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Interpolation by elementary operators
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BOJAN MAGAJINA (Ljubljana)

Abstract. Given two n-tuples a = (a3,...,az) and b = (by,...,b,) of bounded linear
operators on a IHilbert space the question of when there exists an elementary operator E
such that Ea; = by for all § = 1,...,n, is studied. The analogous question for left
multiplications (instead of elementary operators) is answered in any C*-algebra A, as a
consequence of the characterization of closed left A-submodules in A™.

1. Introduction. An elementary operator on ating A isamap E : A —
A of the form

T
(1.1) . Ez= Zuim'vi (xre A,
i=1

where u;, v; are fixed elements of A. In the case when A is the algebra B(H)
of all bounded linear operators on a Hilbert space H or, more generally a
prime C'*-algebra, much attention has been devoted to elementary operators
{see [1], [3], [11], [12]}. Important special cases of elementary operators are
left multiplications and inner derivations {defined by = — ax — za, where
a is a fixed element from A). A bounded linear map ¢ on a Banach alge-
bra A is called a local elementary operator if for each © € A there exists an
elementary operator E, on A such that pz = E;z. In the same way one
defines local left multiplications and local (inner) derivations. Johnson [5]
and Sulman [14] proved that each local left multiplication on a seraisim-
ple complex Banach algebra is necessarily a left multiplication. Larson and
Sourour proved in [8] that on the algebra of all bounded operators on a
Banach space every local derivation is a dérivation, and Kadison proved
in [6] that the same holds for hounded local derivations on von Neumann
algebras. Concerning general local elementary operators, not all of them are
elementary (see [8] for a counterexample in B(H)), but on a C*-algebra each
local elementary operator lies in the point-norm closure of the set of elemen-
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tary operators. The last statement is derived in [10] as a consequence of the
following result:

Let A be a C*-algebra, £ the algebra of all elementary opemtoot's on A,
and a = (a1,..,an), b= (by,...,by) € A™ (where n is a positive integer).

Then b belongs to the norm closure £a of the set
ga ¥ {(Eay,...,Fa,): E€ &)}

def e
if and only if for each A = {A1,...,Ay) € C" the element A-b = L;,_:l Azb;
is in the closed two-sided ideal generated by A - a.

In [10] it has also been cbserved that this statement cannot be generalized
to all semisimple (or even primitive) Banach algebras. Motivated by the
above quoted result we can now ask the following question.

PROBLEM. Given a C*-algebra A and a,b € A™, whal are the necessary
and sufficient conditions for the existence of an elementary operator E on
A such that Ea = b?

Here we shall study this question in the case A = B(H). One motivation
for our study is that the answer could give us some information about ap-
proximation by elementary operators of mappings that preserve two-sided
ideals. Another motivation is the range inclusion problem for elementary
operators (see [1] or [3] for the formulation of this problem; we shall say a
few words about that at the end of Section 3).

For each @ € B(H) and each k = 0,1,2,..., the singular number 9;(a)
is defined as the distance of a to the set of all operators of rank at most &
in B(H). If @ is compact then (sg(a)) is just the sequence of eigenvalues
of |a| = va*a arranged in nonincreasing order (each counted according to
its multiplicity}. Singular numbers play a very important role in the theory
of ideals in B{H) (see [4] or [2, Section 1]). Note that in our notation the
largest singular number of a is sg(a) (and not s1(a)), so that sp(a) = {al|.

It is well known (and easy to see) that sp{uav) < |ullsp(a)|v| and
Smi(D iy @) S Yoiwy 8k(xi) for arbitrary w,v,a,z; € B(H) and any pos-
itive integers k and m. Thus, if for two given n-tuples a,b & B(M) there
exists an operator FE of the form (1.1) such that Ea == b, then for each
A € C" we have BE(A-a) = A-b, and this implies that

m
smi(A- D) < Y~ [fwilluillsn(n - a).

N

Thus, a necessary condition for the existence of an elementary operator E
satisfying Ba = b is that there exists a constant x and a positive integer m
such that (A b) < ksp(A-a) forall A € C* and all £ =0,1,2,... The
main result in Section 3 implies that a somewhat stronger variant of this
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condition is sufficient for the existence of E. As a corollary, we give a simple
necessary and sufficient condition for the existence of a generalized elemen-
tary operator F' on B(H) satisfying Fa = b. Here “generalized elementary”
means an operator of the form

Fz=>wav (€ B(H)),
=]

where u;,v; € B(H) are such that the two series Yoo uit} and 3050 vk
are convergent in the norm topology.

A necessary algebraic condition for the existence of an elementary op-
erator E satisfying Ea = b is obviously the fact that for each A € C™ the
linear combination A-b is in the two-sided ideal generated by A-a. It can be
shown by examples that this condition is weaker than the above condition
expressed in terms of singular numbers. The concrete operators ¢ and b in
the following example were shown to us by P. Semrl.

ExAMPLE 1.1. Let @ and b be any compact operators on H and set
a = (a,ab), b = (a,0). We claim that A-b € (A-a) for each A = (A1, A9) € C3,
where (z) is the two-sided ideal generated by «. If Ay = 0 the claim is
obvious, so we have to prove that ¢ € (a + Aab) for each A € C. Since
b i&liafcc)mpact, 1 + Ab is Fredholm, hence there exists z B(H) such that
= 1 —(1+ Ab)z is of finite rank. Since every two-sided ideal in B(H)
contains all finite rank operators, we have

(a(1+ M)} 2 {a(1+ b)) = (a(1 - £)) = {a).

Let now a and b be the diagonal operators (relative to some orthonormal

basis of H) defined by
(11
a = diag (1,5,..., %,)

b = diag (1%1-1-)

n n

and

where in b the term 1/n (n > 2) stands in positions i = (n— 1)1+ 1,..., nl.
We claim that there is no positive integer m and constant x such that
Sme(A-b) < ksp(A-a) for allA € C? and k = 0,1,2,. .. To see this, consider
the situation when A = (1,-n) and k= (n — 1)!, where n is a large positive
integer. Since all the diagonal terms of the operator A - a = a(1 — nb) in
positions ¢ = (n—1)I +1,...,n! are 0, while the terms after (and including)
position n! + 1 are dominated by 1/(n! + 1), it follows that

spla(l —nb)) < ﬁ_l« .
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On the other hand,
1 = 1
) = smu(a) = mk—+1 mn—-1I+1°
It follows that the ratio
Semk(A - b) nl41
=
sg(A-a) T mn-1)1+1

tends to oo as n increases. m

SmkU\ -b

The above example suggests in particular that the interpolation probler
for elementary operators on B(H) cannot be solved purely algebraically in
terms of two-sided ideals of B(H). In contrasgt, we show in the next sec-
tion that the analogous question for left multiplications {instead of elemen-
tary operators) can be answered in a purely algebraic language for each
C*-algebra.,

2. Interpolation by left multiplications. Lei .4 he C*-algebra, n a
positive integer and for each x € A" let Z(x) be a closed left ideal in A
Then the set

Mz “{ae A" a xeI(x)}
is clearly a closed left 4-submodule of A™. The following proposition shows
that each closed left submodule of A™ is the intersection of submodules of
the form Mz(. Our result about interpolation by left mutiplications will
be a consequence of this proposition.

Let us denote by My, »(.A) the set of all m x n matrices with entries in
A and let M,(A) = M, .(A).

PROPOSITION 2.1. Let A be a C*-algebra, M a closed left submodule of
A" and b = (by,...,by) € A™. Then b € M if and only if for each x € A"
the element b - x is contained in the closure of the left ideal M - x.

Proof If b € M then clearly b-x € M . x for each x € A", So
assume that b ¢ M and let us then prove that there exists x € A" such
that b-x is not in the closed left ideal M- x (where the two bars denote
closure in the norm topology). We can assume that 4 has a unit, for the
general case can be easily deduced from the unital one by an application of
approximate units. Let us identify A™ with My ,(A), and identify M) ,,(A)
with the set of all elements in M, (A) that have only the firgt row different
from 0. (In particular, b is identified with the n xn matrix which has the frst
row (b1,...,b,) and the remaining rows 0.) Similarly, identify M, 1(A) with
the set of all matrices in M,(A) that have only the first coluran diferent

from 0. Note that J = M, (A)M is a closed left ideal in M (A) (in

fact, since we have assumed that 4 has a unit, the ideal M, ;(A)M is
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already closed). If b. € 7, then we would have M; ,,(A)b C My (A)T C
My (A) M1 (A)M = AM = M, but, since b € M, ,(A)b, this would
contradict the assumption that b ¢ M. It follows that b & 7, hence there
exists a pure state w on the C*-algebra M, (A) such that w(J) = 0 and
w(b*b) 5 0 (see [7, p. 733]). Let ¢ be the irreducible representation on a
Hilbert space K that belongs to w by the (INS construction and denote hy
£ the corresponding cyclic vector. Then y(M)¢ = 0 (since M*M C T)
and ¥(b)¢ # 0. Using the matrix units in M, (A) it is easy to see that
¥ is (unitarily equivalent to a repregentation) of the form =, = 7 ® 1,,
where 7 is a representation of A on some Hilbert space 7 and 7, is defined
by ma([i]) = [w(2is)] for each matrix [x;;] € M,(A) (in particular, K is
identified with H", see [7, Exercise 11.5.8] for a more general result). Let
n1 € H be any nonzero vector and write 7 = (11,0,...,0) € H". Since T, is
irreducible, there exists « = [z;;] € M,(A) such that £ = 7, ()5, hence we
bave m, (Mz)n = 0 and m,(bz)n 5 0, or

H n

Zvr(ajz:jl)m =0 and Zw(bjmjl)nl #10

j=1 i=1
for each & = (a1,...,0q) € M. Now the set £ & {z e A n(z)m = 0}
is clearly a closed left ideal in A and, with x = (2y1,...,251), we have

M-xCL b-x &L Thisprovesthat b-x ¢ M - x. =

COROLLARY 2.2. Let A be o C*-algebra and a = (ay,...,8q), b =
(bry...,bn) € A™. There exisis ¢ € A such that ca = b if and only if
for each x € A™ the element b-x is in the left ideal generated by a - x in A.

Proof We may assume that A C B(H) for some Hilbert space H. Put
4% (i aja;)lﬂ
j=1
and for each j = 1,...,n define the contraction u; € B(H) by
updé = of¢ (€ €M) and ui((dH)*)=0.
Note that uyd = aj. By hypothesis there exists ¢ € A such that

n ™
*® . *
IILTEDIL
=1 j=1
which can be written as

(ed- g_gajéuj) d=0.
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This means that ed — 3°7_; bju; annihilates dH; but, by the definition we

also have u;({dH)*) = 0 for each j, and obviously d((dH)*) = 0, hence
ed — 35y bjug; =0, or

(2.1) cd = ijuj .
J=1

By Proposition 2.1 {applied to the closed submodule of A" generated hy a)
there exists a sequence (cp) C A such that

(2.2) lim ey =b;  (F=1,...,n).

It is easy to see that }_, u7u; is the range projection of d, hence

JLJ

(2.3) Z

If we multiply, for each j, the relation (2.2) by u; from the right and then
add the resulting identities and use (2.3) we obtain

[
k}-_l_’ll’olo cpd = ijuj )

i=1
hence (2.1) implies that
(2.4) lim (c— eg)d = 0.

k—oo

Since

(e = ex)asll* = (e~ e)ajaf(ec = cu)| < (e ~ cx)d?,

we conclude from (2.4) and (2.2) that

Caaj=k].i§iloCkajmbj (G=1,...,n). m

Note that the requirement that A -b € A(A - a) for each A & C" i
much weaker than the condition in Corollary 2.2, To see this, c,onslder for
example, a = (1,¢) and b = (1,0), where g is a nonzero quasinilpotent
element in A.

We do not know to which Banach algebras Corollary 2.2 can be extended,

but there are finite-dimensional commutative complex algebras for which it
does not hold.

ExampLE 2.3. Let A C M5(C) be generated by {1,a1,as}, where 1 is
the identity matrix and

icm
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00000 0 00 0O
100 00 000 00
a=10 10 3 0|, a=|0 100 0
000 0O 1 0 0 0 0
000 % o0 03 010
The matrices a1, as satisfy

aj = aj = afay =010l =0, ara3 = agay = L(a? +a3)

(in particular, A is commutative) and {1, a1, a?, ag, a2} is a vector space basis
for A. Put a = (ay,a2) and b = (af, a2). It can be proved by computation
that for each x € A? the element b -x is in the idea) generated by a- x, but

nevertheless there does not exist any ¢ € A satisfyingca=b. =m

3. Interpolation by elementary operators on B(H). Throughout
this section let 7 denote a separable infinite-dimensional Hilbert space and
£ the algebra of all elementary operators on B(’H) For each subspace £ C

B(H), each a € B(H) and k=0,1,.

s (a) = x“éi Sk(a+ z)

and

anng(L)={F &€ :Ex=0Vz e L}.
(Thus anng(£) is the annihilator of £ in £.) Now the main result of this
section can be formulated as follows.

THEOREM 3.1. Let a,b € B(H) and let L be a finite-dimensional subspace
of B(H). Then b € anng(L)a if and only if there exists a positive integer m
and o constant £ such that
(3.1) smk(b) < rsg (a)
Jorallh=0,1,2,...

Let n = 14 dim £, choose a basis {ag,...,an} for £ and put

.0y € B(H)®

where ay = a. Then (3.1) can be written in the form

(3.1) smp(A-b) < kap(h-a) (AEC™, k=0,1,2,...).

It has already been observed in the introduction that (3.1") is necessary for
the existence of an elementary operator F satisfying Fa = b. Before proving
sufficiency we make some comments.

Suppose that we have two general n-tuples a, b € B{H)” such that there
exists a positive integer m and a constant & satisfying

(3.1 J{Ié%fsmk(h-b) < fc{ggﬁ sg(A-a) forallk=0,1,2,...,

a == (0'115’52:---’&7&)3 b s (bvoa
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where S, is the unit sphere in C” (that is, S, = {A € € : []A|| = 1}). Then it
is easy to verify that (3.1) is satisfied for each b; (in place of b) and span{a; :
j#14, j=1,...,n} (in place of £), hence by Theorem 3.1 for each ¢ there
exists B; € £ satisfying Fya; = b; and Ejay = 0 for j # 4. With £ =
FEy+...+E, we then have Fa = b. Thus, (3.1”) (which is in general stronger
than (3.1')) is always sufficient for the existence of an elementary operator £
satisfying Fa = b. (3.1”) is satisfied, for example, if the components of a
are linearly independent modulo the ideal () of compact operators, since
in this case the singular numbers sx(A - a) are uniformly bounded below by
some positive constant when A runs over S, and k = 0,1,2,... (In the case
when the components of a are linearly independent modulo K (M) a stronger
result than Theorem 3.1 is proved in [9].)

If (3.1) holds and the components of b are linearly independent modulo
K(H), then the same must hold for the components of a, hence by the
previous paragraph there exists an elementary operator E such that Fa == b,
On the other hand, if the components of b are compact operators, this
argument breaks down, but under some additional hypothesis about b (for
example, if the cemponents b; of b are commuting normal operators) the
proof of Theorem 3.1 given below can be adapted to show that (3.1') is again
sufficient for the existence of an elementary operator F satislying Fa = b,
However, the problem of a general n-tuple b is open and seems to be very
difficuit.

Throughout the rest of the paper we denote by P,(H) the set of all
orthogonal projections of rank n on H (rn=0,1,2,...), and by S, the unit
sphere in C™. To prove Theorem 3.1 we need a couple of lemmas.

LeMma 3.2. Let Hy and Ha be Hilbert spaces, B(H1,Hg) the space of
all bounded linear operators from Hy to Ha, and let § be an n-dimensional
subspace of B(Hy, Hz). Then there exists an n-dimensional subspace M C
Hy such that

lal M|l = ~llal .
for every a € S, where v is a positive constant (which depends only on n
but not on 8; in fact, one can choose for v any positive constani less than
S —1)"1). Moreover, if My = Ha, then there exists a projection p € B(H,)
of rank n such that

lpapl] = vllal
foreverya € 8. '

Proof First note that it suffices to prove the last statement of the
lemma. Indeed, let H = H; @ Hy (orthogonal sum) and identify B(H;, Hz)
with the subspace of B(H) consisting of all operators that map M into
Hy and Hy to 0. Suppose that we have found a projection p € P, (H)

icm

Interpolation by elementary operators 86

satisfying [[pap|| > v|le|| for all @ € § and denote by A the range of p. Then
la|A|| = v||a|| for each a € &, and it is clear that this inequality also holds if
N is replaced by the orthogonal projection A7 of A" to the space H1, hence
the same inequality is also satisfied if A is replaced by any n-dimensional
subspace M of Hy which contains N.

30, let us prove the last statement of the lemma. To simplify the notation,
we shall write 7 instead of H;. It is slightly easier to work with the numerical
radius w(a) instead of the norm. Let ¢ > 0. We shall prove by induction
on n that there exists p € P,{H) such that

(3.2) w(pap) > (yn — g)w(a)

for each o € S, where v, = (2" — 1)"*. Since ||pap|! > w(pop) and w(a) >
llall/2 (see [13, p. 98]), this will prove the lemma. If n = 1, choose any unit
vector £ € M satisfying (af, &) > (1 — £)w(a) and let p be the projection
onto C§; it is then clear that (3.2) is satisfied with v; = 1. So, let now n. > 1,
assume inductively that the lemma holds for all subspaces of dimension less
than n and let S be any n-dimensional subspace of B(H). Choose a basis
a=(ay,...,ay) for § so that

(3.3) w(A-a) < wlay)

for all A € S,,. (To see that such a basis exists, choose first any basis & =
(G1,...,65) for §, then choose Ag € 8,, 5o that

w(Ap - &) = max{w(A-&): A € S,.},

let [p;] be an n X n unitary matrix with the first row equal to Ag and put
ai = 37 piy for each i=1,...,n.)

CraM. If [£;) is any sequence of unit vectors in H such that

(3.4) o [(a1€e, €x)| = wlai),

then

(3.5) Alim {aj€m, &y =0 for j=2,...,n.
b 0O

To prove this claim, fix k € {0,1,2,...}, 7 € {2,...,n}, and define
A {A,..., ) €8, by

A = /1~ 2 exp{—v/ =1 axg (a1, &) ,
\j = texp(~v—1arg (a;&x, &)

and A == Ofor ! # 1,4, where t € (0,1). From (3.3) we have [({(A-a)é, £r}| <
w(ay )}, hence

V1 —t2{a1k, k)] + tl{ai&r, Ei)| < wlad),
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e, €00 < HCulan) ~ loate, &) + 11— VI~ Blfartn )]

Choosing t = £, where {#;) is a sequence converging to 0 slowly e1-10ught‘}tlo
insure that the sequence ¢y “(w(az) — {21k, &x)) also converges to 0, the
claim follows from the last inequality. .

Let T be the span of {ag, ..., a,}. By the inductive hypothesis, for each
k=1,2,..., there exists a projection g € Pp-1(H} such that

1
(3.6) wlgrbgr) = (')’n—l - E) w(b)

for every b € T, where 7,1 = (2*"% — 1}7%. Let (&) be any sequence of
unit vectors in H satisfying (3.4) and for each k choose pr € Pa(H) so tﬁa.t
the range of py contains the range of g and £ We shall now show tha

£ . _—
for sufficiently large & the projection p 1 Dk satlsﬁes (3.2) a-nd this will
?rove the lemma. Let ¢ = A - a be the expansion of a in the basis a of &; by
homogeneity of (3.2) we may assume that |[A]| = 1. Put

§ = min{w(A-a): A € Sy}

and note that § > 0 by compactness of S,, since a1y are 1inequy
independent. By (3.4) and (3.5) there exists a positive integer ko such that

)

BN 3 lastn ) < gy #nd N Eluwten) ™ > 1~ 57
j=2

for all k > ko. We may assume that € is so small that 1 —&/(2v,) > 0. Iie{t
us now estimate w(py(A - a)pr), where k > ko. If |A1] > yow(A- a)w(ai)™",
then we have

wipi (A - a)pe) 2 (A - a)ék, &)l

> Ml [{aaée, &)l = Hagé, &)

NE
ki

2w a)w(gl)_”(algku&” - Z [{ai&k, k)l

> mw(A - a) (1~ £ )_%5_ (by (3.7))
2 (m —)w(d - a).

If |Ap] < w(A - a)w(ar) ™, then we compute (using (3.6))

icm
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w(pe(M - a)pr) > wig(A- a)g)

> w(%(é)\jaj)%) — [A1|w(graige)
2_ ('yn“l - %‘)ﬁ)(;}\jaj) = A |w(ay)

2 (s = 1) 0 8) = Dsfoan)] - o)
2 (et - 1 )00 8) = 300 )]~ s

1
= ,:’Yn—lfl - 'Yn) = Y E(l - ')’n):lw(h -a).
(Here we have assumed that k is so large that yn.1 — 1/k > 0.) Since
Ya-1(L = Yn) — Yn = 7., we see that for any sufficiently large % we have
w(pk(A-2)pe) 2 (Yu —e)w(A-a) for all A € S,,. This proves (3.2). =

Our next lemma is just a corollary to the previous one. In the proof we
shall use the following fact concerning singular numbers: sx(2) < |ja|K|| for

each subspace K in H of codimension at most k, where a € B(H) and % =
0,1,2,...

LEMMA 3.3. Let S be an n-dimensional subspace of B(H). There exists
an orthogonal sequence of n-dimensional subspaces My CH (k= 0,1,2,.. J
such that the spaces SM; and SM,, are orthogonal for i # k and

lal Mgl > vsre(a)

Jor all k and all @ € 8, where r = n(n? + 1) and v is the constant from
Lemma 3.2.

Proof By Lemma 3.2 there exists an n-dimensional subspace Mgy in
H such that |la| Mol > ~]al| = vso(a). Assume inductively that for some
i > 0 the subspaces Mg, My, ... , Mi_1 have already been found so that
the requirements of the lemma. are satisfied and set

i1
i 2 (3 5" My + M;G)L.

fo=0
Since codim(H;) < i(n®n + n) = ir, we have llalHill = sni(a) for each
a € 8. By Lemma 3.2 there exists an n-dimensional subspace M; C H;
such that |la| M| > v|la|H;|l for all a € S. Thus, |lajM;]| > v8ri(a), and by
construction SM; | SM,, and M; L My for k < 4, so the lemma follows
by induction.
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If o € B(H) and n is a positive integer, we denote by a(™ the direct sum
of n copies of a. For a subset S of B(?) we write S = {a{™ : g € S}.

Proof of Theorem 3.1. The necessity of the conditions (3.1) has
already been observed, so we only prove the sufficiency. If b is not compact,
then the singular numbers of b are bounded below by some positive constant,
hence the conditions (3.1) are then also satisfied if b is replaced by the
identity operator 1. If there exists an elementary operator F satisfying Fo =
Land FL = 0, then the operator E defined by Ez = bFz (2 € B(H)) satisfies
Eo =band EL = 0. So we can assume without loss of generality that b is
either the identity operator or a compact operator. Assume also that b is not
of finite rank; if it is, the proof below requires only some trivial notational
changes. Let (1), be an orthonormal basis of X % (kerb)* such that
each 7 is the eigenvector of |b] corresponding to the eigenvalue sy (). Then

(3.8) ”bnk“ = Sk(b) (k" =0,1,2,...).

By Lemma 3.3 applied to § U £+Ca there exists an orthogonal sequence
of n-dimensional subspaces My (k = 0,1,2,...) in H such that SM; L
SM; if i # k and

[y Ml 2 vsri(y)
forally € S and k=0,1,2,... For each k = 0,1, 2,... choose an orthonor-
mal basis {£14,...,&u,} in My and put

1
e = \/—ﬁ(flk:- -1 €nk) -
Then () is an orthonormal sequence in H"™, S(Mg;, L SME, if i % k, and
™ = %m(y) (yes k=01,2..),

since the Hilbert—Schmidt norm dominates the operator norm. From this
relation and the hypothesis (3.1) it now follows that
|(a + m)(”)fkll b fm“ln'"l/zsrmk(b) (el k=0,1,2,..).

Since the singular numbers are arranged in nonincreasing order, the last
inequality can be rewritten ag

(39) (e +2)™ & ppmyll = 8~ In " 2s(0) (we L, k=0,1,2, .. ),

where [k/(rm)] is the greatest integer less than or equal to k/(rm). Put
!'=rmn and for each k let £, € H! = (H™)™ he defined by

&= (0,...,0, €t/ (rm» 0,...,0),

where there are rm components and the nonzero component. is in position
t(k) +1, where t(k) is the remainder of the division of & by rm. Then (&) is
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an orthonormal sequence of vectors and (S(Ué;) is an orthogonal sequence
of subspaces ', and it follows from (3.9) and (3.8) that
(3.10) o)l < plla+2)P8) (wecr, k=0,1,2,..),

Et

where (4 is a positive constant. By the last inequality the correspondence
(Ra+a) 08— Mg (A eC, ze L)

is a well defined linear operator uy, from SU)€; to Chy, with norm at most L.
Therefore the orthogonal sum. of the operators ug can be extended to a
bounded operator u : H! — H, which satisfes

u((Ra+2)E = my  (MeC, zel, k=0, 1,2,...).

Finally, let v : W — H! be the partial isometry defined by vy, = an
for £ =0,1,2,... and v|kerh = 0. Then u((Aa + =) V)un;, = by for each
AeC,relLandk=0,12,..., hence (since (nx) is an orthonormal basis
for (ker b)*)

wW(ra+o)Nw=x (NeC, z¢ £).
From: the last identity we see that the elementary operator
Exz & uzhy (z € B(H))
satisfies o =b and EL =0. =

The notion of a generalized elementary operator which oceurs in the
foliowing corollary has been defined in the introduction.

COROLLARY 3.4, Leta,b € B(H)". There exists a generalized elementary
operator F' an B(H) satisfying Fa = b if and only if for each A € C* the
condition X - a = 0 implies that A - b = 0, and A - a being compact implies
that A - b 18 compact.

Proof, Ouly the sufficiency is nontrivial. We may assume that ay, ..., a,
are linearly independent and that for some m < n the components ay, . .. s Gy
are linearly independent modulo the ideal of all compact operators while
Gunly -+, O are compact. {The general case can be easily reduced to this
situation, If all a;'s are compact let m = 0.) It suffices to prove that for
sach ¢ == 1,...,n there exists a generalized elementary operator F; satisfying
Fia; = b; and Fyay = 0for j#4, j = 1,...,n (for then F def > F; satisfies
Fa = D). First consider the case ¢ < m. For each & € B(H) denote by  the
coset of x in the Clalkin algebra B(H)/X(H). Since é1,..., &y, are linearly
independent and Gyypq = 0,...,d4y =0, we have T

dof dy -+ ZAM;,'H Pl Aie1 iy ) € anl}.> 0.
I ' ‘ o

é = m.in{
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Since
S (ai -+ Z)\jaj) >4,
J#L
we now have, with a sufficiently large x > 0,

Sk(bi) < KSj (Cl‘q; -+ Z /‘\jﬂ'.j)
E
forall \; e C (j=1,...,n, j #i). Then by Theorem 3.1 there exists an
elementary operator F; such that Fia; = b; and Fa; =0for j 4, 5=
1,...,n.

Now consider the case ¢ > m. Then a; is compact, hence by the hypothe-
sis b; must be compact. By Theorem 3.1 there exists an elementary operator
£ such that Fla; is an operator ¢ of rank 1 and norm 1 and Ea; = 0 for
j # 4. It now suffices to prove that there exists a generalized elementary
operator (7 satisfying Ge = b;, for then F, “f GE satisfies Fia; = b; and
Fia; = 0 for j # 4. As a rank 1 operator, ¢ has the form ¢ = £ ®n for
appropriate vectors §, 1 € M (where (£ ® n)¢ = ((, )¢ for each ¢ € H), and,
as any compact operator, b; can be written in the form

o0
by = Eﬁkffc ® Mk,
k=0
where (&) and (n;) are orthonormal sequences in H and (Br) ts a sequence
of positive scalars tending to 0. With uj = ﬂ;/sz @& and v, = ﬂ;/zn @ Mgy
it is easy to verify that the series 3777, wpuf and Y50 wivy converge in
the norm topology and that the operator
o0
Ga & Zukmv;\, (z € B(H))
k=0
satisfies Ge = b;. m

Since the ideal of compact operators is the only proper closed nonzero
two-sided ideal in B(H), the condition in Corollary 3.4 can also be formu-
lated as follows: for each A € C™ the element A- b is in the closed two-gided
ideal generated by A-a. Thus, in the special case of the ¢ *-algebra B(H),
Corollary 3.4 can be regarded as an improvement of (10, Theorem 2.1]. Lt
us remark that Corollary 3.4 (with the formulation just indicated) cannot
be extended to general C*-algebras (consider, for example, commutative
C*-algebras), but perhaps it can be extended to factors.

As another consequence of Theorem 3.1 we mention the fact that the
ideal () of finite rank operators is strongly prime in the sense of [3].
(An ideal J in B(H) is called prime if for any w,v € B(H) the inclu-
sion uB(H)u C J implies that w € J or v € 7. Au ideal J is called
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strongly prime if for any elementary operator & of the form (1.1) the inclu-
sion BE(B(H)) € J implies that at least one of the two sets {u1, .ot}
and {v(,..., vy} is linearly dependent modulo 7. Each strongly prime ideal
iy prime, but it is not known whether the converse is true in B(H). This re-
sult was proved in [3] as a consequence of 1, Proposition 5.2], but it can
also be deduced from Theorem 3.1. Namely, if the range of an elementary
operator F of the form (1.1) is contained in F(H) and the coefficients u; are
linearly inclePc;nden’c modulo F (), then let F be an elementary operator
satisfying ¢ Wy 1 & F(H) and Fu; = 0 for § > 1; a short computation
then shows that cB(H)vy C F(H) (see the beginning of the proof of Corol-
lary 2.6 in [10]), hence v1 € F(H). It would be interesting to know whether
Theorem. 3.1 can be used to prove that some other prime ideals in B(H) are
strongly prime.

Acknowledgments. The author is grateful to V. 8. Sulman and to
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On the joint spectral radii of commuting
Banach algebra elements

by

ANDRZEJ SOLTYSIAK (Pozuat)

Abstract. Some inequalities are proved between the geometric joint spectral radius
(cf. [3]) and the joint spectral radivs as defined in [7] of finite commuting families of
Banach algebra elements,

Let A be a complex Banach algebra with the unit denoted by 1. Let a =
{61, ..., an) be an n-tuple of pairwise commuting elements of A. The symbol
o(a) will stand for the Harte spectrum of a, i.e. (Ay,..., ) ¢ o(a) if there
exist elements uy, ..., up a0d vy,. .., vy in A such that E;‘zl uia; —A;) =1
and 357 (aj = Aj)v; = 1 (here we write for simplicity a; — A; instead of
a; — A;1). We shall also need the left approzimate point spectrum of a, i.e.
the set

n

A@) = { e ) € €5 inf 3 [l(ag = X =0}

et
The geometric (joint) spectral radius of a is defined (cf. [3]) to be the
number . _
r(e) = max{|A| : A € g(a)}

where
n 1/2
A= 10l = ()
g1

As was shown in [3] (cf. also [8]) r(a) does not depend upon the choice of a
joint spectrum of @, In particutar, the Harte spectrum o(a) can be replaced
by the left approximate point spectrum of a in the above formula without
changing the value of r(a).
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