz(alz) + B2 1)) f(2)s1 A Asn A de
for z € 2\ F, and g(z) = 0 otherwise. Then, by Proposition 3.4, Lemma, 3.6,
and Theorem 2.5, we have g € B(£2,X), and

(a—&—@})mg =r.(fsy A...Asn).
So, by the discussion in Section 1, we have
T 5L AL Asn)=fsi AL Asy— (0 0:)g.

Therefore
f(a,) = (2—7;-}? f Raf(Z) Adz
7]
— e J (CUmi e nde

2

26(2)alz) + B(=)")

I

Pamnd

o]
Al

TF
R —,
ol

a2+ BT (@) AL A sy Adz
(B(2)(alz) + B(2)") !

alz) + BTy F(2)s1 AL A s A dr)
a(z) + 8(z)7)7"

x

B

X

—
o
I~

EQUL‘ﬁ

fn

o~

z

=
3]~
| 5~

)
% (B (e(z) + B)T) ™ (e)si AL A sy Ada

(6) Note, for n = 1, this equation reduces to the Dunford-Taylor integral.
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4. Special cases. Let, unless otherwise stated, X be a Banach space,

and ¢ = (a1,...,a,) be a commuting tuple of bounded linear operators
on X, For z € C", let

a(z) = (z1~a)s1+ ...+ (20 — @n)sn,

where 8 = (s1,...,8y,) is a tuple of indeterminates; and let
= 7, d
0y = =—dzy +...+ —dz
p 57, zZi+ .04 7z, dz, .

DEFINITION 4.1. The joint spectrum of @ on X is

Sp(a, X) = {z € C" : F(a(z), X) is not exact} .

ExampLE 4.2. Let X be a Hilbert space, and
B(z) = (a1 = z)*s1 + ...+ (@n — 2) "85,

where z € C". Then a(z)* = 3(z)T; and hence by Corollary 2.2 in Vasilescu
[11], 3(2) splits a(z) for 2 € Sp(a, X). Moreover, equation (3.9) reduces to
Vasilescu’s Martinelli type formula.

Levma 4.3, Let (ay,...,an,b1,...,b,) be a commuting tuple of endo-
morphisms on o K-module, X. Let

o=@a18 +...+ sy and G=bsy+...+b,s,.

Then
(a4 BT =afT+pTa=>apb,.
p=1
Proof. Since (ay,...,bs) is a commuting tuple, o® = 0 and (87)% = 0.

Hence, if o € A3, X| we have
(a+B8Vo =affo+ fTac

= Z Z%bq‘g?’ A (sq]o) + Z Zapbqqu (sp A o)

pe=l ge=1 g=1p=1.
1
= Z apbyo ,
p=1

by properties (1) and (3) of |.
Let L(X) be the set of bounded linear operators on X.
LemMa 4.4. Let §2 be an open set in C™, ¥ € C?*(12, L(X)), and
B(z) =W (2)b1(2)s1 + ... + ¥(2)bn(2)sn ,
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where b(z) = (b1(2),...,ba(z)) is a commuting tuple, for each z € 2, and
be C*Q,L{X)™). Also, let
Th; = bW, $b; = 0.h¥,
for each 1 <i < n. Then
AT(F8T Y s AL A sy

ST -1P7 e A A\ Babg Adz AL Adz,
p=l q#p

— (ml)“’(“*’l)/z (n _

Proof. See [1].

EXAMPLE 4.5. Let £2 ¢ C" be a bounded convex domain given by a
defining function g, i.e. 2 = {z € C": p(z) < 0}, where ¢ is C™ in an open
neighbourhood of {2 and

do
—... a0 = c™. = 0}.

‘We will now show that we can use Theorem 3.8 to obtain the integral formula
of Janas [5].
Let f be continuous on {2 and holemorphic in 2, and assume that
Sp(a, X) ¢ 2. Then we wish to show the following:
ﬂ(n 1}/2

Flay =S Qm f f(z W(z),
where

i) = 3 2L () o)

W(z)=(n—l)!;(—l)(p_l)g—i(z)/\ 83 g‘? (2)dZ, A dz .

Remark 1. By Taylor’s spectral mapping theorem [10], we have

SP(ZM(Z: G) ) {g eC": 5 Z (zp w;p); w e Sp(a, X)} .

Thus, M(z,e) is invertible in a nelghboulhood, N,of 812,

Remark 2. The term (—1)™"~1/2 ig needed in Henkin's proof of
Henkin's integral representation theorem (see {4]) so that in the special case

the representation reduces to the Martinelli-Bochner integral representation
(see [12] or [8]).

Now, let {Dg}52, be a suitable exhaustion of {2 by open subsets of 2
which contain Sp{a, X), have compact closure and piecewise C'' boundaries
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contained in the neighbourhood N. Let

B(z) = M(z,a)“l%

for 2 € N. Then, by Lemma 4.3, we have
(alz) + 8(2)7)* = a(2)8(2)" + B(2) a(z) = 1,
the identity operator. Hence, as a is holomorphic, we have
b, fT = 8,07«
So, by Theorem 3.8, we have, for each k,
1

i(z)s‘n )

(2)s1 + ...+ M(z,a)"!
Oz,

$0) = Gy Df (e(2) + B(2)T)
x (B (a(2) + BT (2)s1 A A sn da
2'M f B(2)T(3.8(2) )" f(2)s1 A...Asndz.

Using Lemma 4-.4-, this reduces to
(_l)n(n-—l)/2

1(a) =~ [ foM(z0)7"W(2).
18]

Hence, passing to the limit k — oo, we obtain the result (7).

EXAMPLE 4.6. Let a = (a1,...,0,) be a commuting tuple of bounded
linear operators on X, with real spectra, i.e. Sp(a, X) € R™. Let {2 be an
open neighbourhood of Sp(a, X), and

’Y(z) = (21 —01)31+ e

Then, by Lemma 4.3, we have

(En - a‘n)sn .

n

(eulz) +9(2)7)? = D (Rlzp) — ap)" + 3(2)%,

p=1
where R(z,) and $(z,) are respectively the real and imaginary parts of zp.
So, by Taylor's spectral mapping theorem [10], v(2) splits a(z) when z €
12\ Sp(a, X).
Let

B8(2) = (a(2) + v() )@ —ar)s1 + ..+ (alz) + )Y (En — an)on.

( )} Note that for the special case where & € C™, we obtain Henkin’s mtegral repre-
sentation.
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where z € 2\ Sp(a, X). Then, by Lemma 4.4, equation (3.9) reduces to ()
1

a) = 75— F(2)M(z,0)7"W(za),
where
M(za) = ZGR(ZP) - a:ﬂ)2 + %(ZP)Q ]
p=1

™

W(z,a) = (1) D2 (n = 1)1 (=177 (5 — ag) A N dzq Az
p=1 Y

ExAMPLE 4.7. Let @ = (@1,...,0n) be a tuple of strongly commuting

bounded linear operators (*) on X, i.e. there exists a tuple (t1,...,Un,
¥1,...,0s) of commuting bounded linear operators on X with real spectra
and such that for each p, ap = u, + vp. Let

B(2) = M(z,a) "Nz — wi +iv)s1 + ...+ M(2,a0) " HZn, — tn + G0,) S0,

where
M(z,a) = Z(%(zp) —up)? 4+ (S(zp) — vp)°.
p=1

Then by an argument similar to the one in the last example, we can show
that 3(z) splits «(z), for z & Sp(a,X), and that equation (3.9) reduces
to (10)

7o) = e [ F2)M(2,0)" W (3,0),
(2mi) oD
where
Wi(z,a) = (=1)"" D2 (n — 1)1 ()P (Zp —up +ivp) A N\ dZ, A dz
p=1 g#p

Let b= (by,...,bn); then we will denote by (b) and (b)", respectively,
the following sets:

(8) ={ce L(X): ch; =bie Y1 <i<n},
(0)" ={ce L{X): cd = de Yd € (b)'}.

(s) Note that for the special case o € C", this equation reduces to an integral repre-
sentation for a function which is holomorphic on am open subset of R™.

(9) Note that commuting tuples of normal operators on a Hilbert space, and corumut-
ing tuples of regular generalised scalar operators (in the sense of Colojoard and Foiag [3]),
are examples of strongly commuting tuples (see Mclutosh et al. [7}).

(1°) Note that for the special case ¢ &€ C*, this equation reduces t0 the Martinelli-
Bochner integral representation,
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EXAMPLE 4.8. In this example we consider the special case that Arens
[2] did, namely when f is a holomorphic function on an open subset of C*,
12, which contains Sp(a, (a)").

Let ) and Fy be compact subsets of {2 such that
Sp(a, (CL)”) C il’lt(Fl) C Fy C in‘t(Fg) CF,C .
Now take any z € F \ int(#,). Then, since (1)

Sp(a, (a)) = C*\ {2 € C": ds,...,du € ()" 5.t 3 dylzp — a) = 1},

p=1
there exist dy,...,d,, € (a)" such that

de(zp —op) = 1.
p=1

Then, by Lemma 4.3, there exists a neighbourhood of z, N (2), such that

Bz (2) = de{ qu(zq - aq)}_lsp
p=1 g==1

splits a(z), for z € N(z).

Now, since F» \ int(F} is compact, there exists a finite number of such
neighbourhoods, say Ni,..., Ny, which cover Fy \ int(F ).

Let {¢,};L; be a partition of unity subordinate to the cover {Np}oets
and let

m
B =3 B, ()(2),
p=1
for € Fy \ int(#1). Then, by Taylor’s spectral mapping theorem [10], 3(z)
splits & when =z € Fy \ int(Fy); and so by Theorem 3.8, we can obtain
an integral representation of Taylor’s functional calculus [10] for functions
holomorphic in a neighbourhood of Sp{a, (a)”).
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The Stodkowski spectra and higher Shilov boundaries
by

VLADIMIR MULLER (Praha)

Abstract. We investigate relations between the spectra defined by Stodkowski [14]
and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known
relation between the approximate point spectrum and the usual Shilov boundary.

Let A = (A1,...,Ay) be an n-tuple of commuting operators in a Banach
space X . We recall the definitions of the Taylor and Stodkowski spectra ([16]
and [14]). Let 4 be the exterior algebra with n generators ey, . .., e,. Denote
by AP (0 € p & n) the subset of A consisting of all elements of degree p and
set K7 = X ®AP. The Koszul compler K(A) of the n-tuple A = (A41,...,A4,)
is the cochain complex

d", d} dimt
0— KV A KA ALK —0
where the operators d5 : KP — KPt1 (0 < p < n — 1) are operators of
“multiplication” by Aje; + ...+ 4,e,. More precisely,
[
dl(zeg AL Ney) = Z(Ajm)ej Neiy Ao Neg,
i=1

P
=Y (=1 Y (Ajmle Ao Aei, Aej Ae, A Aes,
ge=0 e <J igpa

forallz e X and 1 <) <... <ip S n.

The Stodkowski spectra oy g and o5 (B = 0,...,n) are defined as fol-
lows: :
Let A = {Ar,...,An) € C" Then A does not belong to o,y if and
only if the Koszul complex K (A — )) is exact at K°,..., K* and d¥_, has
closed range. Similarly, A ¢ os%(A) if and only if K{A — A) is exact at
K" .., K™% Clearly

o 0(A) C 0r1(A) C ... Conn(4) = or(A)
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