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Range inclusion results for derivations on noncommutative
Banach algebras

by

VOLKER RUNDE (Berkeley, Calif.)

Abstract. Let A be a Banach algebra, and let D : A -~ A be a (possibly unbounded)
derivation. We are interested in two problems concerning the range of D:

1. When does D) map into the (Jacobson) radical of A?
2. 1i {a, Du) = 0 for some a € 4, is Da necessarily quasinilpotent?

We prove that derivations satisfying certain polynomial identities map into the radical. As
an application, we show that if [a, [a, [2, Da]]] lies in the prime radical of A for all a € A4,
then D maps into the radical. This generalizes a result by M. Mathieu and the author
which asserts that every centralizing derivation on a Banach algebra maps into the radical.
Ag far as the second question is concerned, we are unable to settle it, but we obtain a
reduction of the problem and can prove the quasinilpotency of Da under commutativity
assumptions slightly stronger than [a, Da] = 0.

Introduction. The interest in range inclusion results for derivations
on Banach algebras goes back to I. M. Singer’s and J. Wermer’s paper
[S-W] from 1955, in which they proved that every bounded derivation on a
commutative Banach algebra maps into the (Jacobson) radical. In a footnote
they conjectured that the boundédness requirement for the derivation was
superfluons. It took more than thirty years until this conjecture was finally
proved by M. P. Thomas {[Tho 1)).

The simple-minded atternpt to extend these results to noncommutative
Banach algebras obviously fails, even for bounded derivations: Let 4 be a
noncommutative, semisimple Banach algebra, and fix some a & A which
does not lie in the center Z(A) of A. Then 4 5 z — [0,z] = ax — za is
a bounded derivation, which is nonzero, and therefore does not map into
the radical. There are, however, various meaningful generalizations of the
bounded Singer-Wermer theorem to the noncommutative setting (see [Yoo|,
[M--M] and [Vuk 1], for instance). All these results require at some point the
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following theorem by A. M. Sinclair ([Sin 1]): Every bounded derivation
on a Banach algebra leaves the primitive ideals invariant. For commuta-
tive Banach algebras, the classical Singer-Wermer theorem can easily be
deduced from Sinclair's result, which justifies the name noncommutative
Singer-Wermer theorem for it. The big open question, which has become
known as the noncommutative Singer-Wermer problem, is if every, possi-
bly unbounded derivation on a Banach algebra leaves the primitive ideals
invariant.

It comes as no surprise that range inclusion problems for derivations on
Banach algebras are closely connected with automatic continuity problems,
i.e. questions if for certain Banach algebras A every derivation D : A — 4
is continuous. It is well known that all derivations on semisimple Banach
algebras are continuons ([J-5]), whereas it is still an open problem if the
same holds true for derivations on semiprime Banach algebras (see [Cus),
[Gar}, [Run|, and [M-R]).

Another way of extending the Singer-Wermer theorem to the noncom-
mutative situation is to consider local phenomena: The classical Kleinecke-
Shirokov theorem ([Klei], [Shi}) states that if A is a Banach algebra, and
a,b € A are such that [a, @, b]] = 0, then [e,b] is quasinilpotent. Replacing
either 4 3 # — [a,2] or A 3 £ — [2,b] by an arbitrary derivation D, two
questions arise naturally:

(A)  Does D?a = 0 for some a € A imply that Da is quasinilpotent?
(B) Does [a, Da] =0 for some ¢ € A imply that Do is quasinilpotent?

If D is bounded, the answer is “yes” in both cases (see [M~M], for example).
Further, M. Mathieu and the author proved without any boundedness as-
sumptions for D that if we assume [a, Da] = 0-—or even weaker: [a, Da] €
Z(A)—for all & & A, then D maps into the radical ([M-R]). From the point
of view adopted in [M-M], this result can be considered a global, unbounded
Kleinecke-Shirokov theorem, whereas (A) and (B) ask for local, unbounded
Kleinecke—Shirokov theorems. Recently, M. P. Thomas ([Tho 2]) gave a pos-
itive answer to (A), whereas (B) scems to be still open.

The present paper is organized as follows.

In the first section we put together some preliminary material. In par-
ticular, we discuss the connections of the noncommutative Singer-Wermer
conjecture with other range inclusion and automatic continuity problems.

In Section 2, we establish a rather general theorem which asserts that
derivations satisfying certain polynomial identities map into the radical. As
an application, we prove a refinement of [M-R, Theorem 1].

Section 3 is devoted to the problem if a local, unbounded Kleinecke-
Shirokov theorem, i.e. an affirmative answer to (B), does hold. We are unable
to sefile (B), but we obtain a reduction of the problem, and can prove
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the quasinilpotency of Da in two cases, where the assumptions are slightly
stronger than [a, Da] = 0.

Acknowledgment. I would like to thank the referee for his helpful
conrunents and suggestions.

1. Preliminaries. We begin with a definition (compare [Tho 2]) which
will make formulations easier in the sequel.

DEeErRNITION 1.1, Let A be a Banach algebra, and let D : A — A be a
derivation. A primitive ideal P C A is said to be exceptional if DP- ¢ P.
The set of all exceptional primitive ideals of A is denoted by £4(D).

In terms of Definition 1.1, [Sin 1, Theorem 2.2] asserts that £4(D) =0
for every bounded derivation DD on a Banach-algebra A, and the noncom-
mutative Singer-Wermer conjecture claims that £4(D) == § holds as well if
D is unbounded. :

As far as the author knows, there is no range inclusion result for bounded
derivations on Banach algebras, where continuity of the derivation cannot
be replaced by the (possibly redundant) condition that there are no excep-
tional primitive ideals. As an illustration, we give a variant of the Kleinecke~
Shirokov theorem:

ProrosiTiON 1.2. Let A be a Banach algebra, let D : A — A be o
derivation with £4(D) = 0, and let ¢ € A be such that [a, De] = 0. Then
Da s quasinilpotent,

Before we prove Proposition 1.2, let us state a useful observation as a
lemma (see also [Tho 2, Proposition 2.1]):

LuMMA 1.3. Let A be a Banach algebra, and let Prim(A) denote the
collection of its primitive ideals. Then, if A is unital,

oala) = U aap{e+P) (a€4d),
Fgl"‘rim(fl)
and, i A has no identity,
cal@)= ) oaple+P)U{0} (ac4).
PePrim{A)
P roof. This is an immediate consequence of [Rick, Theorem 2.2.9(v)]. =
Proof of Proposition 1.2 Let P C Abe aprimitive ideal. Then D

drops to a derivation Dp on A/P, which is bounded by [J-8, Theorem 4.1].
By the Kleinecke-Shirokov theorem for bounded derivations D) plmpla)) =
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mp(Da) is quasinilpotent, where 7p : 4 — A/P is the canonical epimor-
phism. By Lemma. 1.3, we have

caDa)c ) oaplwp(Da))u {0} = {0},
PePrim(4)

which means that Da is quasinilpotent. =

The following theorem appears in the published literature for the frst
time as [Jia, Theorem 3.6] (albeit with a fallacious proof). For a corrected
proof see [Tho 2].

THEOREM 1.4. Let A be o Banach algebra, and let D : A — A be g
(possibly unbounded) derivation. Then E4(D) consists of a finite number of
primitive ideals of A, all of which have finite codimension.

Remark, Unpublished work by M. P. Thomas shows—-in analogy with
the commutative case ([Joh, Theorem 4])—that the noncommutative Singer-
‘Wermer problem can be reduced to the case of a radical Banach algebra R
and a derivation D:R¥ — R¥, where R¥ stands for the unitization of R.

COROLLARY 1.5. Let A be an amenable Banach algebra. Then £4(D) =0
for every derivation D : A ~» A.

Proof. Assume there is a primitive ideal P € £4(D). By [Hel, Proposi-
tion VIL.2.31], P has a bounded approximate identity. As a consequence of
Cohen’s factorization theorem ([B-D, Corollary 11.11]), we have P? = P.
Since D(P?) C P, this contradicts our assumption that P € £4(D), ie.
DPgZP. m

Dealing with unbounded derivations on Banach algebras is necessarily
more algebraic in flavour than the bounded cage. There are in fact some
striking, purely ring-theoretic theorems about derivations, which are of con-
siderable use in the Banach algebra situation. A result we will apply in
this paper is due to J. Vukman ([Vuk 1, Theorem 1]), and refines for rings
with characteristic different- from two, three and five a classical result by
E. C. Posner {[Pos, Theorem 2]):

THEOREM 1.6. Let A be @ prime ring whose characteristic is different
from two, three and five, and let D : A — A be o derivation such that
@, [a, [0, Dal]] € Z(A) for alla € A. Then D =0, or A is commutative.

The following lemma may serve in some situations as a substitute for
[Sin 1, Theorem 2.2}, and allows to reduce range inclusion problems for
derivations to the case where the domain is prime.

LeMMA 1.7. Let A be a ring, let D 1 A — A be a derivetion, and let
P C A be a minimal prime ideal such that the additive group of A/P is
torsion-free. Then P is invariant under D.
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As it seems, Lemma 1.7 appears for the first time in the published lit-
erature as {G-'W, Proposition 1.1]. It has been rediscovered later at several
occasions (see [Gar|, where a version for commutative Banach algebras is
given, and [M-R]).

As an example of how Lemma 1.7 can be used to reduce range inclusion
problems for derivations on Banach algebras to the prime case, we give a
noncommutative analogue of [Run, Theorem 2]:

TarorEM 1.8. The following are equivalent:

(1) For every Banach algebra A and for every derivation D : A — A we
have E4(D) = 0.
(i) For every rodical Banach algebra R and. for every derivation D :
R#* — R¥ we have DRC R. .
(1) For every prime, radical Banach algebra R and for every derivation
D: R* — R* we have DR C R.

Proof. The equivalence of (1) and (ii) is the aforementioned, unpublished
result by M. P. Thomas. For the proof of the equivalence of (ii) and (i} just
observe that the arguments used in the commutative case (see {Run|) carry
over almost verbatim. m

CoroLLARY 1.9. If all derivations on prime Banach algebras are contin-
uous, then the noncommutative Singer—Wermer conjecture is true.

Remark. It was observed earlier by J. Cusack ([Cus]) that if every
derivation on a Banach algebra had a nilpotent separating space, then
the noncommutative Singer~Wermer theorem would hold. By [M-R, Theo-
rem 2], Cusack’s and our condition are equivalent.

2. Derivations satisfying polynomial identities. The main goal of
this section is Theorem 2.3, which gives a rather general condition forcing
a derivation on a Banach algebra to map into the radical. As an immedi-
ate consequence of Theorems 2.3 and Theorems 1.6, we then obtain Corol-
lary 2.4, which generalizes [M-R, Theorem 1]. To prove only this corollary,
we could simply proceed by more or less following the lines of the proof in
[M R with the only difference that we wonld invoke Theorem 1.6 instead of
"Pos, Theorem 2]. The idea, however, behind both proofs can be expressed
in a more general context and is applicable to other situations.

For n € N, let C{Xy,..., X} denote the polyncmial algebra in n non-
commuting variables, i.e. the free complex algebra on n generators. ‘Let
A be a (complex) algebra. If ay,...,a, € A satisfy plal,...,a,) = 0 for
some nonzero p € C{X1,...,Xn}, we say that a1,...,an satisfy a polyno-
mial identity. Theorem 1.6 and Corollary 2.4 make assertions about deriva~
tions D : A — A satisfying the polynomial “identities” p(e, Da) = 0 and
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p(a, Da) € nil(4), respectively, for all a € A, where p = [X1, [X1, [X1, X2]]]
[ C{Xl ) Xg} :

Most of the work for the proof of Theorem 2.3 is done in the following
two lemmas.

LemMMA 2.1. Letn € N, and let p € C{Xy,..., Xpq1} with the following
property:

If D is a derivation on a primitive Banach algebra A such that p(a, Da, . ..
.., D"a) =0 foralla e A, then D = 0.

Then every derivation D on o Banach algebra A with E4(D) = § and
satisfying pla, Da, ..., D™a) = 0 for all a € A maps into the radical.

Proof Let A be a Banach algebra, and let D be a derivation with
Ea(D) =0 and p(a, Da,...,D"a) = 0 for all ¢ € A. Let P be a primitive
ideal of A. Then D drops to a derivation Dp on the primitive Banach al-
gebra A/ P. Clearly, Dp satisfles p(a, Dpa,...,D%a) = 0 for all o € 4/P.
By assumption, Dp = 0, which means DA C P. Since P is an arbitrary
primitive ideal of A, we have DA C rad(4). m

For the second lemma recall some definitions.

For any ring A let nil(4) denote its prime radical, i.e. the intersection of
all prime ideals of A. Since by Zorn’s Lemma every prime ideal of A contains
a minimal prime ideal, nil{A) equals the intersection of all minimal prime
ideals of A.

Let A be a Banach algebra, and let D : A — A be a derivation. Then
S(D) = {y € A: there is a sequence {x,}° in 4
such that z,, — 0 and Dz, — y}
is the separating space of D. It is a closed ideal of A, which, by the closed

graph theorem, is zero if and only if D is bounded. For more information
on separating spaces of linear operators see {Sin 2].

LEMMA 2.2. Let n e N, and let p € C{X1,.. s Xpp1} have the following
property:

Every derivation D on a prime Banach algebra A such that (e, Da, ...
o, D) =0 for all a € A maps into the radical.

Then every derivation D on a Banach algebra A such that

p(a,Da,...,D") e nil(A) (o€ A)

maps into the radical.

Proof. Choose an arbitrary primitive ideal P ¢ A, which, in particu-
lar, is a prime ideal, and therefore contains a minimal prime ideal €. By
Lemma 1.7, DQ C @, and D drops to a derivation Do on A4/Q.
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Suppose first that S(D) ¢ Q. Then by [Cus, Lemma 2.3], @ is closed,
and A/Q is a prime Banach algebra. Since

pla, Da,..., D%} enil(4) CQ (a€ A),
we have p(a, Dga, ..., Dfa) = 0 for alla € A/Q. By assumption, this means
Do(A/Q) Crad(4/Q) C P/Q,

and consequently, DA C P.

Now, assume that (D) < Q. Let w: A — A/Q™ be the canonical
epimorphism. Then

| S(ro D) = (r(8(D)))~ = {0}.
In other words: o D is continuous. Since (7 o D)(Q) = {0}, this means
that (we ){(Q ™) = {0}, i.e. Q™ i8 invariant under D. Therefore, D drops to
a bounded derivation Dg- on the Banach algebra 4/Q~. Obviously, Dg-
satisfies p(a,.DQ._a,...,Dg_a) = 0 for all & € A/Q™. Then we have by
Lemma 2.1,

Dq-(4/Q7) Crad(4/Q7) C P/Q,

and as a consequence, we obtain again DA C P. =

Turorsm 2.3. Letn e N, end let p € C{X7,..., Xni1} have the follow-
ing property:

If D is o derivation on a prime Banach algebro A such that p(a, Da,. ..
co D) = 0 for all a € A, then D =0, or A is commutative.

Then every derivation D on a Banach algebra A such that

pla,Da,...,D") enil(4d) (a€A)
maps into the rodical.

Proof. Let 4 be a prime Banach algebra, and let D : A — A be a deriva-
tion satisfying p(a, Da,...,D"a) =0 for all a € A. If A'is commutative, we
have DA ¢ rad(A) by [Tho 1]. The claim then follows from Lemma 2.2. m

Conotrary 2.4. Let A be a Banach algebra, and let D : A — A be a
derivation such that [a,[a, (o, Da]]] € nil(4) for all a € A. Then D maps
into the radicel of A. '

Proof. By Theorem 1.6, p = [ Xy, [X1,[X}1, X3]]] satisfies the assump-
tions of Theorem 2.3. =

Remarks. 1. It is an interesting question whether the assumption in
Clorollary 2.4 can be wealkened to [a, [, [a, Da]]] € rad(A) for all a € A as
in its bounded counterpart [Vuk 1, Theorem 2], Certainly, the boundedness
assumption of [Vuk 1, Theorem 2] can be replaced by £4(D) = @. Hence,
if the noncommutative Singer~Wermer conjecture were true, [Vuk 1, Theo-
rem 2] would hold for arbitrary derivations. Now, let A = R¥, where R is a
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radical Banach algebra. Then every element a € A is of the form a = r+ Al
for € R and A € C, and consequently for every derivation D : A — A,
[a, Da] = [r + AL D(r + A1)] = [r, Dr] € R =rad(4).

In particular, the assumption of [Vuk 1, Theorem 2] that [a,{a, [a, Da]] €
rad(A) for all a € A holds automatically. By Theorem 1.8, a proof for
"Vuk 1, Theorem 2] without assuming £4(D) = § would therefore entail the
correctness of the noncommutative Singer—Wermer conjecture.

2. It is possible to prove a “multivariable version” of Theorem 2.3:

Let n,m,k € N, where k < m, ond let p € C{Xy,..., Xnmr1} have the
follounng property:
If Dy, ..., Dy are derivations on a prime Banach algebra A such thot

pla, Dia,...,Dpa,...,Dla,..., Do) =0 (a€ d),

then Dy = ... =Dy =0, or A is commutative.
Then, if D1,..., Dy are derivations on a Banach algebra A such that
pla,Dha,...,Dpe,...,.Dla,...,D%a) € nil(4d) (ag A),

the dertvations Dy, ..., Dy map into the redical.

The necessary adjustments in the proof of Theorem 2.3 are easily made.
Using this theorem, it is not hard to harvest more unbounded range inclusion
results: For example, [Vuk 2, Theorem 1] holds for unbounded derivations
as well, as does [B-V, Theorem 1] if in the assumption rad{4) is replaced
by nil(A4). :

3. The local situation. In this section we turn to the problem of
proving a local, unbounded Kleinecke-Shirokov theorem as asked for in {B).
. First we will give a reduction of the problem to the case where a is
quasinilpotent, and Da is invertible. For this purpose we require a lemma,
which is analogous with [Tho 2, Corollary 2.2).

LEMMA 3.1. Let A be o Banach algebra, let D 1 A — A be a derivation,
and let a € A be such that [a, Da) = 0. Then o4(Da) is finile.

Proof. Fix a primitive ideal P ¢ A. If P is not exceptional, then we
obtain as in Proposition 1.2 that ¢ 4/p(mp(Da)) = {0}, where 7p : A —
A/P is again the canonical epimorphism. If P is exceptional, A/P is finite-
dimensional, which implies that o 4,p(7p(Da)) is finite. By Lemma 1.3, we
have

oa@a)c ) oasp(rp(De))U {0}
: PePrim(A)
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= U owrte(Dapu{e},
PeEq(D)
and gince there are only & finite number of exceptional primitive ideals,
oa(Da) must be finite, = '

PROPOSITION 3.2. The following are eguivalent:

(i} There is o Banach algebra A and a derivation D : A — A such that
there s un clement o € A with [a, Da] = 0 and Da & Q(A).

(ii) There is a unitel Banach algebra A and a derivation D : A — A such
that there is an element « € Q(A) with [a, Da] = 0 and Da invertible. In
this situation, Prim(A) = £4(D), and there is r & rad(A) with fr, Dr] = 0
and Dr ¢ rad(4).

Proof Let A be a Banach algebra, let D : A — 4 be a derivation, and
agsume there is o € A such that [a, Da] = 0, but Da ¢ Q(A4). By Lemma 3.1,
ca(Da) = {Ar,..., Au} for distinet Ay,..., Ay € C. We may assume without
loss of generality that Ay = 1. Fore > Oand § =1,...,7n let B(A;,€) be
the open disc in C with center A; and radius ¢. Choose € > 0 so small that
B(X;,e) N B(Ax,&) =0 for j # k. Define a function

A Be e g JL 7€BLE),
f-JgJLB()\JnE) C. A2 {0’ ZGU?EQB()\:;,E).

Then f is analytic in a neighborhood of o 4(Da), and the Riesz functional
calculus yields an idempotent e; := f(Da) that commutes with both a and
Da. Put 4, = ejAey, a1 := ejoe; and define a derivation Dy : 43 —
Ay, Dya = e (Dz)ey. Then we have

[a;_, Dl(l,l} = [elael_, el'D(elael)el] = [ela', 61D(616)61]
= [eya, 1 Da] + [e1, &1(Der)era] = exfa, Da] =0,

and from the choice of e; it is clear that o4, (Dia1) = {1}, i.e. Dia; is
invertible, '

If there were any primitive ideal P & Prim(A;)\ £4,(D1), then again the
classical Kleinecke-Shirokov theorem would yield o4, /p(mp(D1a1)) = {0}
The invertibility of Dyay in .4y, however, irplies that 7 p(Dyay) is invertible
in A1/ P. Hence, we have Prim(A1) = &4, (Dy). From Lemma 1.3 we deduce
that i -as any element of A, -—has finite spectrum, g4, (a1) = {1, .-, ftm}
say, for distinet py,..., gn € C. Lét p(X) = ';”=1(X — ;) € C[X]. Then
by the spectral mapping theorem, we have o4, (play)) = p(oa, (a1)) = {0},
Le. pla) € Q(AL). Since [ar, Dias] = 0, we have Dy(p(a1)) = p'(ar) D1aa,
where p' is the formal derivative of p. Clearly, p'(a:) and Diay commute,
whence we have ‘

aa, (D1 (p(w))) C o4, (' (a1))o.a, (D1oa) = 0.4, (0 (1)) -
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From the choice of p it follows that 0 & oa,(9'(a1)), which entails that
Di(p(a)) cannot be quasinilpotent. Repeating the argument we used to
get €1, we obtain an idempotent e; € A; commuting with both plar) and
Dy(p(a1)) = p'(a1)D1a; such that eo Dy (play))es is invertible in ez Ajes.
Put Ay = epAien, ag = egp(ai)es, and define a derivation Dy : Ay —
Ag, Dax = 82(D1a’:)62. Then [ag,Dzazl =10, a3 € Q(AQ), and Dga,;; is in-
vertible in As. As before, we see Prim(Ay) = £4,(D2).

Let Py, ..., P, be the primitive ideals of A3. Then

Agfrad (Ag) = Aa/P1 & -+ @ Aa/ Py,

ie Ap/rad (As) is finite-dimensional. Hence, the coset of az in Az /rad (Ay)
is not only quasinilpotent, but nilpotent in the algebraic sense, i.e. there iy
n & N such that af € rad{Az). Choose n minimal with respect to this
property, and put r = a}. Then Dr = nay~* Dgag, which implies [r, Dr] =
0. If Dr & rad(4s), the invertibility of Dsaz in Az would yield a';“l €
rad(A,) contradicting the minimal choice of n. »

Remark. Let n € N, and let p € C{X\,..., Xy41} with the following
property: If A is a Banach algebra, D : A — A a bounded derivation,
and a € A such that p(a, Da,...,D"a) = 0, then Da is quasginilpotent. By
the two bounded Kleinecke—Shirokov theorems p = [X;, X3] and p = X3
have this property. As an inspection of their proofs shows, Lemuma 3.1 and
Proposition 3.2 hold for every p satisfying the condition above.

Unfortunately, the strategy employed by Thomas to prove [Tho 2, The-
orem 2.9] resists straightforward adaptation to our problem. So far, we have
to put up with two poor man’s versions of a local, unbounded Kleinecke-
Shirokov theorem, both of which require stronger commutativity asswmp-
tions than [a, Da] = 0.

Let A be a ring, and let § C A be an arbitrary subset. Recall that

' Z(8)i={ze A:[s,z] =0 for all s € §}
is called the centralizer of § in A. In case S = A, this notation is consistent
with the one we used earlier for the center of A.

Our next lemma puts together some basic information about centralizers
in rings, much of which is well known.

LeMma 3.3. Let A be e ring, and let 9 be e subset of A. Then:
(i) Z(8) is o full subring of A. If A is o Banach algebra, Z(9) is o
Banach subalgebra of A such that o) (a) = o4(a) for all a € Z(9).
(i) If § 4s commutative, Z(Z(S)) is a commutative subring of A con-
taining S and contained in Z(S5).
(ili) Z(Z2(2(9))) = 2(5). -
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(iv) If D : A — A is a derivation, then D(Z(S U DS)) ¢ Z(S). In
particular, if DS C 8, we have D(Z(S)) ¢ Z(8)

Proof. (i), (il) and (iii) are routine (compare [B-D, Propositioﬁ 15.2]).
It is obviously sufficient to show (iv) if § = {a} for some a € A. Let
z € Z({a, Da}). Then

0= D([a,2]) = [Da,z] + [a, Dz] = |a, Dz]
Le. Dx € Z({a}). =

THEOREM 34 Let A be a Banach algebra, let D : A — A be a derivation,
and let o € A be such that Da € Z(Z({a})). Then Da is quasinilpotent.

Proof. Since {a, Da} C Z(Z({a})), we have
Z({a, Da}) > 2(Z(Z({a}))) = Z({a}).

Since obviously Z({a,Da}) C Z({a}), equality holds. Therefore, by Lem-
ma 3.3(iv), D(Z({e,Da})) C Z({a,Da}) and consequently D(Z(Z({a,
Dal))) € Z(Z({a, Da})). It follows from Lemma 3.3 that Z(Z({a, Da})) is
a commutative Banach algebra contalning a, which by the above argument
is invariant under [0, By the unbounded, commutative Singer-Wermer theo-
rem, £ maps Z(Z({a, Da})} into its radical. In particular, Da is quasinilpo-
tent. =

Remarks. 1. Let A be a Banach algebra, let § C A be any set, and
let D : A — A be a derivation. Let y € S(D|z(s)), i-e. there is a sequence
{2, }2%, such that

& — 0 and Dz, —vy.
Then for any s € 5,
0 = D([CE,»,,,S]) = [Dn, 8| + [.'l’:n,DS] — [y, 8],
Le. §(D|zs)) € Z(5). This observation is another unpublished result by M.
. Thomas. Consequently, §(Dlgzen) € Z(Z(8)), and if B is a commu-
tative Banach subalgebra of A, then 8(D|g) C Z(Z(B)). Hence, if there is
an o ¢ A such that [a, De} = 0, and if B denoctes the Banach subalgebra of

A generated by a, 1t would be sufficient for the proof of a local unbounded
Kleinecke- Shirokov theorem. to show that Da € S(D|g).

2. Lot A be a unital Banach algebra, let D : A — A be a derivation, and
suppose there is o € A such that [a, Da] = 0, and Da is invertible. Then, if
B denotes again the closed subalgebra of A generated by a, S(D|p) # {0}.
Otherwise, define a map d: 4 — A, dz = (Da)~1Dz; which, by continuity,
leaves B invariant, and whose restriction to B is a derivation. However,
da = 1, which violates the classical Singer—~Wermer theorem.
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THEOREM 3.5. Let A be a Banach algebra, let D : A — A be o deriva-
tion, and let @ € A be such that [a, D™a} = O for all n € N. Then Da ig
gquastnilpotent,

Proof. First, we prove that [D™a, D"a] = 0 for all m,n € N. For
m = 0 the claim is clear by assumption. Now, let mn > 0, and assume
[D™ g, D"a] = 0 for all n € N. Then

0= D([Dm_la,Dna]) — [Dma, D”a,] e [Dmmla,‘pnaﬂa]
— [Dma7 Dna] (n = N) X
By induction on m, it follows that § = {a,Da,D%a,...} is a commu-
tative subset of A. Obviously, DS < 9, whence D(Z(5)) ¢ Z(8) and
D(Z(Z(8))) c Z(Z(S)). Since § is commutative, Z(Z(S)) is a commu-

tative Banach algebra containing ¢ which is left invariant by D. As in the
proof of the previous theorem, Da € Q(A) follows. =

Remark. If only [a, Da| = 0 is assumed, we still obtain
0 = D([a, Da]) = [Da, Da] + [a, D*a] = [a, D?q].
However, there is no obvious reason why [e, D"a] = 0 should hold for n > 3.

The following proposition is—at the present stage-—the strongest agser-
tion we can make about [a, D%a.

PROPOSITION 3.6. Let A be o unital Banach algebra, let D : A — A
be a derivation such that Prim(A) = £4(D), and let a € A be such that
[a, Da] = 0. Then [a, D%a} is quasinilpotent.

Proof. For b € Z({a}) define d : A — A, de = [b,Dz]. For z ¢
Z(Z({a})), we have

0= D([z,b]) = [Dz,b] + [z, Db],

or equivalently, dz = [z, Db]. Consequently, dj 5 %({z})) i8 a bounded deriva-
tion. Note that

[a, da] = [a, [b, Da]] = [[a, b], Da] + [b, [a, Da]] = 0.

By assumption, Prim(4) = £p(A), which by Lemuma 1.3 yields that
04(da) is finite. Assume o 4(da) # {0}. A construction as in the proof of
Proposition 3.2 gives a Banach subalgebra A, of Z(Z({a})) with identity,
a bounded derivation dy : A4; ~ A, and an element a; & Ay such that
la1,d1a1] = 0 and dya, is invertible. Let Az denote the unital Banach sul-
algebra of A; generated by ay, and define dy : Ay — A, dyw = (dyay )z,
By continuity, dz 4y C As, i.e. dy is a bounded derivation on Ag such that
dzay = 1. This contradicts the bounded, commutative Singer-Wermer the-
orem, Letting b = D%, we find that [D*a, Da) is quasinilpotent. Since

0= D([a, D?a]) = [Da, D% + [a, D%,
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we have
[a, D%a] = [D?a, Da] € Q(A)

as claimed. m

We conclude with a reflection on what seems to be the main obstacle on
the way to a local, unbounded Kleinecke--Shirokov theorem.

Let A be a unital Banach algebra, let D : A — A be a derivation, and let
a € A be such that [a, Da] = 0 and Da is invertible. Then Z(Z({a, Da}))
is a commutative Banach subalgebra of A, which, in turn, contains the
commutative Banach subalgebra Z(Z({a})), and the map

d: Z2(Z({a})) =~ Z(Z{{a,Da})), dz=(Da) ‘Dz,
is & derivation such that da = 1, This leads to the following question:

(C) Let A and B be unital, commutative Banach algebras, where A is
a subalgebra of B containing the identity. Is there a derivation D :
A — B and an element a € A such that Dg = 1?7

For bounded D, the answer to (C) is clearly “no”, since the restriction of
D to the unital Banach subalgebra of A generated by ¢ would contradict
the classical Singer-Wermer theorem. If D is unbounded, however, a similar
argument-- using Thomas’ unbounded Singer-Wermer theorem instead-—
does not work. Furthermore, the technigues used in [Tho 1] to settle (C) in
case A == [ apparently do not carry over to the general situation.
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On some conjecture concerning Gaussian measures of
dilatations of convex symmetric sets

by

STANISLAW KWAPIEN and JERZY SAWA (Warszawa)

Abstract. The paper deals with the following conjecture: if u is a centered Gaussian
measure on & Banach space I, A > 1, K C Fis a convex, symmetric, closed set, P C F is
a symmelric strip, i.e. P = {2 & F': [2()| < 1} for some z* € F’, such that u(K) = u(P)
then p(AK) 2 n(AP).

We prove that the conjecture is true under the additional assumption that K is “suffi-
ciently symmetric” with respect to i, in particular it is true when K is a ball in a Hilbert
space. As an application we give estimates of Gaussian measures of large and small balls
in a Hilbert space.

I Introduction. Let us recall that a measure p defined on Borel subsets
of a separable Banach space F' is called Gaussian if for each ' € F' the
measure «'(u) coincides with the Gaussian measure N(a, o) on R! for some
a and ¢ which depend on z’ (¢ may be 0 as well). If a = 0 for each 2’ € F’
then the measure is called centered.

A sequence of independent random variables &;, ¢ = 1,2,..., such that
each & is distributed by the law N(0,1) is called canonical Gaussian. In
this case the distribution of the random vector (£,...,£,) will be denoted

by 4, and it will be called the cenonical Gaussian measure on R™.

If 3¢ is a centered Gaussian measure on a separable Banach space F
then there exists a sequence z,;, ¢ = 1,2,..., in F such that the series
S omer @i€i 18 a.s. convergent in F and p is the distribution of its sum; here
€, 5= 1,2,..., is a canonical Gaussian sequence. Each such sequence ()
will be called a representing sequence for . For all unexplained facts about
Clausyian measures which will be used in this paper we refer to one of the
books [6] or [8). :

A sequence mi, 1 == 1,2,..., in F is said to be a l-unconditional basis
for a symmetric convex set K C F if for each € K there exists a unique
sequence ¢, 1 = 1,2,..., of numbers such that 3 72, em; is convergent to
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