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Transference and restriction
of maxirnal multiplier operators on Hardy spaces

by

ZHIXIN LIU and SHANZHEN LU (Beijing)

Abstract. The aim of this paper is to establish transference and restriction theorems
for maximal operators defined by multipliers on the Hardy spaces HP(R™) and H?(T"),
0 < » < 1, which gencralize the results of Kenig-Tomas for the case p > 1. We prove
that under a mild regulation condition, an L% (R"™) function m is a maximal multiplier
on HP(R™) if and ounly if it is & maximal multiplier on H?(T™). As an application, the
restriction of maximal wultipliers to lower dimensional Hardy spaces is considered.

1. Introduction. Let H?(R™), 0 < p < 0o, be the Hardy spaces defined
as follows (see Fefferman-Stein [3]):

HP(R™) == {f € §'(R") : | ﬁggl% * f(@)] | (rr) <00},

where p € S(R™), [ =1and v{z) = t""p(z/t). (For convenience, we fix
such a  with suppy C {z : |a| < 1} once for all in the following.) The
corresponding periodic Hardy spaces are -

HY(T") = {f € §'(T") : | il}lﬁl% * f(@)] [zecrm) < 00},

whete gy x (z) = Syeze BtR)ax(F)e? and Hlu) = fq ip(w)e™ 2 do
i the Fourier transform of ¢.
Let . € L*°(R™). For each s > 0, define

(T )Mw) = m(auw)flu),  f e LAR™) N HP(R),

and
Tuf(w) = > mlsk)ay(f)e*™™", fe LAT™ N HP(T™).
kg
We call m a mazimal multiplier on HP(R™) if T* f(2) = sub,so |Ts f(2)] can
he extended to a bounded operator from H?(R™) to LP(R")}. Similarly, m is
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called a mazimal multiplier on HP(T™) if T* f(x) = sup,.q | T, f(x)| can be
extended to a bounded operator from HP?(T") to LP(T™).

The aim of this paper is to study the relationship between maximal mul-
tipliers on HP(R™) and HP(T™), that is, their transference relation as well
as the boundedness of their restrictions to lower dimensional Hardy spaces.
Results of this type were first established by de Lesuw [6] for L¥-multipliers.
Coifman—Weiss [2] studied systematically the transference problem for mul-
tiplier and maximal multiplier operators on L? (p > 1) spaces and pre-
sented many important applications in analysis. See [1, 7, 8, 11] for recent
developments in this respect. The main results of this paper read as fol-
lows:

THEOREM 1. Let 0 <p <1, m € L°(R").
(i) Suppose that m is a mazimal multiplier on HP(R™) such that

(1) m is confinuous on R™ and 1 llim m{r) = o exists.
. ) z|-—o0
Then m is a mazimal multiplier on H?(T™).

(i) If m is a mazimal multiplier on HP(T") and is continuous on
R™\{0}, then m is a mazimal multiplier on HP(R™).

THEOREM 2. Let 0 <p <1, let 1 < d < n be an integer and let m sat-
isfy condition (1). Suppose m is a mazimal multiplier on HP(R™) (HP(T™)).
Then the restriction of m to R® is a mazimal multiplier on H P(R%)
(H?(T4).

For the case p > 1, Kenig-Tomas [5] proved the same results corre-
sponding to Theorems 1 and 2 with an even weaker regulation condition
on m. However, their method depends heavily on the duality between L?
and L? spaces, by means of which the maximal operators were linearized.
Since the HP spaces are not normed linear spaces for 0 < p < 1, that
method does not apply to the present situation. Here we take a different
approach.

For abbreviation, denote always by C' a positive constant which may
vary at each of its occurrences.

2. Proof of the theorems. We need some lemmas first.

LemMa 1. Let 0 < p < oo, G S(R™) with supp G C {ueR™: |ul < 1}
and ||Gl|prny = 1. Wntmg Gs #x) = s7PG(z/s), we have for every
f & LP(Tm),

JEEO Hst,pHL?'(RW) = || flizogeny -
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Proof Since f(z+ k) = f(z) for every k € Z™, we have

o [ Coplpimmy = Bim > [ 1F(@)F1Gsp(z+ k)P do
kezn rﬂ-n

lim f|f(:c WP 1Gap(e + k)P de.
kEZm™

Note that G € S(R™) and lim,_, e ch—:ﬁn G plz +E)P = |G} oy = L.
By the dominated convergerice theorem we get

hm [ F Gl flf W dz,

T

which concludes the proof.

LEMMA 2. Let 0 < p <1, and let G and G, be as in Lemma 1. Then for
any trigonometric polynomial f(z) = ¥, are®™™ % with vanishing constant
term, we have

Jim (|G pllare ey = || f a2 (2n) -

LEMMA& Let 0 < p <1, f € HP(R™). If we write fip(x) = t~"/Pf(z/t),
= Y g J(R)ETTEE (in §'(T™)), then fip € HP(T") for cach t > 0
(md

S I Pl sroony = 1 F ]l oy -
Proof of Lemma 2. By definition,

17Gus iy = [ sl s (Gap)()”do-
R'ﬂ-

We see that Lemma 2 follows immediately from the following two equalities:
(2) lim [ sup lioo * (FGap)(@) [ da = || fln ey
o 00 i t/E
(3) lim f sup [, * (fGlap)(@)|Fdz=0.
g T 73}\/:“»

Now, (2} can be further reduced to

(4) lim [ sup [ * £(2)Gap(@) dz = [f [ acen)

& b ) ! F‘: #

and

5)  lim [ sup g s (fGup)e) = Gopla)lp H)@)IP da =0
O | |
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Observe that oy x f(z)
and ¢, and

— s 2rikn :g : .
=3 . axp(tk)e is uniformly hounded in 2

lim Y |Gz + )l = [ (Gu)du=1.
qezn Rn.
Writing Qo = {z € R™: ~1/2 <2; <1/2,5=1,...,n} for the fundamen-
tal cube in R™, from the dominated convergence theorem we get

hm f sup lipe # F2) Gy p (@)l da
t.—

= lim f Z [Gp( m—|~g)|” qup logw flz)|? da

Bk OQ
Qo geZr

= f SuPI‘Pt*f(“”pdwm Hf“nv Ty *
Qo

Thus (4) is proved. As for (5), noting that
e (fGsp)(2) — G p(z) (s * f){2)
— Zakemnk x f lp
R"
and that fis a polynomlal we see that (5) is equivalent to
© dm [ ] o,
R™ S BR™
for every nonzero k € Z». Write

I—fsup‘f‘ﬂt

B™ i< S R™

[+ [ =0+1.

[2i<2s  |a|>2s

Noting that suppy € {z :

Y)e VG, o(z — y) ~ Gy ()] dy

1) = Gy ()} dy| da = 0

VG (e - y) = Guyp(@) dy dz

|z| < 1}, we have

-
Ls s |Gz —y) =~ Gap(@)? [ [ sup [ lu(y)] ffl'yl di
=) <28,y <4/ |a,“<_“ LSV ga .

= H‘Pllil(ﬂn) sup |Gl = h) — Gz)|P € Qe /2,

l=|<2|h(< L/ /7
P
Ls [ sl [lodw)l IVG.pte— o) - lylay)” de

[f>2s 5V Ty gy

< f s [— sup |(VG)sp(z ~ 0)| [ |ty IJIdJ .
o|>2s 1SVE LT Jy|<E o JJ{J ()| = dy

icm
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Since G € S(R™), it is possible to choose a constant & such that VG(x)| <
Cler| -+ 1/P, Thusg,

N R T —n—1 _
Iy < s | IE dz - (@)Y G gy < C572.

|m]>2s
It follows that lim,_,o I, = 0 and this is exactly (6).

Up to now, we have proved (2). So our next task is to prove (3). It is

casy to sec that we need only prove the following equality for every nonzero
ke 7

(7) lim f sup |y % (G pe

Swike
Jim T (@) [Pz = 0.
- n 'ﬂ>\/‘;

Observe that

(8) [‘ sup [q * (G pe®™ ™ Va)|P da
ol g2y/8 PV

S oWz ) 1Gosnll?

[ dz<osTR
lz| <245
We still need to consider the case |z| > 2,/5. First, suppose that /5 <
assutnption, ¢ has compact support and k # 0. Assume that

ki 5 0 without loss of generality. Using a technique from oscillatory integral
theory, we have

Le=(Rn)

Ay(z) = f i (Y) G pl — )2 (=1 gy

]R:‘n
= p2mikes f (P(y)G'a,p(ﬂf _ ty)e—zm‘k‘ty dy

. Io]
(J‘E'Ir’f.k':n(_“2,"_%‘]6111)"1 f @(y)aa,p(m—t'g)a—ml

i

e—27ra',k,-t’u dry
Za] (’2 ik':(:(fZ‘fr'ik] [F) [. "'—'—(,D(y)Gs ]’J(m - ty)

¢ 0 - rith-
. i @t TUEY dy |
s('o( )(31 )3,,,@ y)}e v

Choose a constant ¢ such that

) ’L
|G ()| -+ . Qx)| < C(L +"|53|) +1)/p
Then
C g b ey T
|Ag()| & g f{E’T;‘T (v) +-|t,o(y)i}(l+« - ) dy
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But /s <t < |%|/2, {y| <1, and we see that |z —ty| > lz{/2. Thus,

~(m1)/p
A@ <]l +lel eroa (1 g L .
? - TR 2|8

¥
1
(g ()P dz < Ca™P/?,

It follows that

(9) S sw
lejs2y/5 VE<ES I/

Next, assume that ¢ > |z|/2 > /5. Arguing similarly (assuming that
ki #0), we have for any positive integer N,

As(a) = [ pule - )G p(y)e®™ ¥ dy
— t—-nsn-—n/;p f 0 (m _t ‘Sy) G(y)eZWiak-y dy

=1 TP (~2misky ) ™Y

) PRl

t
N N4
= 47" (< Dmisky) "N Y (];T (,_, :ff) o

g \Ne & \* -
1 ) oo (@) (52

Since G € S(R™), supp & € {u : lu] < 1}, and |k| > 1, it follows that for
any o, B € Z} and s > 1,

where

(=2ri)lel [ y*DPG(y)ePicky dy = (2wi)‘ﬁ11—7"‘(ﬂ“@(“))| = 0.

g s o gl

Therefore, if we set P;(z/t,h) to be the Taylor polynomial of 8/ of
order j at the point J:/t then

i £ (&) o

oy

8 \* T—sy x sy .
(3)+(52) i)
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N-—
Z O'“q!cx (Da ( 3] ) 53”399 _ :5_ qezm.sk-y dy
|c¥]se N oy 6 ¢ ¢ .

It follows that

N N
Au(2)] < (wﬁ]>”’N*‘“"‘3""“”/p(§“) 2 (ID

g=0
x [ Vo

[ )qua(y)

< Cj,bv-'an < C\x\"N”"”.

dy- Y Coll DL re)
|a|=N

Choosing N such that N +n > (n+ 1)/p, we have

(10) ‘ sup  |Ay(z)Pde < C f le| " e = CsT2,
o>y 2 1E/2> /5 lo|>2v/5

From (8)--(10), we finally get

f sup |As(2)Pdz <

ge VA

f sup |As(z)|? dz
elg2ya 7V

+ sup | As(z)|P de
leizays Vo<t<lal/2
+ f sup |As(x)|F dx
l2]>24/5 i>jmt/2
<Cs™P? (s>1).

That is,

lim [ sup [Ay(@)Pdz =0
g OO o t> /5

and (7) follows immediately. The lemma, is thus proved. .

Proof of Lemma 5 For-f € H”(R”), we see that |f(y)| <
ey /71 (see [9]) and F(z) = Tyezn f Flk)e? %= defines a periodic dis-
tribution on R™. On the other hand, fip € HP(]R”) and || fupller@mny =
1 #1l e qmsy for each ¢ > 0. Observing that ¢ € S(R™), we have g, * fip €
LY Hl“) [L follows from the Poigson summation formula that

(11) t,o;,*fi,p z) = Z wy * frple + k) = Z(Soy/t*f')t,p@*‘k)-

Lezn (=¥
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Since f € H?(R") and

lim ZSUpl‘Py/t*f)fP( z + k)P dz

t—+0
_++1rﬂ k;éO

=lm | sup liy * f(2)|” do = 0.
{0y U y>0
R™\¢~1Qo

It follows from (11) that

. T = 1i *~ P
Jim [ F2,plrp (rn) = Jlim !: sup ey Frp(@)|P de

= lim f sup](cpy/t*f)tp z)|? da

t-r+

= tli f 5‘113 oy * f(2)]F do = ”fHHr:(uan .
— 0.
1o
Thus the proof of the lemma is complete.
LEMMA 4. et 0 < p < 0o, d € Z and g € §'(R"™) with supp§ c{ue
s lu| € 29Y. If we write qu {reR™ : ;2% < a; < (g+1)2%, j =
g = (g1,-.-,qn) € Z", then there exists a constant C' depending
only on p and n such that

(12) 2™ swp fgl@P<C Y (L+ ) [ [gle)Pda.
xT Qn!,g wCin Qd,u+q

Lemma 4, which belongs to Plancherel-Pélya [10], reflects the deep prop-
erty of entire functions of exponential type. Its proof can be found, e.g., in
[4, Lemma 2.4].

Proof of Theorem 1. (i) Suppose now that m is a maxirmal multi-
plier on H?(R™). Since the class of trigonometric polynomials forms a dense
subset of H?(T") and LP(T™), we need only prove that for every trigono-
metric polynomial f(z) = 3°, ape? =,

(13) 1T* fll ey < O F | arsiny -
Note that, the constant term

Nao(D)l =] [ 7@ da] < 17 mrany
4

and

T*ao(f) = [m(0)an(f)| < [m(O)| || £]|gre any -
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One sees that it is sufficient to prove (13) for every trigonometric polynomial
with vanishing constant term. By Lemma 1,

J i@l de= Jig, [ sop Tf(@) (oo do

il‘" IR" “
< lim f sup|T (FGip)(2) ~ Tuf(2)Gyp(a)|? d
fawd O pn &0
+ hm j sup | Ty (f G p)(2) P dz .
],n >0

Since m is a maximal multiplier on HP(R™), it follows from Lemma 2 that

J [ sup TG (@)l do = Jim ||IT*(£Gup) o
[H

< 1 P , p(Rn
< Jim [ TIP [ Gplnn o

= ”T*”p ’ Hf“?{p(qrn) )

where ||[T™]| denotes the (H¥?(R"), L?(R™)) norm of T*. Thus, in order to
prove {13), one needs only prove that
(14)  lm [ oup|T{f G (@) = (Tef(2))Gp(e)l? dz = 0.

o ]H..n g
By assumption, f is a trigonometric polynomial with vanishing constant
term. Therefore, one may take f(z) = e2™** in (14) for arbitrary nonzero
k e Z". It is obvious that

Fy(z) = sup T (G pe® ) (2) — m(sk)e®™* =Gy o (z)]

Ha

a0

mﬁﬂpl f[m su) m(sk)) G, o1 — B)E2T iy

< Cp -1 guy
a0

f \m(sk + sh) — m{sk)| dh.
|| Z5/%
By assamption (1), it is not difficult to verify that for every k +# 0,

f |m(sk + sh) — m(sk)| dh — 0
Wi/t

(15} (1) = wup
w—lr
as 4 tends to infinity. Putting r(t) = (t) " +1/P, one has limy_.eo () = oo
It follows that
[ Ry de £ G r®Qul = Cr() ™ =0 (= o0)
weilr (L
where Qp={z&R" : |z;| <1/2, j=1,...,n} is the fundamental cube in R".
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Next, we must estimate fRﬂW (t)@0 £ (&) dz. We have

Fi(z) < sup ITe(Grpe®™ ) ()] + M| o0 | G ()]

and

J 1Gp@Pdz=t" [ |Glz/t) da
R™\tr(£) Qo w@ir(t)Qo

[ 1G@)Fdz—0 (t— o0).
zEr(t) Qo

i

It follows that one needs only prove that

(16) fim [ sup|T(Glpe™ ) @) da = 0.
2Etr(Q0

Choose ¢ € S(R™) such that supph C {u € R" lu — k| < 1/2} and
$(u) =1 for |u — k| < 1/4. Obviously ¢ € H?(R") and when ¢ > 4,
T*(Gupe™™) (@) = sup |T5 (1) % (Gope™*) ().
s
Thus following the notation in Lemama 4, one has
[ TG () do

T Ztr(tYQq
< D mp (Gt ()

vEr(1)Qo TEP0

Y. sup sup > sup [T(¥)e — )P sup |Gyp(y)lP
vgiri50o *EQ0 s>0q§,yEng YEQo.q Pl

>3 sup sup ITs(?ﬁ)(y)l”yggp |G (y)[?

gcZn vtr(£)Qo §>0 yEQl,'u--q

=Z+Z =2+,

gEFr(t)Qn  gFFtr(1)Q

205 X s (GuF Y s [L)W)P.

’I¥ gir( 'ﬁ)Qg Ve yEZN YEQ1 v

IA

A

where

Since supp Gy, C {u € R™ : lu| < 1/t}, supp|Ty(1h)e?ik A {u € R" :

luf < 1/2} and |T, (¢)(y)e? ik v| = IT (¥)(¥)|, Lemma 4 is applicable, from
which it follews that
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sup sup |Ty(2)(y)|”

vezn PRI VEQL
<C ) sup (T [ L@@ dy

UGZ" jEZ" Ql IR
<C (i)™ S [Ty
jean vEL™ Qo

<C [ Wiy dy < CIT*P 9 1% gony -
mﬂ
Using (12) once more, one has

Yo,SC > D+

[ 1Gen()P dy

q@Lir(t)Qo JEIM Qo.a+i
<C Y A+l [ G dy
JELtr(8)Qo R
+o 3w+t Y [ iGePdy
J€3tr(t)Qo g@Ltr(£)Qo Qo,gs
SOIGL I emny D QDTN HC [ (G dy
Jg (1) Qo ||z Lr(t)
Clr@)+C [ |G)IFdy—0 (- c0).
jw|2r (¢ /e

Similarly, for 3, it follows from Lemma 4 that
> SCIC sl ey, D sup sup (L))"

wgker(t)@o S0 VDL
<C Z SHPZ(1+IQ| P T (@) )P dy
Ugfi’! S qeyn Q1 utg
<C Z (1 Jgl) ™ fT*(ﬁ))(y)’“dy
g€ %r(t)G B
+0 Y 4Tty fT* (y)? dy
ge4tr()Qo vgder()Cy Qra
< CIT* P 48] pny (7 .(t))*"‘w [ T )P dy.

z|»tr(t) /8

The last expression tends to zero as ¢ tends to infinity since T*('qi:) is a
proper function in L?(R"), which concludes the proof of equality (16).
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(ii) Next, we suppose that m is a maximal multiplier on H?{T™), and
is continuous on R™\{0}. We must show that m is a maximal multiplier on
HP(R™}). Assume f € HP(R") such that supp f is compact and does not

contain the origin. Then m(su)f(u) is continuous on R™ and has compact
support for each s > 0. It follows that

— 1 27 L1\ 2rithew
T, flz) = Jim o > m(sth) f{tk)e mith e
keZn
because the right hand side of the above equality is exactly the Riemannian
sum of m(su) f(u)e*™* =, Thus, for any = € R",
o~ a2

> m{sth) flth)etritha
keZn

= sup lim *|T(fi ) (tx)["
80t 04

sup |Ts f(z)” = sup lim ¢"¥
s>0 §20 t—0..

e 1 m T £ I’
iggﬂ}—lﬁkt |Tot (fi,p) (t) XQ(,(“’):

where f; , is in Lemnma 3 and Xa, denotes the characteristic function of Q.
By the Fatou Lemma we have

T* f(2)P de = im % Tas( Fr.0) (E2) P
D{[ F(w)P da R{ sup lim ¢ (Ts(fop)(80) Px g, (t2) d

< Jpipt e )l Pxg 1) do
< lim jn RJ: I (Frp)(t2)Px g, (t) dae

= lim jn T*(fop)(@)? d
.'. T'n,

. Tk s ] A )
< llﬂéilf”T Hp”ft,p”m(qrn) = |fT*]|prH§U,(W),
where the last equality is derived from Lemmna 3.

Finally, note that the functions in H? (R"™) whose Fourier transforms have
compact supports away from the origin form a dense subset of H PR™). It
follows that m is a maximal multiplier on I P{IR™)

The proof is complete,

Remaljk 1. By the Riesz transform characterization of I P(IR™)
nerms ‘[9}‘, 1t is easy to show that a maximal multiplier on A P(R™) is also
a multiplier on H?(R™} and is therefore continuous on R™ {0} (see [12, p.

137]). It follows that the requirement m e C(R™"\{0}) in Theorem 1(ii) is
necessary.
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Remark 2. From the proof of Theorem 1(i) we see that condition (1)
can be replaced by the following weaker one. For every nonzero k € Z™,

(17) lim sups™ [ |m(stk + k) - m(stk)|dh =< 0.

t-—00 a>0 “;'(q

Thus if m satisfies an inequality of Mikhlin type: |D*m(z)| < Clz|™%,
x| = 1, then m satisfies (17). Condition (17) is essentially a requirernent
that m does not vary too fast at infinity and about the origin. The authors
do pot know if it can be weakened any further,

As an application of Theorem 1, we can now give a simple proof of
Theorem 2.

Proof of Theorem 2 By Theorem 1, we need only prove the pe-
riodic case. Let m be a maximal multiplier on H?(T™). It follows from the
compactness of T™ that for any f(u) € HP(TY), if we set F(z) = F(u,v) =
()@ = (u,v) € TYx T4, then F € H#(T") and | Fligrs vy = || fll o sy
Let rn/(u) = m{u,0) be the restriction of m to T¢ and 7"* the maximal op-
erator corresponding to m’. Then for any {u,v) € T¢ x T"~¢,

T f(u) = T*Flu,v).
Therefore,
1T Fll o ey = T Fllzoqray < NT7N - 1 | 2o camy
= |T*| - [l £l e vy
and the desired result follows. This concludes the proof of Theorem 2.

Remark 3. From the proof above we see that for the periodic case of
Theorem 2, m is not required to satisfy (1).
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Construction de p-multiplicateurs
by

FRANCISCO JAVIER GONZALEZ VIELT (Lousanne)

Abstract. Using characteristic functions of polyhedra, we construct radial p-mmlti-
pliers which are continuous over R™ but not continuously differentiable through $"* and
give a p-multiplier criterion for homogeneous functions over R2. We also exhibit fractal
p-multipliers over the real line.

1. Introduction. Les critéres généraux permettant de décider si une
fonction bornée sur R™ et un p-multiplicateur ne s'appliquent le plus sou-
vent qu'd des fonctions suffisamment dérivables ou lipschitziennes (voir [St],
chap. IV), Or, comme le remarque Stein lui-méme, de tels critéres ne permet-
tent méme pas de traiter le cas simple des fonctions indicatrices de polyédres.

Aussi avons-nous choisi dans cet article une démarche «constructivistes.
On sait que, si une suite de p-multiplicateurs dont la norme est uniformément
bornée converge presque partout, alors sa limite est aussi un p-multipli-
cateur. A laide de ce résultat, nous montrons comment;, & partir de fonctions
indicatrices de polyedres, on peut construire des exemples de p-multiplica-
teurs de R? continus mais non dérivables partout; nous établissens un critére
asses général pour les fonctions homogénes sur R?; nous exhibons des p-
noultiplicateurs sur R continus mais nulle part dérivables, ce qui met en
évidence les limites de la caractérisation due & Stechkin ([EG], p. 105).

2. Définitions, notations. Nous désignerons par p un norabre réel > 1
quelcongue fixé,

Soient (7 un groupe abélien localement compact, de une mesure de Haar
sur &, G le groupe dual de G la transformée de Fourier d’une fonction f
dans LY{Q) est définie pour ¥ € G comme

F=Ff) = [ f=(z)ds.
c ‘
On munit & de la meswe de Haar dy permettant d’écrire ]|J? lz = [Ifll2
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