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The Stodkowski spectra and higher Shilov boundaries
by

VLADIMIR MULLER (Praha)

Abstract. We investigate relations between the spectra defined by Stodkowski [14]
and higher Shilov boundaries of the Taylor spectrum. The results generalize the well-known
relation between the approximate point spectrum and the usual Shilov boundary.

Let A = (A1,...,Ay) be an n-tuple of commuting operators in a Banach
space X . We recall the definitions of the Taylor and Stodkowski spectra ([16]
and [14]). Let 4 be the exterior algebra with n generators ey, . .., e,. Denote
by AP (0 € p & n) the subset of A consisting of all elements of degree p and
set K7 = X ®AP. The Koszul compler K(A) of the n-tuple A = (A41,...,A4,)
is the cochain complex

d", d} dimt
0— KV A KA ALK —0
where the operators d5 : KP — KPt1 (0 < p < n — 1) are operators of
“multiplication” by Aje; + ...+ 4,e,. More precisely,
[
dl(zeg AL Ney) = Z(Ajm)ej Neiy Ao Neg,
i=1

P
=Y (=1 Y (Ajmle Ao Aei, Aej Ae, A Aes,
ge=0 e <J igpa

forallz e X and 1 <) <... <ip S n.

The Stodkowski spectra oy g and o5 (B = 0,...,n) are defined as fol-
lows: :
Let A = {Ar,...,An) € C" Then A does not belong to o,y if and
only if the Koszul complex K (A — )) is exact at K°,..., K* and d¥_, has
closed range. Similarly, A ¢ os%(A) if and only if K{A — A) is exact at
K" .., K™% Clearly

o 0(A) C 0r1(A) C ... Conn(4) = or(A)
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and

0‘5’0(}1) C 0“5)1(_/4.) [ - Ué,n(A) = O"T(A)
where op(A) denotes the Taglor spectrum of A. Furth?, ax,0{A) = Or(A)
is the approzimate point spectrum of A, i.e. A € o.(A) if and only if

mf{i:n(m M)z iz e X, ||z = 1} =0

i=1

and 050(A) = o5(A) is the defect specirum,

N
Aeos(A) ifandonly if Y (Ai-M)X#X.

g==1
The sets o &, 05,5 (k =0,...,n) are non-empty compact subsets of C™ and
the spectra oy i, 05, Possess the spectral mapping property for the Taylor
functional calculus, i.e.

or ik (F(A) = flons(4)) and osk(f(A)) = fosr(4))

for every k = 0,...,n and for every m-tuple f = (f1,..., fm) of functions
analytic in a neighbourhood of or(A4) (see [11]). ) ‘

Denote by 8K the topological boundary of a subset K C C. It is well-
known that 8o (4;) C ox(A1)Nos(A1) for every Banach space operator 4.
Also

Bop(Ar, Ag) C ox(Ar, A2) U os(As, 42)
for every pair of commuting Banach space operators Aj, Ay (see [5], [T]
and [19]).

The following lemma is a generalization of these facts.

LEMMA 1. Let A = (Ay,..., Ay} be an n-tuple of mutually commuting
operators in o Banach space X. Then

(i) Bor(A) C arp-1(4),

(#) dor(A) C os5,n-1(4),

{iil) dop(A) C orw(A) Uosmon—2 (E=10,1,...,0n =2},

Proof. (i) Let A € for(A) and A € o jn--1(A). Then the Koszul complex
K(A— ) is exact at K%, ..., K"! and all operators d% (i =10,...,n~1)
have closed ranges. So K'{A — A) is a semi-Fredholm complex {see Definition
2.1 of [1]} and

ind KA~ \) = (-1)" dim(K™|d5 K1)

As A € op(A), the Koszul complex K (A — A) is not exact at K" so that
ind K(A — A\) # 0. On the other hand, there exists a sequence {A(F}22,
converging to A such that A} & o(A) so that ind K(A—A)) = 0 for all 5.
This contradicts the stability of the index (see [1], Theorem 1.4).
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The remaining inclusions can be proved analogously.

Higher Shilov boundaries of a uniform algebra were defined in [2] and
[13]; for further results see [18] and 6].

We modify the definition slightly as we need Shilov boundaries of a
compact subset K C C" rather than the Shilov boundaries of a uniform
algebra A, which are subsets of the maximal ideal space of A. This modified
version is frequently used as the definition of the classical Shilov boundary
(see e.g. [3], p. 112).

Let K be a nonempty compact subset of C%*. Denote by C'(X) the algebra
of all continuous functions on K. For a subset M ¢ K and a function
f & CK) set ||f|a =sup{|f(z)|: z € M}.

Let A be a subalgebra of C{X) which contains constant functions and
separates points of K.

The Shilov boundary So{K, A) is the smallest closed subset F' of X such
that |[fllp = ||f||x for every f € A. It is well-known that ) € K belongs to
So( K, A) if and only if, for every open neighbourhood I of A, there exists
f € Asuch that || f||lxne > |l x-v.

Let r > 1. For f = (f1,..., f.)} € A" we denote by V¢ the zero set of f,
le Vi={2€K: fi(z)=... = fulz) = 0}.

The higher Shilov boundaries S,.(K, A) (r=1,2,.. .) are defined by

5. (K, A) = {J So(Vy, A[Vy)
feAr
where A|Vy is the algebra of all restrictions {g|V; : g € A}.

Denote by Ax < C{X) the algebra of all restrictions to K of functions
analytic in an open neighbourhood of K. Tt is easy to see that Sp(K, Axe)
are nonempty compact sets and

SQ(K, .AK) C...C Sﬂ._l(K,AK) C Sn(K,AK) =K,

The meaning of higher Shilov boundaries can be illustrated by the fol-
lowing example (see [13]):

ExampLE. Let K be the closed unit polydisc in C*,

K={z=(n,..,2)€C": |5 <1 (i=1,...,n)}.

Then
Sr(K, Ag) = {z € K : at least n — r coordinates of z are of modulus 1} .

THEOREM 2. Let A = (A1, ..., A,) be an n-tuple of mutually commuting
operators in o Banach space X. Set K = op(A). Then

(i) SM(K,Ax) C One(A) (r=0,1,...,n-1),
(if) S-(K, Ax) C o5-(A) (r=0,1,...,n—1),
(i) S, (K, Ax) ¢ On (A} Uospep1(A) (r=0<k<r<n— 1).
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Proof. We prove only (iii), as the remaining inclusions are quite ana-
logous.

Let0 <k <r<n—1Let f=(f1, .., fr) € A" A& Sp(Vy, A|V) and
let U/ be an open neighbourhood of A. Then there exists a function g € Ay
such that

sup{|g(Z)|: z € V; U} > sup{|g(Z)| : z € V§ - U}.

Choose z5 € V5 C K such that |g(zg)| = max{|g(z)] : z & V}}. Clearly
zg € U. Write B = (g(A), f1(4),..., f-(4)) € B{X)"+ (see [16]). By the
spectral mapping property [17] we have

(9(20),0,...,0) = (g(20), fr(20), ..., fr(20)) € op(B).

Further,
max{|u| :w € C, (4,0,...,0) € op(B)}
= max{|g(z)| : z € o (4), fi(z) =
= max{|g(z)|: z € V;} = lg(20)| -

o= fo(2) = 0}

Thus

(9(20),0,...,0) € dop(B) C 0s 1 (B)U 0 pio1(B) .

By the spectral mapping property for o, ; and o5,—g-1 (see [11]) there
exists z1 in oq k(A)Uos,k-1(A) such that g(z;1) = g(z0) and fi(z1) = ... =
fr{z1) =0.80 21 € Vyand 21 € U. Thus [0 1 (A) Uasr—p—1(A)]NU £ D for
every neighbourhood U of A. From the compactness of o, 1(A)Uas pog1(A)
we conclude that A € oy x(A)U os,—k—1(A). Hence S,(K, Ax) C or 1{A)U
Jé,rwk:—l(A)-

Let A = (Ay,...,4;) € B(X)" be an n-tuple of mutually commuting
operators: Denote by o (A) the Harte spectrum of 4, ie. A= (A, ..., \,) €
C" does not belong to ou(A) if and only if there exist operators Ly,..., Ly,
Ei,...,Rn € B(X) such that

iLi(Ai - )\1,) w ] = zﬂ:(/h -
g=]1 qe=]

COROLLARY 3. Let A = (A1,..., A,) be an n-tuple of mutually com-
muting operators in a Banach space X Set K = op(A). Then 51(K, Ax)
C ou(A4).

Proof. By Theorem 2(iii} for s = 0 we have
S1(K, .AK) C O‘%(A) U G‘5(A)
and both o.(A) and os(A4) are contained in ou(4).
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Remarks. (a) Denote by Px the algebra of all polynomials on K. As
clearly Sp(K, Px) < S,(K, Ax) for every r, we can replace the algebra Ax
in Theorem 2 and Corollary 3 by P (the results are, however, in general
weaker).

(b) Denote by [A] the smallest closed subalgebra of B(X) containing
Ay, ..., A, and the identity operator I. Denote further by L the spectrum
of (41,...,4,) in the commutative Banach algebra [A]. It is well-known
that So(L,Pr) C or(A) (see [15]). (Actually, So(L, Ar) = So(L,Pr) as L
is a polynomially convex set and so, by the Oka~Wey! approximation theo-
rem, any function f € Ay, can be uniformly approximated by polynomials.)
However, the inclusion S,(L,Pr) C ¢x (A} is no longer true for r > 1. For
an example see [7], Remark 3.4(c).

{¢) In general, the inclusion §,(K,Ax) C ou(A) is not satisfied for
r > 2. Let H be a separable Hilbert space and U, € B(H) a unilateral
shift. Consider operators A1, Ao € B(H® H), A1 =Us @1, A =T U7
(see [7], Remark 3.4(a)). Clearly A1(U} ®I) = Ingn = (I ® Uy )A; so that
(0,0) € oy(A1, A2). On the other hand, it is easy to verify that (0,0) € K =
So(K, Ag) where K = a4y, A2).

The preceding results have a natural analogue for the essential spectrum.

Let 4 = (A1,...,An) € B(X)" be a commuting n-tuple and let A € C".
Then A & ozox(A) (0 £k < n) if and only if the Koszul complex K{A — A)
is Fredholm at K9,...,K* (ie dimKerd§_ , < co and dim(Kerd}_,/
Imdih) < oo for all == 1,...,k) and d%_3 has closed range.

Further, A&ose £ (A) if and only if K (A-X) is Fredholm at K™, ..., K"™~F.

Again open(A) = Gson(A) = o1e(A4) where oe (A) is the essential Taylor
spectrum.

By using the construction of Sadovskif [12] (see also [4]) it is possible to
reduce problems involving the essential spectrum to the non-essential case.

Let X be a Banach space. Denote by £°°(X) the space of all bounded
sequences in X with sup norm and let m(X) be the closed subspace of
£*(X) consisting of all sequences relatively compact in X. Define X =
£o(X) fm(X).

Let X and Y be Banach spaces and let T X ~ Y be an operator,
Define 7™ : £29(X) — £°(Y) by T®({z:}21) = {Tw:}i2,. It is easy to
see that T"“m(X y < m(Y) so that we can define naturally the operator

By [10], T is injective & T is upper semi-Fredholm (i.e. dimKerT < oo
and T has closed range), and T is surjective « T is lower semi- -Fredholm
(ie. codimTX < 00). Also [8], [9], for a commuting n-tuple A € B(X ),
Trak(A) = o ;c(A) Tson(A) =.055(4 A). Thus we have
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COROLLARY 4. Let A € B(X)™ be a commuting n-tuple and K = oq.(A).
Then

S5.(K,Ar) C orer(AYNoser(A) (r=0,...,n—1)
and
Sr(K, Ax) C O’we,k(A) U Jéeﬁn_k_l(A) (0 Lk<r=0<n-1).
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