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An example of a generalized completely continuous
representation of a locally compact group

by

DETLEYV POGUNTKE (Bielefeld)

Abstract, There is constructed a compactly generated, separable, locally compact
group ¢ and a continnons irreducible unttary representation « of 7 such that the image
m(C"(G)) of the group (™-algebra contains the algebra of compact operators, while the
image (L () of the L'-group algebra does not contain any nonzero compact operator.
The group (¢ is a semidirect product of a metabelian discrete group and a “generalized
Heisenberg group”.

[n [6] the following theorem was proved. Let = be an irreducible contin-
uous unitary representation of a connected Lie group G such that o (C*(G))
containg the algebra of compact operators, i.e., 7 is a generalized completely
continuous representation in cur terminology {apparently this notion is used
in differcnt ways in the literature). Then the image of L'(G) under 7 contains
orthogonal projections of rank one. After the efforts at proving this result
it is hard to imagine that a corresponding theorem is true for general lo-
cally compact groups G. There is even no evidence why in general #(L(G))
should contain nonzero compact operators if #(C*(G)) does. However, to my
best knowledge there is no example in the literature where such a pathology
occurs, It is the purpose of this note to provide such an example. Clearly,
such groups cannot be connected, but still they will be compactly generated
and separable. In [3], Guichardet constructed an example of a discrete group
and a generalized completely continuons representation « of this group such
that the image of the finitely supported functions under 7 does not contain
nonzero compact operators. In some sense, my example is an extension of his.

Thoe basis of the construction is a discrete group ¥ acting automorphi-
cally on a locally compact abelian group J: there is given an homomorphism
@ 8~ Aut(H). Moreover, it is assumed that H contains compact open
gubgroups. Fix one of them and call it K. Later S’,\H and K will be spec-
ified. The duality between the Pontryagin dual # and H is denoted by
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190 D. Poguntke

{,), bohy = x(h) for h € H, x € H. The group S acts on H as vyell,
{sx, kY = {x, @(s)"(h)). Using the duality one may form the “generalized
Heisenberg group” N = H x H x T with multiplication law

(R, t) (WX, 8) = (R xx 1 O RO )

Observe that the abelian group H is written additively, while the groups H
and T are written multiplicatively. Associated with ¢ there is an homomor-
phism % : § — Aut(N) given by

w(s) (hyx, 1) = ((s)(h), sx, %) -
Then one may form the semidirect product G of 5 and N, Le., as a topo-
logical space G is the direct product S x H x H x T, and the multiplication
is defined as

(1) (sh,x 00,0 X))
= (58, () (R)+ 1/, (s Th )X 8 (ke ) (RN

Later we shall consider representations of f which coincide on the central
subgroup T with the identity map. Hence we define y: T — T by v(t) = {, and
we denote by L'(G), the involutive convolution algebra of all L!-functions
f on G satisfying f{azt) = F(t) f(z) for all 2 € G and ¢ &€ T where, of course,
T is identified with {e} x {0} x {1} x T. The algebra L'(N), is defined
similarly; it acts by convolution on L*(G),. Moreover, § acts on L'(N), by
() = f(¥(s)(z)) for s € S, » € N and f € L*(N),.

In [5] it was shown that L'(N). is a simple Banach algebra (this will
be discussed in more detail later on) and that it contains “erthogonal pro-
jections of rank cne”. Using the chosen compact open subgroup K we are
going to comstruct a particular projection p in L{IV); and to determine the
algebra p * L1 (G), #p. . :

Associated with K there is a compact open subgroup of H, namely
(H/K)", the annihilator of K. The Haar measures of H and H are normal-
ized so that K and (H/K)" have measure one. The function p : N~ € is
defined by

@) oy, t) = {“f ifhe K and x € (H/K)",
e 0 otherwise.

To describe px L{G), #p we need a certain family q,, s € S, of functions
in L*(N),. Let § : § — R be the modular function of the action of § on
H, which is given by

[ Fe(s) @) dz =6(s) [ fy)dy
B H

for all, say, compactly supported continuous functions f on H. Choosing f
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to be the characteristic function of X, one sees that
8(s) = lp(s) ™ ()| 1K] ™ = [p(s) 1K)

where |X| denotes the Haar measure of a measurable subset X of H. The

same notation is used for measurable subsets of g, From this

: : description of
& one easily derives that

i

(8)  09) = #lp(s) " (K) /()" (K) N K) - #(E/e(s) " (K) nE)~?
= BB/ p(s)(K) OV E) - (K /o(s) 1K) K)~!
= lip(s) U(E) N K| - |g(s) () 1 K|
for s € 9.
Observe in passing that § acts via ¢ on N in a measure-preserving way.

In particular, one has |[f*||; = ||f||; for f € LY(N), and s € S where
(f,8) = f* 14 the action defined above.

Fc):f s € 5 and x € (H/K N g(s)~(K))* define a character Xs On
wls)” (K] + K, actually on (p(s)"1(K) + K)/p(s)"Y(K) = K/K N
p(s) 1K), by
(4) Xs(L+F) = (0, k) ifl€p(s)*(K)and k€ K.

Then define g, € L'(N), by
(B)  qu(hx.t)
£ xa (k) "H6(s) 2K Mo (s) "L (K|
= it h & p(s)"" (K)+ K and x € (H/K N p(s)"1(K),
0 otherwise.

For cach 5 € 9 the equality

(6) s = (q;-2)""

holds true for the following reasons: By definition of the involution and the
action, one has '

(A= 1) (e 8) = Gymr (0 (s~ R), 8 (x 1), 67, W) ™1)
This is zero unless ¢(s)(~h) & K + @(8)(K), which is equivalent to h €
(o) H(K)+ K, and s(x ') ¢ (H/KNe(s)(E))", which is equivalent to y €
H/K ri@(s) 1 (K). 1f the latter conditions are not satisfied, both functions
(-2 )** and g, vanish at (A, x, ). Suppose that the conditions are satisfied.
Write b as b= [+ b with ! € w(s)"*{K) and k € K. Then

Gyon (o) (=R, 8 (1), oo ) )
= {b(x, L4 k) (500 ™ ))e 1 (12(8)(R))8(5) /2| K N p(s) (BN}
s 4 g L Y (8001 (0(8) (=1 = K)) -
x 8() 31BN () (K)]-
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Since ¢(s)(—1—k) = (s} (=1)+p(s)(—k) with p(s) () € K and p(s)(~k) €
w(s){K) the middle term gives
(G e (0(8) (=T — k) = (s(x™ ) p(8)(=D) = (x ™, =1y
Hence
(Ro-1)7"(hox,t) = t ™20, L+ ) 7, =D 8(s) K N () ()|
=t (x, k)8 (s) 2K N p(s) (KD
which gives (5) in view of (3). Since g, = p one has in particular
(1) P =0p.
The L'-norm of g, is easily computed:
laalls=6(s)™ 21K Nip(s) T (K| - [p(8) T (KO} + K| - [(H/K np()™H (K},
From the exact sequence
(H/K)™ — (H/K Nep(s) ()" = (K/K N p(s)™H (K
oue reads off that
(H/K Np(s)H K" = #(K/K N(s)HK)) = K Npls) ™ (&),
hence
llas |l = 6(s) ™2 (s) " (K) + K]
Since (¢(s)"*(K) + K)/K is isomorphic to ¢(s) ™ (K) /K Np(s) 1 (K) the
measure of ©(s) 1K) + K equals
#e(s) T E) /K N ()7 (K)) = | (8)THED) - [ np(s) ™ (E)| ™
= 8(s)1K Np(s)™" (B)]
hence
llaslly = 8(s) 21K N p(s)™ (E)[™h = 8(s) 4K/ K Npls) " (K))
= #{K/p(s)(K) VKM (K fip(s) " (K) N K )~/
x #(K/K N p(s)" (K))
because of (3). Therefore,
) llaslls = #(K/e(s)(F) N KY2 - (K () (K) N )2
Moreover, the following identities hold true:
) 5% gs =P, fuxqy =pT,
pPrgs=gs=qyxp forallse§,
in particular, pxp =p, -

(10) p’ s LM N)y#p=Cq, forallse s,
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in particular, p % L*(N), xp = Cp,

(11) 4 = Qi;I *gz-1  forallrses.

The easiest way to prove (Ei)w-(ll) is to apply the (partial) Fourier trans-
form. For f € L'(N), define f : H x H — C by

(12) Fihky=" [ Flhyx, 1){x, &) ~tdx.

)
This map ylelds an injective linear map from L*(N), into L'(H,Co(H)),
actually a bijective map from L'(N)y onto L'(H, A(H)) where A(H) de-
notes the Fourler algebra of H. The map is an isometric *-isomorphism

of invelutive Banach algebras if the norm, involution and convolution on
LY(H, A(H}) are defined by

17l =" J 15 =)l acary dh,

H
(13) Fe(hoky = (=" k4 k)7,
(F*g)hky= [ Flb+w,k—2)5(~2,k)da
I

The proof of these facts is straightforward and omitted. For more informa-
tion on a.lgeblas of this type see, for instance, [5]. In particular, it is shown
there that L'(H, A(H)) is a simple Banach algebra, hence LY(N), is simple

as well. Moreover, f — f is S-equivariant if fs is defined by
(14) T k) = 8(s) 7 Fle(s) (b, e (s) (k)

for s € 8, h,k & H, F € L'(H, A(H)).
To obtain (9)-(11) from considerations in L'(H, A(H)) one clearly has
to know q,.

(18)  If w denotes the characteristic function of K then
Guhy @) = ‘S(S)mulﬂ'“'(“’)“(‘?(s)(h +z)),
in particular, p(h, z) = Gu(h, 2) = u(x)u(h + ), for h,z € H.

If b ¢ Lp(s) HKY + K then Gy(h,a) = 0. Suppose now that h =1 -+ k
with ¢ (s)" Y(K) and k € K. Then
e b+ by) = [ dy 6(s) "2 K Nip(s) (K (e k) o 2) 7

[/ K Na(s) KO}

This integral is zero unless &+ 2z € K Np(s) *(K). In that case one obtains
Bull+ b, 2) = 8(s) "2 K Nip(s) (K| (LB Dipls) T (KPP = 8(5) 72
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But for a given pair (h,z) in H x H the conditions: h € ¢(s) 1 (K) + &
and for some {any) decomposition h = -+k with 1 € (s) "' (K) and k € K
the sum k + z lies in X N(s) " (K), are equivalent to: & € & and h 4z ¢
p(8)"H(K). Therefore, G, is of the form as claimed in (15).

To prove q* * q, = p of (9) one first observes that since, by (13), vne
has ()" (h, z) = (42)*(h, ©) = Gs(~h, z + k)™, it follows that (q7)"(h, 7) =
§(s) ™ ?ufx -+ hyu(p(s)(x)) by (15). Using (13) one obtains

(a2 = 4} (B k) = [ (@) kot &,k = 2)Ga (2, k) dr
H

f ()t u(h + k)u(p(s)(k ~ 2))u(k)u(e(s)(k ~ 2)) de
H

u(h+ kyulk) [ 8(s)" ulp(s)(a)? du
H

il

=B(hk) [ w(z)ds =P(h, k) -‘

H

The proof for g, * q; = p* is similar and omitted. To show p* * q, == g, one
first uses (14) to obtain

(16) b* (b, k) = (6} Flip(6) (A, (5) ()
= 8(s) ulp()(R)ule(s) (b + k).

Hence by (13),

(p* % a:)" (R, k)

I

J oMb,k = 2)do (2, ) do

it

i
! 8(s) ™ ulp(s)(k ~ 2))ulip(s)(h + k)

; 6(s)"*ulk)u(ip(s)(k - z)) de

= 8(s) " Pulk)ulp(s)(h -+ k) [ 8(s) " ulp(s)(w))* do
=Fa(h, k). '

Alsg the proof of q, = q, * p is omitted as well as the proof of (11); they are
straightforward calculations of the same type.

. To show (10) one has to compute p** & FxP for any fer\y, A(H)).
First one observes that for f = G, one has p*" « G, » p = gy by (9), hence

icm

Example of o representation 195
p* % LY (N )y % p 2 Ca,. Now let 7 be arbitrary. By (13),

(F*B)hk) = [ Flh+a,k - 2)ulk)ulk — o) dz,
H

and by (16) and (13),

(0" = Fep)h k) == [ p Mgk = ) (F )~y k) dy
M

= 6(8)" Y w(p(s)(h 4 k) )u(k)S(s)~2/?

X f f w(p(8)(k — y))ulk — 2)F(z — v, k — z) de dy.
I H

Substituting ¢’ = k — y and &' = k — z yields
(P % F 2 B) (o k) = 6(3)™ Pu(ip(s)(h + k) u(k)8(s) ="/

x [ [ wle(s))ule)fly ~ v,0) dudy,
H H
which is g (h, k) times a scalar independent of h and k.
The map w : 5 ~+ R defined hy

w(s) = [[qulh = #(K/K N () (K))2 - 4 (KK 0 p(s)™ (B

(cf. (8)) is clearly submultiplicative and greater than or equal to one, Le., it
is a weight function. For this notion see [7]. Therefore,

t(Sw)={f: 5 c|z F(s)|w(s) < oo}

sel

is a subalgebra of the convolution algebra £*(S). Moreover, w is symmetric,
w(s~1) = w(s), hence £*(S,w) is an involutive subalgebra of £'(S).

Using the foregoing notations and formulag one can show the following
proposition.

PROPOSITION. The map 1(S,w) -~ LYG@),, ¢ — &, given by
D (5, hy X, 1) = P(8)qa(h, Xy L) s an dsometric *-isomorphism from (S, w)
onto p* LUGYy * p. If 7 45 o continuous unilory representation of @in H
with 7(t) == t = 4(t) for L € T then m yields involutive representations of
LY@y and of L*(N)y, also denoted by w. The operator w(p) % a nonzero
orthogonal projection ento $¥, say. The map £1(8,w) 3 ¢ — ()| 9P is an
involulive representation of €1(S,w). It is obtained by integrating the unitary
representation 70 of § given by 7 (s) = w(8)m(q.)[9". The representation «
is drreducible ff ©¥ 48

In case that T is irreducible the following equivalences hold true.
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The algebra n(C*(G)) contains the algebra of compact operators on H
iff 78 (C*(9)) contains the algebra of compact operators on $H¥. The algebra
(LY @) contains a nonzero compact operator iff wP({*(S,w)) does.

Proof The equality [|[#'1iq = (|®[les,w) 18 an immediate conse-
quence of the definitions. To prove the multiplicativity of @ ++ @' lot &, ¥ ¢
£1(5,w). Then

(@ *x&) (rz) = (PxP)(r)a.(z) forrel ze N,
and

(& «®)rw) =" [ dy® (rasy)¥ ((sy)"")

4€S N

:Z fdy¢'(Tss_1‘msy)gp’(3~~-laymLs...,l)
s€8 N

=2 [ drs)an(s T esy) ¥ (sl (v

ES N

=D B(rs)¥(s™)(dru ¥ a3} (s 28).

sE€S

But (qrs # 93.0)(s728) = (e % 95-2)" " (2) = (a3, % qu1)(2) = g, (2) |
TS Ty - " Oe-1 (&) = g, (@ Ty
(11). Therefi)re, i ! »1)(@) = 0. () by

(@« &) (ra) =Y B(rs)¥(s ™ )q,(z) = (& % ¥)(r)q,{x)
sES
as desired.

The quality (¥ )*‘ = (@*) for & € £'(5,w) is an easy consequence of
((15), we omit the details. Hence & — &' is an isometric *-morphism from
(8, w) into LY(G),.

To show that each &' is contained in p % L*(G)., # p it suffices {
' . 4 * P it suffices to prove
that p* & = & and & * p = &' because p xp = p hy (9). But

(p*®)(ra) = [ dyp(y)&'(y~'ra)
. N
= [ dyp(y)®'(rr=1y~ra)
N

=a(r) [ dypy)ar(riy=tre)
N

= &(r) f dyply)a)  (y " trarty = S(r)(pr gl Yrer ")
N

- =20r)(p" % a0)(2) = B(r)an(z) by (9).
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The proof for ¢’ +p = ¢’ is similar, one has to use g, *p = g5 (see (9)).

To show that the image of & — & coincides with p * L*(G)., * p let f
in the latter set be given. One readily computes that for s € § the function
f(s~) on N is in p® * L*(N), * p. Since the latter space is one-dimensional,
consisting of multiples of q, (see (10)), there is a function f:8 — C such
that

Fs=) = F(s)s,

or

J(sx) = f(s)q.(z) forse S, zeN.
But as f is an L'-function the function 7 has to be in £2(S,w), and one
finds f == (f)"

It is clear that a representation 7 as in the Proposition yields by integra-
tion representations of L!'(G), and L}(N),. From (7) and (9) it follows that
7(p) is an orthogonal projection. If w(p) were zero, this would yield that
w(L*(N)y % p x LY(N),) would be zero. But as L!(N), is a simple Banach
algebra, and hence L1 (N). #p* L*(N), is total in L' (N),, one would obtain
(LN )y) = 0, which is impossible.

Since £1(8,w) is *-isomorphic to p * L* (@) * b it is obvious that &
x($')|H? is an involutive representation of £1(S, w). It follows easily from the
definitions that this representation is obtained by integrating 7% as given in
the Proposition, From this fact it follows that 7 is a unitary representation.
This can also be verified directly, using (6) and (11). :

Suppose now that « is not irreducible, i.e., that = is the direct sum o @7
of two nonzero unitary representations o and 7 of G with ojr = yId and
7|7 = v Id. Then it is easily checked that 7" is the direct sum of the nonzero
representations o and 7P, Therefore, the irreducibility of 7P implies the
irreducibility of .

On the other hand, if 7 is irreducible let £ be any nonzero vector in Hr.
1t is sufficient to show that 7P(£'(S,w))¢ = w(p * L'(G) * p)¢ is dense in
§°. But m(p * L (G)y #p)€ = w(p)m(L}(G))E. Since w(L*(G))¢ is dense in 5
the claim follows.

For the rest of the proof let 7 be irreducible. Denote by K($) and K(HP)
the algebras of compact operators on ) and HP, respectively. Suppose that
7P(6L{S, w)) contains a nonzero compact operator, say " (&),® € S, w).
Then m(@') is a nonzero compact operator. Next suppose that (L&)
contains nonzero compact operators. Then let I be the ideal of all f e
LY@), such that m(f) is compact. If § is any nonzero vector in P then w{I)¢
is dense in § as 7 is irreducible. In particular, (p)w(I)§ = #(p)x (I Yr(p)€
is different from zero. Hence there exist f € I such that w(p)mw(fm(p) =
w{p* frp) # 0. [f & & (1(S,w) satisfes &' = p* fxp then =¥ (®) is a nonzero
compact operator.
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Now suppose that m(C*(G)) = =(LNG))~ containg flC{fJ)r where the
closure is taken in the operator norm. In particular, for each T° ¢ K(HP)
(the latter space being considered in the most obvious way as a subset of
K($)) there exists a sequence (fn) in LI(G‘)T such tl:at (?_F(f'n.)) converges
to T. Then (m(p* fn xp)) converges to T. If &, in £4(S,w) is debermined by
& = px [y *p then (xP(&,)) converges to T. o w

Finally, suppose that w?(C*(S)) contains X(f7). Sinc:c'z P (C(8) =
P (L(S)) = 7P (S,w))”, for each T € K(fP) there (.’!le-il;‘d A seqience
(B,,) in £1(S,w) such that (wP(P,)) converges to T, Then (’n‘(ff",”__) )' COnverges
to T, hence m(C*(G)) containg K($P). By the frreducibility of 7 it contains
all of X(5).

Remark. By a theorem. of Green [2], the C™*-hull CH Gy of LN, s
isomorphic to the C*-tensor product of C*(5) and X (L3(H)). This explains
why irreducible or irreducible generalized completely continuous represen-
tations of S correspond to those of G as long as the latter are equal Lo -y
on T.

To obtain the desired example the groups H, K, S and the homomor-
phism ¢ : § — Aut(H) are now specified. Let p be any prime number,
denote by Q, the fleld of p-adic numbers and by Z, the ring of p-adic in-
tegers with its usual topology. We will mainly view Q) and %, as locally
compact abelian groups under addition; their multiplicative structure is used
to define automorphisms,

Let H be the restricted direct product of copies of Q, over the integers
with respect to the compact open subgroup Zy, l.e.,

H={h:Z—Q,|h(j) € Zy for almost all j & Z}.

The subgroup K of H consisting of all maps h : Z -~ Z,,, whicli is isomorphic
to Z%, is declared to be cpen in H, and X is endowed with the product
topology. This way H is a locally compact abelian group.

The group S is the semidirect product of A = 7Z and & = Z* ihe divect
sum over Z of copiés of Z. The multiplication in & = A w B is given hy

(a,b) (@’ b') = (oo, b")

where the jth component b’j’ of b ¢ 2™ i defined hy b;’ = Djgar b b’,

Finally, the homomorphism ¢ : § ~ Aut(H) is defined by
(17) [io(a, BYAI(G) = p 2 h{j - ).

Altogether,on G=Ax Bx Hx B % T endowed with the product 'k.t)]f)blogy,
the general formula (1) gives a group multiplication

(18) (a, b, h,x,t) (ar‘,br” h’, X’,t') e (C’L”,FJH, h”, XH,.[;H) :
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where o = a4+ o, bf = bjyo + b, B = o(d,¥) LAY + K, (X7, x) =
O pla’, 0)(x))x! () for z € H, and t = ' {x, p(a’, ') (—R')).

LemMA 1. The locally compact group G is compactly generated and sep-
arable, i.c., it has o countable basis of the topology. The weight function w
and the modular function é of the action of S = Awx B on H (compare (8)
and (3)) are given by

wla,b) = pPemlbil §(q b) = pPR-sti if b= (b,) € B=27P.

Proof. Let " € B be defined by 5§ = 1 and b0 = 0 for j % 0. It is
evident that S is generated by (1,0) and (0, %). Hence the subgroup L of &
generated by the compact set K x (H/K)" x TU{(1,0), (0,b%)} contains §
and K x (H/K)* x T. Conjugating K x (H/K}* x T by elementsin B C §
produces the whole of H x H % T. Hence L = G.

The question of separability reduces at once to H and H. But H is
a countable extension of the compact metrizable group K = Zg‘, hence is
separable. Moreover, the group H is selfdual. This can be seen as follows.
The quotient Q,/Z, is isomorphic to Z[1/p]/Z. The latter group can be
identified with a subgroup of Q/Z or of K/Z which is isomorphic to T in the
usual manner. This way we find a canonical k£ € Q) with ker k = Z,. Then
define H x H — T by

o0
(g7, (rs)) = T slayrs)-
j=—o0
It is easy to see that this pairing establishes an isomorphism from H
onto H.

The formulas for w and § follew at once from the fact that for n € Z the
cardinality of Z,/p"Zy N Zy is one for n < 0 and p™ for n = 0.

The Pontryagin dual B is isomorphic to T2. Each z = (z;) € T defines
a character 7, € B by g

(19) )= JT ="

The character 7, extends to a character 7. of the subgroup {0} x B x {0} x
H x T of G by #.(0,5,0, %, t) = tn,(b). This character is induced to obtain
a representation, say m,, of G. The representation 7, can be realized.in
L2(A x H) where A x H carries the product measure of the Haar measures
on A = Z and H. One finds that '

(ralarb b, DEHA, B = 6,828, h = pla’ = a, ) (W))ms ()

x £(d' — a, (0, 8)(1') — pla — o', 0)(h))
where 8 € B is given by #; = —bjyo—a-
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‘With 7, there is associated (see the Proposition) a representation nb of
S = Ax B in . The space H = m,{p)(L*(Ax H)) Is easily identified. More
generally, we shall compute the operator m:(q.), ¢ € 5 for the definition of
4, see (5) and (15).

For £ € L*(A x H),

{ma(qs)EHa', R) = fdh f dx fdtq‘q(h’x’t)

B T
X t(x, b —p(a’, 0) (W ))é(a', b -~ p(~a/, 0) (1))

200} D. Poguntke
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f dh8(s)~ Y u(p(a’, 0)(W) — h)
H

x u(p(s)p(a’, 0)(W)E(', B — p(~a’,0)(h)).
Substituting A" = k' — ¢(—a',0)(h) yields

(e (@) €}, ) = 8(s) ™ ulp(s)eld, (1)) [ dhulpla’,0)(h)) &, h)

H
In particular,

{m:(p)e}(@', B) = u(e(a’,0)() [ dhulp(a',0)) E(a’,h).

H
One verifies easily that

(21)  The map V : £2(A) — ¥ defined by
(V) o', A') = ulip(a’, 0)(R'))¢ (')

18 unitary.
Transferring via V' the representation f of § in $* into the space P*(A) one
gets a representation g, of S in ¢2(A4) given by
£%
T by
(22)  {ea(0,)CHa) = na((bw-a)i)(@ = @) = [ 27 "¢(a’ - a).
Jrsnn iy

This formula follows from the definitions of V and !, 78(4) = 75 (8)72 (),
and from the above determined structure of T(qs). The easy computation
is omitted: Of course, g, is nothing but ind 7, realized in €2(A).

LEMMA 2. The representation w, of G, z € T, is irveducible if and only
if the sequence z is not periodic, i.e., there 48 no positive inleger m such
that 2jpm = zj for all 5 € Z. If this condition is satisfied then T, 45 o
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generalized completely continuous representation if and only if the A-orbit
2 = {(%j+a); | @ € A} is locally closed in T%.

Remark. In order to establish the relation to the results in [3] we ob-
serve that the condition “(2, is locally closed in T2” is equivalent to “f2, is
a discrete subset of T%” for the following reasons. Clearly, any discrete sub-
space is locally closed. If the A-orbit £2; is locally closed then under the map
a s a2 = (Z..4); the subspace (2, is homeomorphic to A as the stabilizer
group is trivial. Hence 2, is discrete.

Proof of Lemma 2. By the Proposition the questions of whether T,
is irreducible or whether , is a generalized completely continuonus represer-
tation, can be reduced to the corresponding questions for the representation
2z of 5. In the latter case the answers are known (see [3]). We shall repeat
here the essential arguments. This gives the opportunity to introduce some
notations which will be needed later anyway.

If z is periodic, say 21 = z; for all 7, then the operator M : £2(A) —
£(A), (M¢){a") = ¢(d’ + m) commutes with ,(S), hence o, is not irre-
ducible.

Now suppose that z is not periodic, and let U : £2(A) — #2(A) be any
ntertwining operator for g,. Let &g be the “Dirac delta” in £2(A4), and let
e = Ueg € £2(A). From Ug(0,b) = p(0,b)U it follows that o(0,b)e = 5. (b)e
for all b € B. As zis not periodic the latter identity implies that € is a scalar
multiple of ¢, say £ = Agg. Since U commutes with the translations o{a,0),
and since the translates of ey span £2(A), one concludes that U = AId.

The L'-group algebra of the semidirect product S = A x B may be
considered in the usual way as the L'-covariance algebra £1(4,£1(B)) (see
[4]). Via Fourier transform the C*-hull of £*(B) is nothing but C(B), and
C*(8) is the C*~covariance algebra G*(A4, C(B)). The Ll-covariance alge-
bra £(A,C(B)) lies half way between £1(S) and C*(S): there are (norm-
decreasing) embeddings

(A, 8(B)) — £NA,C(B)) - C"(4,C(B)).

The representation g, yields representations of £1(A4, C’(E)) cand . of
C?*(A,Cf(ﬁ)), also denoted by p.. The image g.(C*(S)) contains nonzero
compact operators if and only if there exist continuous functions @ on
B = T% such that & is not identically zero on £2,, but @ is zero on {2, \ 2,
where (2, denotes the closure of (2,. Such functions exist precisely when
12, is locally closed. In this case for g € £1(4,C(B)). the operator 0=(g) is
compact if and only if for all a € A the function gla) € C(B) vanishes on
2.\ 0 | |

The proof of Lemma 2 is finished. It has also shown what we have to do
further. We have to specify a locally closed A-orbit 2, such that the ahove
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condition on g is not satisfied for functions in the image of £'(%, w) under
the map £1(4,6'(B)) — £1(4, C(B)), unless p.(g) = 0 (compare the Propo-
sition). To this end we need a little lemma on a particular decomposition of
the integers,

. LEmMA 3. Let D be a countable set. There exisls o decomposilion 7, =
UaepCa of the set of integers with the following property: If n s any pos-
itwe integer and if d_,,...,d1,dy,...,dy are any clements in 1D then Lhe

intersection
T

ﬂ (Gfij - J;)
dmen

is not empty (and hence infinite). In particular, all the scts C'y are infinite.

Proof. Let (D, )nen be an increasing sequence of finite subsets of 1D with
UneN Dy = D. First we claim that for each n € N there exists a colleetion

(Oé”))ﬁge D, of disjoint finite subsets of Z with the following properties:

o {Udhn{U U e)-s
deD, m<n dED
. (i) If dp,...,do, . .-y dn, are any elements in D,, then ﬂ;‘mmn(d’éy] e §)
18 not empty.

_It is easy to see that such collections exist hecause in (ii) there ave only

ﬁr%m)ely many conditions to be fulfilled; and clsarly for a given n the sets
T .

Cy",d € Dy, can be chosen in the complement of the previously constructed

finitely many finite sets,

Then for each d € D choose an m € N with d € Dy, and put Yy =
Unsm sz"). The sets Cj, d € D, are pairwise disjoint. Finally, choose any
fa’mily Ca, d € D, with C, ¢ Oy for each d and 7 = Ude pCa (for instance
U = Cq for all d € D except for a distinguished point dp). Such a family
has the claimed property.

To see that for any given n and any given sequence d..,, ..., dy, ..., dy, in
D the intersection (\'___(Cy. —5) i i infinite set, ] '

he int = (Cd; — ) is automatically an infinjte set, Jot { be any
positive u}t'eger, let m = n+4(2n +1), and define the sequence d’ ..., df,
in D by d), = d; if k = j mod(2n +1) and [5] £ n. As (Yr (O~ k) o 0,
we may take a number y in this intersection, It ig easily veri:ﬁedktha'b then
the numbers y +5(2n +1}, s € Z, |s] < £, are contalned in Vo (Cay = §),
hence the latter intersection containg at leagt 2¢ 4 1 eloments,

In particular, let D be a countable subset of T such that 1 ¢ 1) and that
the closure D equals D U {1}. For each’d ¢ D choose rq > 0 such that

(23) : {greC| e -dl < 2ra} 0 D = {4}

icm;
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Lot Z = U depCa be a decomposition according to Lemma 3. Choose z —
(2y) € T# with the following properties:

(24)  The map Z 3 j — z; € T is injective.

(25) Ifj e Cqthen 0 < |z; —d| < ry.

(26}  Yor each d € D and each r > 0 the set {j € O, | |z —di > r}is
finite.

These conditions imply that d is the only cluster point of {z; | j € Cy}, that

D and {z; | j & Z} are digjoint, and that DU {2; | j € %} is a closed subset

of T.

LEMMA 4. Let z € T be as above and let ) = 2, be its orbit under
the “shift group”, i.e., 2 = {(#j4a); | @ € Z}. Then 12 is locally closed in
T% and the closure £2 equals 2U D%, which is a disjoint union since D and
{z; | § € Z} are disjoint subsets of T.

Proof. To prove that 2U D% is contained in §2 it is clearly sufficient to
verify that any @ = (x;) € D? is contained in §2. To this end, let any n € N
and € > 0 be given. We have to show that there exists an a € 4 = Z such
that '
(27) |Zj4a — 2;] <& for |f| <n.

By Lemma 3 the set A' = {a € A | j +a € C,;, for |j| < n} is infinite. By
(26), for almost all a ¢ A' the inequalities (27) are true. :

To prove conversely that 2 is contained in 2 U D2, let z be a given
point in (2. Since DU {z; | § € Z} is closed in T, each z; is contained in
this set. If each x4 is contained even in D we are done. So, assume that
there is a ky € Z with xy, = z;, for some jy. We have to show that then
z € {2. By applying a suitable element in the shift group we may suppose
that @, = 2;, for some jy, and our claim reduces to z = z. Given jy from
the properties (24}-(26) of z it follows that there exists an g9 > 0 such that
(28) |25 — 24| < €0 implies F=jo. B,
Then take any j € Z and any €, 0 < € < &. Since « is in {2 there is an
a = a(f,€) € 4 such that S

|25 40 = 25| <& and  |zjp4a — 3| < €.
As xj, = 2;, from (28) we deduce that @ = 0, hence |z; — ;| < . Since €
and 7 were arbitrary, we conclude thai T=2z

The known structure of 2 yields 2 \ 2 = D%, which is a closed subset
of TZ, Therefore, 2 is locally closed. - -

 THEOREM. Let G = A x Bx H x H x T be the group as constructed
above (see in particular (17) and (18)), and let z € T be a point as above
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(compare (23) through (26)). Then the continuous unitary representalion ., [4] . Leptin, Verallgemeinerte Ll-AJ%?regsung glsrzjel;give Dggstgczlungen lokal kom-
of G (see (20), (17) and Lemma 1) is irreducible and 7. (C* () contains the pakter G"_"TA"TJPWM Invent. Math. 3 (1967), 257-281, 4 (1967), 68~86.

f G ( (20), . 1 . _ [8] H. Leptin and D. Poguntke, Symmetry and nonsymmetry for locally compact
algebra of cornpact operators, while m;(L*(G)) contains no compact operator | groups, J. Fanct. Anal. 33 (1979), 110-134.

except for zero. ; (6] D. Poguntke, Unitary representations of Lie groups and operaiors of finite rank,

Ann. of Math., to appear.
[7] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon,
Oxford 1968.

Proof By Lemma 2, since clearly z is not periodic and since the 4-
orbit {2, of z is locally closed by Lemma 4, x, is an irred\_mible generalized
completely continuous representation. To prove that m,{L(¢)) containg no

nonzero compact operator, by the Proposition it is sufficient to show the : UNIVRRSITAT BIELEFELD
corresponding property for g,(£'(5,w)). By what we have seen in the proof : FAKULTAT FUR MATHEMATIK
of Lemma 2, the operator p(f), f € £4(S,w) ¢ £(S), is compact il and POSTFACH 100131 7
only if for all a € A the function g, € C(T%) defined by : W-4800 BIELEFRLD, GERMANY
[« 4]
golw} = Z f(a'b)"?m(b)_l = Z f(ab) ]:[ JJ & ' Reveived December 18, 1992 {3039)
beB beB PR

vanishes on {2\ 12,. Hence we have to show that if f satisfies this condition,
then g,(f) = 0. We claim that even better: f is then necegsarily identically
zero. ‘ '

From the structure of w, w(ab) = p#Zin-w/%! (compare Lemma 1); it

follows easily that the series 3. 5 f(ab) IT72. ., :1:;-“[” converges not only for
z € T%, but also for 2 € Y where Y denotes the annulus {y & C|p /2 <
ly| < p*/2}. Define Fu(z), © € Y%, to he the sum of this series. For n & N let
i be the canonical embedding from Y% = {(y_n,. o, - s yn) | Uk € ¢
Y for |k| < n} into Y2, ie.,

-(n Yy
I.( )(y-’n:""lyo:"':yn)j x{{]

The function §, o i(" is continuous on Y*"*+! and analytic in the interior
Y2+, Since g, vanishes on §2, \ £2, = DZ (see Lemma 4) we conclude
that F, 0 (™) vanishes on the subset D*+ of Y2+l Ag 7 04(0) i analytic !
this yields that g, o ¢(™ ig identically zero, In particular, g, vanishes on
i (T?+1), Since Uy en 20 (T 3s demse in T%, it follows that g, is
identically zero. Hence for each a € A the function b -+ f(ab) is jdentleally
zero and, therefore, f is identically zero.

A S P e e e 1

if 7l <n,
if ] > n.
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