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"I'wo characterizations of automorphisms on B(X)
by

PETER $EMRL (Ljubljana)

Abstract. Lot X be an infinite-dimensional Banach space, and let ¢ be a suzjective
linear map on B(X)} with ¢(I}) = I. If ¢ preserves injective operators in both direc-
tions then ¢ i4 an automorphism of the algebra B(X). I X is a Hilbert space, then
# 14 an automorphism of B(X) if and only if it preserves surjective operators in both
directions. : i

Let X be an infinite-dimensional Banach space and let B(X) denote
the algebra of all bounded linear operators on X. Recall that the point
spectrum ap(T) of an operator T € B{X) is the set of all eigenvalues of
T. The surfectivity spectrum o4(T) of an operator T € B(X) is defined
as oy(T) = {A € € : (T'~ NX # X}. For basic facts concerning the
surjectivity spectrum we refer the reader to [7]. It should be mentioned that
the surjectivity spectrum has been called other things by other authors, e.g.
approximate defect spectrum in [3]. /

‘We shall consider linear mappings ¢ on B(X) which satisfy ¢(I) = T
and preserve injective operators in both directions: i.e., for every T € B{X)
the operator ¢(T') is injective if and only if T is injective. It is easy to
see that such mappings preserve the point spectrum, that is, op(T") equals
op(¢(T)) for every T' € B(X). Conversely, if ¢ : B(X) — B(X) is a point
gpectrum preserving surjective linear mapping, then one can prove using
the same approach as in [5, Lemma 3] that ¢#(I) = I. Moreover, such a ¢
preserves injective operators in both directions. We shall prove that for ev-
ery poinl spectrum preserving surjective linear mapping ¢ : B(X) — B(X)
there oxists a bounded invertible lincar operator 4 + X — X such that
ST = AT A for every I' € B(X). Hence, we will show that a surjective
linear mapping ¢ on B(X) is an automorphism if and only if ¢ preserves
injective operators in hoth directions and satisfies ¢(I) = I. In the case
that X is an infinite-dimensional Hilbert space we shall prove an analogous
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regult for surjective linear mappings preserving the surjectivity spectrum
{surjective operators in both directions).

It seems that the systematic study of linear mappings from the set of
n X7 matrices into itself which leave certain properties invariant begins with
[9]. In the last few years the interest in problems of this kind, especially in
operator algebras over infinite-dimensional spaces, grows again (cf. [1], [2],
[4], [5], [10], [11]). In [5] it was proved that a spectrum preserving linear
surjective mapping on the algebra of all bounded linear operators on a Ra-
nach space X is either an automorphism or an antiautomorphism. Instead
of spectrum preserving mappings one can study mappings which preserve
various parts of spectrum. It seems natural to ask which subsets of the spec-
trum have the property that surjective linear mappings which preserve them
are necessarily automorphisms. Our results show that the point spectrum
and the surjectivity spectrum have that property. Some of ideas used in our
proofs are similar to those of Jafarian and Sourour [5]. So, we shall omit
some parts of the proofs and refer to [5] wherever possible.

We now fix some notation. The dual of a Banach space X will be denoted
by X' and the adjoint of A € B(X) by A’. For any z € X and f € X' we
denote by z& f the bounded linear operator on X defined by (2@ f)y = f (y)x
for y € X. Every operator of rank one can be written in this form. Note
that (2® f)' = f ® (Kx), where K is the natural embedding of X into X"

We start with a spectral characterization of rank-one operators which iy
an extension of [5, Theorem 1].

LeMMA 1. Let A be o nonzero bounded linear operator on a Banach
space X, Then the following conditions are equivalent.

(i) A has rank one.
(il) o(T + A) N o(T + cA) C o(T") for every T & B(X) and ¢ # 1.
(ill) op (T + A) N0y (T + cA) C 0, (T) for every T € B(X) and ¢ + 1.

Proof. Jafarian and Sourour [5] proved that (i) implies (ii). They also
showed that under the assumption that A has rank greater than 1 we can
find an operator T and a pair of complex numbers Ay ¢, ¢ % 1, such that
A is an eigenvalue of T+ A and T + ¢4, but A ¢ o(T). It follows that
each of the conditions (ii) or (iii) implies (i). So, it remains to prove that
(i) yields (iii). Let A be an operator of rank one. Then it is of the form
A= 2@ f. Assume that T is a bounded linear operator on X, Suppose
also that ¢ and A are complex numbers such that A g op(T) and X €
op(T + AY N op{T + cA). We have to show that ¢ = 1. According to our
assumptions we can find nonzero vectors z,% € X such that (T — Nz =
—f{z)z and (T~ A)u = —cf(u)z. The coraplex number A is not an eigenvalue
of T and consequently, @ # 0, f(2) # 0, and f(u) # 0. Moreover, from
(T = N(cf(u)z — f(z)u) = 0 it follows that cf(u)z = f{z)u. This implies
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that z and u are linearly dependent. Thus, we have necessarily ¢ = 1, which
completes the proof.

In the sequel we shall need the following analogue of Weyl’s theorem [14,
Theorem 0.10].

LemMa 2. Let B,C € B{X) and A € C be given. Assume that C is
u finite-rank operator. Suppose that A € o(B) and A € o(B 4 C). Then
A€oy (B-+0). ‘

Proof. We have B+4-C'— A = (B— A\ (I+(B—2)"'(C). According to our
assumptions the operator B + C'— A is not invertible. As B — X is invertible,
I+ (B~ A)~"*C is not invertible. (B ~ A\)~*C is a finite-rank operator, and
consequently, I + (B — A)71C is not surjective. The same must be true for
B+ ' — X This concludes the proof.

MamN THeOREM. Let X be an infinite-dimensional compler Banach
space and let ¢ : B(X) - B(X) be a surjective linear mapping. Then ¢
ig an eutomorphism of the algebra B(X) 4f and only if ¢ preserves injec-
tive operators in both directions and satisfies ¢(I) = I. Assume that X is a
Hilbert space. Then a surjective linear mapping ¢ on B(X) is an automor-
phism if and only if ¢ preserves surjective operators in both directions and

satisfies ¢p(I) = I.
This theorem follows immediately from the following two results.

THEOREM 3. Let X be an infinite-dimensional complex Banach space. If
¢ B(X) — B(X) is a point spectrum preserving surjective linear mapping
then there is a bounded invertible linear operator A : X — X such thai
¢(T) = ATA™Y for every T € B(X).

THEOREM 4. Let H be an infinite-dimensional complex Hilbert space. If
¢+ B(H) — B(H) is o surjectivity spectrurn preserving surjective linear
mapping then there exists o bounded invertible linear operator A: H — H
such that (T = ATA™L for every T € B(H).

Proof of Theorem 3. As in [5] we prove that ¢ is injective and
d(1) = I. It follows from Lemma 1 that if A € B(X) has rank one the same
must be true for ¢(A). Using the same approach as in [5, Theorem 2] one
can see that there exist either lincar bijective transformations 4 : X — X
and ¢+ X' — X' such that ¢(z @ f) = Az @ Cf forevery 2z € X, f € X/,
or linear bijective transformations B : X' — X and D : X — X' such that
ple®@ fl=RBf@Drforallz e X, fe X"

Tn. the first case, from oy (2@ f) = 0, (Az® CF) we get (Cf)(4z) = f(z),
which shows that (7 is the adjoint-of A~!. This forces C to be bounded, which
irnplies that A~! and finally A are bounded.
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Let T be an arbitrary bounded linear operator on X such that 0 is not
an eigenvalue of T'. Then ¢(T) is injective as well. Let o be a nonzero vector
in X. Set Tx = y. Then 0 € o(T ~ y @ f) for every f € X' satisfying
f(z) = 1. From f(z) = (Cf)(Az) and the surjectivity of C we get {Cf :
feX' and f(z) =1} = {g € X' : g(Ax) = 1}. So, we have 0 € o, (4(T) -
Ay ® g) for every g € X’ satisfying g(Ax) = 1. Let g and h be functionals
such that g(Az) = h(Az) = 1. Then we can find nonzero vectors z,, 2, ¢ X
such that ¢(T)z, = g(z,) Ay # 0 and ¢(T')z), = h{zn) Ay # 0. Consequently,
(T h(zn)zg — g(zy)zn) = 0. Tt follows from injectivity of ¢(T) that z,
and z; are linearly dependent. This yields the existence of & nonzero vector
z € X such that for every functional ¢ € X' with g(Az) = 1 we have
&(T)z = g(2)Ay. We claim that z and Az are linearly dependent. If this is
not the case, then there exists g € X' such that g(4dz) = 1 and g(z) = 0,
implying ¢(T}z = 0, which contradicts the injectivity of ¢(7"). So, z aud Az
are linearly dependent and from ¢(1")z = g(z)dy we obtain ¢(T) Az = Ay,
or equivalently, Tz = y = A7'4(T)Az. Thus, ¢(T) = ATA™! for every
T satisfying 0 ¢ op(T). From ¢(I) = I we get ¢(T) = ATA™! for every
T € B(X), which completes the proof in our first case.

It remains to consider the case that there exist bijective linear mappings
B:X' — X and D: X ~ X' such that ¢(z ® f) = Bf ® Dz for all
® € X, f € X'. As before we have (Dz)(Bf) = f(x). Let X be the natural
embedding of X into X”. Then I is defined at least on the image of K and
coincides there with B~*K . Thus, B~! is closed and therefore bounded,
The operators D and (B}’ are bijections. Obviously, D = (B~!)'K. Thus,
K is a bijection, which implies the reflexivity of X. Tt follows that there
exists a separable subspace W of X and a linear projection P from X onto
W such that || P|| = 1[8, Proposition 1]. W is a separable Banach space and
according to Ovsepian-Pelczyiski’s result on the existence of total bounded
biorthogonal systems in separable Banach spaces [12, Theorem 1] there is a

sequence (x,,) of vectors in W and a sequence of bounded linear functionals
(fn) on W such that

* fm(Zn) = ém.n (the Kronecker symbol) for m, n = 1, 2,...

e The linear span of (z,,) is dense in W in the norm topology.
sIfz € W and f,(z)=0for all n € N then ¢ = 0,

® Supy f|Zn| | fall = M < 0.

For every n € N define a functional g, ¢ X' by gn(z) = f.(Pz), z € X.
The linear operator § = 3°°  2="g, @ g, + I — P is bounded and injective,
Obviously, it is not invertible. As ¢ is surjective there exists T € B(X) such
that ¢(T') = §. Moreover, T is injective. Choose a nonzero ¢ € X and set
Tw=y. As before we get 0 € o, (T—y®f) for all f € X' satisfying flz)=1
and 0 € 0,(§ —u® Dy) for alluw € X satisfying (Dxz)(u) = 1. Therefore, we
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can find for every u € X with (Dz)(u) = 1 a nonzero vector w € X such
that Sw = ((Dy)(w))u. As w # 0 we have Sw # 0 and consequently, the
image of 5 contains the linear span of {u € X : (Dz){u) = 1}. But the
linear span of this set is X, which contradicts the noninvertibility of 5. It
follows that the second case cannot occur. This completes the proof.

Let H be a Hilbert space. For any z,y € H we denote the inner product
of these two vectors by y*z, while xy* denotes the rank one operator given
by (zy*)z = (y*z)z. The orthogonal complement of K ¢ H is denoted
by K+ ‘

Proof of Theorem 4. It follows from [7, Lemma 1] that if o(7") is
a finite set, then o(T'} = 04(T) = 04(¢(T")) = o(¢(T)). The same must be
true if o{¢(7")) is finite. In particular, T € B(H) is quasi-nilpotent if and
only if $(T') is quasi-nilpotent.

First we show that ¢ is injective. If ¢(T} = 0 then T is quasi-nilpotent.
Assume that 7" % 0. Then we can find z € H such that Tz = y # 0. Clearly,
x and y are linearly independent. Define a nilpotent operator N : H — H
by

Ne=g—y, Ny=z-y, Nz=0 forze{zy}".

It follows from ¢(N) = ¢(T + N) that T + N is quasi-nilpotent, which
contradicts (T' 4+ Nz = z.

Our next step will be to prove that for every 7' € B(H) the operator
(1) is an idempotent of rank one if and only if T' is an idempotent of rank
one. For this purpose we choose an idempotent operator P € B(H) of rank
one, and set ¢(P) = Q. As o(P) is finite we have o(P) = o(Q) = {0,1}. It
follows from Lemma 1 that

o(T+PYNo(T+2P) Co(T) = os(T)

for every T € B(H) having a finite spectrum. The surjectivity spectrum of
an operator is a subset of its spectrum. The mapping ¢ maps the set of all
operators with finite spectrum onto itself. Consequently,

(1 7T + Q) N o (T +2Q) C o(T)

for every bounded linear operator T with finite spectrum.

We first show that for every o from H the vectors z, @z, and Q%x are
linearly dependent. Assume on the contrary that there exist_s‘ac e i such
that =, Qx, Q*z are linearly independent, Let us define a linear bounded

operator S on H by
Sp =3z~ Qz, SQz=23Qxz~2Q%, SQ’r==x,
Sz2=0 forze {x,Qz,Q*x}".
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It is easy to verify that 3 € o(S+Q)Na(5+2Q) and 3 & «{5). It follows from
Lemma 2 and from 3 € o(Q}Ua(2Q) that 3 € ¢,(S+ Q) Nos(5+2Q), which
contradicts (1). Therefore, for every z € H the vectors z, Qx, and Q%x are
linearly dependent, which implies that ¢ satisfies a quadratic polynomial
equation p(@) = 0 [6]. It follows from o(Q) = {0,1} that p is of the form
p(A) = A(A — 1), which further implies that @ is an idempotent.

Next, we show that rank@ = 1. If rank@ > 1 we can find linearly
independent, vectors z,y such that Qu = = and Qy = y. Define an operator
Ron H by

Rer=12, Ry=y, Ru=0 foruc{zy}".

As before we prove that 3 € ou(R + Q) N ou(R + 2Q), which contradicts
3¢ o(R) and (1).

Thus, ¢ preserves idempotents of ranl one. The saine must be true for
¢!, and consequently, ¢ preserves idempotents of rank one in both direc-
tions.

According to [10, Proposition 2.6} there exists either an invertible A
B(H) such that ¢(T) = AT A" for all finite-rank operators T € B(IH), or
a bounded invertible conjugate-linear operator C' on H such that HT) =
CT*C~! for every T € B(H) of finite rank.

In the first case we choose T € B(H) such that 7% = 0. Let =,y be
arbitrary vectors in H. If A € C\ {0} then it follows fron [5, Lemma. 4]
that y*(A — T)~'x =1 if and only if A € o(T + oy*). By Lemma 2 this is
equivalent to A € ao(T + ay*) = 0o(H(T'} + Awy* A1) Clearly, o(@(T)) =
os(¢(T)) = {0}. Thus, Lemma 2 shows that the last relation is satisfied if
and ouly if A € o((T) + Azmy*A~'). Applying [5, Lemma 4] once again we
finally conclude that this is equivalent to y*A~Y(A ~ (7))~ Az = 1. Using
linearity we get

YO = T) e =y A7 (A - 9(T)) " Ao
for all z,y € H and all nonzero complex numbers . Applying

1w T I
(-1 lzém and (A — (T)) 1mk-~;o%%

for |A] > max{[|T], ¢(T)|[} we get
YT =y A" (1) Az

for every @,y € H. This further implies ¢(T) = AT A1, Since, by a result of
P::ea.rcy and Topping {13], every operator in B(H) is a finite sum of operators
with square zero, this yields ¢(T) = ATA™! for every T € B{H), which
completes the proof in the first cage.

In the second case we show similarly that HT) = CT*C for all
T € B(H). It follows that an operator T is surjective if and only if T*
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is surjective, But this certainly is not true (consider, for instance, the shift

operator). Thus, the second case cannot occur. The proof of the theorem is
complete,
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