

## STUDIA MATHEMATICA 105 (2) (1993)

## An example of a generalized completely continuous representation of a locally compact group

by

## DETLEV POGUNTKE (Bielefeld)

Abstract. There is constructed a compactly generated, separable, locally compact group G and a continuous irreducible unitary representation  $\pi$  of G such that the image  $\pi(C^*(G))$  of the group  $G^*$ -algebra contains the algebra of compact operators, while the image  $\pi(L^1(G))$  of the  $L^1$ -group algebra does not contain any nonzero compact operator. The group G is a semidirect product of a metabelian discrete group and a "generalized Heisenberg group".

In [6] the following theorem was proved. Let  $\pi$  be an irreducible continuous unitary representation of a connected Lie group G such that  $\pi(C^*(G))$ contains the algebra of compact operators, i.e.,  $\pi$  is a generalized completely continuous representation in our terminology (apparently this notion is used in different ways in the literature). Then the image of  $L^1(G)$  under  $\pi$  contains orthogonal projections of rank one. After the efforts at proving this result it is hard to imagine that a corresponding theorem is true for general locally compact groups G. There is even no evidence why in general  $\pi(L^1(G))$ should contain nonzero compact operators if  $\pi(C^*(G))$  does. However, to my best knowledge there is no example in the literature where such a pathology occurs. It is the purpose of this note to provide such an example. Clearly, such groups cannot be connected, but still they will be compactly generated and separable. In [3], Guichardet constructed an example of a discrete group and a generalized completely continuous representation  $\pi$  of this group such that the image of the finitely supported functions under  $\pi$  does not contain nonzero compact operators. In some sense, my example is an extension of his.

The basis of the construction is a discrete group S acting automorphically on a locally compact abelian group H: there is given an homomorphism  $\varphi:S\to \operatorname{Aut}(H)$ . Moreover, it is assumed that H contains compact open subgroups. Fix one of them and call it K. Later S, H and K will be specified. The duality between the Pontryagin dual  $\widehat{H}$  and H is denoted by

<sup>1991</sup> Mathematics Subject Classification: 22D20, 22D10, 22D25.

 $\langle \, , \, \rangle, \ \langle \chi, h \rangle = \chi(h)$  for  $h \in H, \ \chi \in \widehat{H}$ . The group S acts on  $\widehat{H}$  as well,  $\langle s\chi, h \rangle = \langle \chi, \varphi(s)^{-1}(h) \rangle$ . Using the duality one may form the "generalized Heisenberg group"  $N = H \times \widehat{H} \times \mathbb{T}$  with multiplication law

$$(h,\chi,t)(h',\chi',t')=(h+h',\chi\chi',tt'\langle\chi,h'\rangle^{-1}).$$

Observe that the abelian group H is written additively, while the groups  $\widehat{H}$  and  $\mathbb{T}$  are written multiplicatively. Associated with  $\varphi$  there is an homomorphism  $\psi: S \to \operatorname{Aut}(N)$  given by

$$\psi(s) (h, \chi, t) = (\varphi(s)(h), s\chi, t).$$

Then one may form the semidirect product G of S and N, i.e., as a topological space G is the direct product  $S\times H\times \widehat{H}\times \mathbb{T}$ , and the multiplication is defined as

(1) 
$$(s, h, \chi, t) (s', h', \chi', t')$$
  
=  $(ss', \varphi(s')^{-1}(h) + h', (s'^{-1}\chi)\chi', tt'\langle \chi, \varphi(s')(h')\rangle^{-1})$ .

Later we shall consider representations of G which coincide on the central subgroup  $\mathbb T$  with the identity map. Hence we define  $\gamma\colon \mathbb T\to\mathbb T$  by  $\gamma(t)=t$ , and we denote by  $L^1(G)_\gamma$  the involutive convolution algebra of all  $L^1$ -functions f on G satisfying  $f(xt)=\overline{\gamma}(t)f(x)$  for all  $x\in G$  and  $t\in \mathbb T$  where, of course,  $\mathbb T$  is identified with  $\{e\}\times\{0\}\times\{1\}\times\mathbb T$ . The algebra  $L^1(N)_\gamma$  is defined similarly; it acts by convolution on  $L^1(G)_\gamma$ . Moreover, S acts on  $L^1(N)_\gamma$  by  $f^s(x)=f(\psi(s)(x))$  for  $s\in S$ ,  $x\in N$  and  $f\in L^1(N)_\gamma$ .

In [5] it was shown that  $L^1(N)_{\gamma}$  is a simple Banach algebra (this will be discussed in more detail later on) and that it contains "orthogonal projections of rank one". Using the chosen compact open subgroup K we are going to construct a particular projection  $\mathfrak p$  in  $L^1(N)_{\gamma}$  and to determine the algebra  $\mathfrak p * L^1(G)_{\gamma} * \mathfrak p$ .

Associated with K there is a compact open subgroup of  $\widehat{H}$ , namely  $(H/K)^{\wedge}$ , the annihilator of K. The Haar measures of H and  $\widehat{H}$  are normalized so that K and  $(H/K)^{\wedge}$  have measure one. The function  $\mathfrak{p}: N \to \mathbb{C}$  is defined by

(2) 
$$\mathfrak{p}(h,\chi,t) = \begin{cases} \overline{t} & \text{if } h \in K \text{ and } \chi \in (H/K)^{\wedge}, \\ 0 & \text{otherwise.} \end{cases}$$

To describe  $\mathfrak{p} * L^1(G)_{\gamma} * \mathfrak{p}$  we need a certain family  $\mathfrak{q}_s, s \in S$ , of functions in  $L^1(N)_{\gamma}$ . Let  $\delta: S \to \mathbb{R}_+$  be the modular function of the action of S on H, which is given by

$$\int_{H} f(\varphi(s)(x)) dx = \delta(s) \int_{H} f(y) dy$$

for all, say, compactly supported continuous functions f on H. Choosing f

to be the characteristic function of K, one sees that

$$\delta(s) = |\varphi(s)^{-1}(K)| \ |K|^{-1} = |\varphi(s)^{-1}(K)|$$

where |X| denotes the Haar measure of a measurable subset X of H. The same notation is used for measurable subsets of  $\widehat{H}$ . From this description of  $\delta$  one easily derives that

(3) 
$$\delta(s) = \#(\varphi(s)^{-1}(K)/\varphi(s)^{-1}(K) \cap K) \cdot \#(K/\varphi(s)^{-1}(K) \cap K)^{-1}$$
$$= \#(K/\varphi(s)(K) \cap K) \cdot \#(K/\varphi(s)^{-1}(K) \cap K)^{-1}$$
$$= |\varphi(s)^{-1}(K) \cap K| \cdot |\varphi(s)(K) \cap K|^{-1}$$

for  $s \in S$ .

Observe in passing that S acts via  $\psi$  on N in a measure-preserving way. In particular, one has  $||f^s||_1 = ||f||_1$  for  $f \in L^1(N)_{\gamma}$  and  $s \in S$  where  $(f,s) \mapsto f^s$  is the action defined above.

For  $s \in S$  and  $\chi \in (H/K \cap \varphi(s)^{-1}(K))^{\wedge}$  define a character  $\chi_s$  on  $\varphi(s)^{-1}(K) + K$ , actually on  $(\varphi(s)^{-1}(K) + K)/\varphi(s)^{-1}(K) \cong K/K \cap \varphi(s)^{-1}(K)$ , by

(4) 
$$\chi_s(l+k) = \langle \chi, k \rangle \quad \text{if } l \in \varphi(s)^{-1}(K) \text{ and } k \in K.$$

Then define  $q_s \in L^1(N)_{\gamma}$  by

(5) 
$$q_s(h,\chi,t) = \begin{cases} t^{-1}\chi_s(h)^{-1}\delta(s)^{-1/2}|K\cap\varphi(s)^{-1}(K)| \\ \text{if } h\in\varphi(s)^{-1}(K)+K \text{ and } \chi\in(H/K\cap\varphi(s)^{-1}(K))^{\wedge}, \\ 0 \text{ otherwise.} \end{cases}$$

For each  $s \in S$  the equality

$$\mathfrak{q}_s = (\mathfrak{q}_{s-1})^{s*}$$

holds true for the following reasons: By definition of the involution and the action, one has

$$(\mathfrak{q}_{s^{-1}})^{s*}(h,\chi,t) = \overline{\mathfrak{q}}_{s^{-1}}(\varphi(s)(-h),s(\chi^{-1}),t^{-1}(\chi,h)^{-1}).$$

This is zero unless  $\varphi(s)(-h) \in K + \varphi(s)(K)$ , which is equivalent to  $h \in \varphi(s)^{-1}(K) + K$ , and  $s(\chi^{-1}) \in (H/K \cap \varphi(s)(K))^{\wedge}$ , which is equivalent to  $\chi \in H/K \cap \varphi(s)^{-1}(K)$ . If the latter conditions are not satisfied, both functions  $(\mathfrak{q}_{s^{-1}})^{s*}$  and  $\mathfrak{q}_s$  vanish at  $(h, \chi, t)$ . Suppose that the conditions are satisfied. Write h as h = l + k with  $l \in \varphi(s)^{-1}(K)$  and  $k \in K$ . Then

$$\begin{aligned} \overline{\mathfrak{q}}_{s^{-1}}(\varphi(s)(-h), s(\chi^{-1}), t^{-1}\langle \chi, h \rangle^{-1}) \\ &= \{t\langle \chi, l+k \rangle (s(\chi^{-1}))_{s^{-1}}(\varphi(s)(h))\delta(s)^{1/2} | K \cap \varphi(s)(K) | \}^{-1} \\ &= t^{-1}\langle \chi, l+k \rangle^{-1} (s(\chi^{-1}))_{s^{-1}}(\varphi(s)(-l-k)) \\ &\times \delta(s)^{1/2} | K \cap \varphi(s)(K) | .\end{aligned}$$

Since  $\varphi(s)(-l-k) = \varphi(s)(-l) + \varphi(s)(-k)$  with  $\varphi(s)(-l) \in K$  and  $\varphi(s)(-k) \in \varphi(s)(K)$  the middle term gives

$$(s(\chi^{-1}))_{s^{-1}}(\varphi(s)(-l-k)) = \langle s(\chi^{-1}), \varphi(s)(-l) \rangle = \langle \chi^{-1}, -l \rangle.$$

Hence

$$(\mathfrak{q}_{s^{-1}})^{s*}(h,\chi,t) = t^{-1}\langle \chi, l+k\rangle^{-1}\langle \chi^{-1}, -l\rangle\delta(s)^{1/2}|K\cap\varphi(s)(K)|$$
  
=  $t^{-1}\langle \chi, k\rangle^{-1}\delta(s)^{1/2}|K\cap\varphi(s)(K)|,$ 

which gives (5) in view of (3). Since  $q_e = p$  one has in particular

$$\mathfrak{p}^* = \mathfrak{p}.$$

The  $L^1$ -norm of  $\mathfrak{q}_s$  is easily computed:

$$\|\mathfrak{q}_s\|_1 = \delta(s)^{-1/2} |K \cap \varphi(s)^{-1}(K)| \cdot |\varphi(s)^{-1}(K) + K| \cdot |(H/K \cap \varphi(s)^{-1}(K))^{\wedge}|.$$

From the exact sequence

$$(H/K)^{\wedge} \to (H/K \cap \varphi(s)^{-1}(K))^{\wedge} \to (K/K \cap \varphi(s)^{-1}(K))^{\wedge}$$

one reads off that

$$|(H/K \cap \varphi(s)^{-1}(K))^{\wedge}| = \#(K/K \cap \varphi(s)^{-1}(K)) = |K \cap \varphi(s)^{-1}(K)|^{-1},$$

hence

$$\|\mathfrak{q}_s\|_1 = \delta(s)^{-1/2} |\varphi(s)^{-1}(K) + K|$$

Since  $(\varphi(s)^{-1}(K) + K)/K$  is isomorphic to  $\varphi(s)^{-1}(K)/K \cap \varphi(s)^{-1}(K)$  the measure of  $\varphi(s)^{-1}(K) + K$  equals

$$\#(\varphi(s)^{-1}(K)/K \cap \varphi(s)^{-1}(K)) = |\varphi(s)^{-1}(K)| \cdot |K \cap \varphi(s)^{-1}(K)|^{-1}$$
$$= \delta(s)|K \cap \varphi(s)^{-1}(K)|^{-1},$$

hence

$$\|\mathfrak{q}_s\|_1 = \delta(s)^{1/2} |K \cap \varphi(s)^{-1}(K)|^{-1} = \delta(s)^{1/2} \# (K/K \cap \varphi(s)^{-1}(K))$$

$$= \# (K/\varphi(s)(K) \cap K)^{1/2} \cdot \# (K/\varphi(s)^{-1}(K) \cap K)^{-1/2}$$

$$\times \# (K/K \cap \varphi(s)^{-1}(K))$$

because of (3). Therefore,

(8) 
$$\|\mathfrak{q}_s\|_1 = \#(K/\varphi(s)(K) \cap K)^{1/2} \cdot \#(K/\varphi(s)^{-1}(K) \cap K)^{1/2}.$$

Moreover, the following identities hold true:

(9) 
$$\begin{aligned} q_s^* * q_s &= \mathfrak{p}, \quad q_s * q_s^* &= \mathfrak{p}^s, \\ \mathfrak{p}^s * q_s &= q_s &= \mathfrak{q}_s * \mathfrak{p} \quad \text{for all } s \in S, \end{aligned}$$

in particular, p \* p = p,

(10) 
$$\mathfrak{p}^s * L^1(N)_{\gamma} * \mathfrak{p} = \mathbb{C}\mathfrak{q}_s \quad \text{for all } s \in S,$$

in particular,  $\mathfrak{p} * L^1(N)_{\gamma} * \mathfrak{p} = \mathbb{C}\mathfrak{p}$ ,

(11) 
$$q_r = q_{rs}^{s^{-1}} * q_{s^{-1}} \quad \text{for all } r, s \in S.$$

The easiest way to prove (9)–(11) is to apply the (partial) Fourier transform. For  $f \in L^1(N)_{\gamma}$  define  $\hat{f}: H \times H \to \mathbb{C}$  by

(12) 
$$\widehat{f}(h,k) = \int_{\widehat{H}} f(h,\chi,1) \langle \chi,k \rangle^{-1} d\chi.$$

This map yields an injective linear map from  $L^1(N)_{\gamma}$  into  $L^1(H, C_{\infty}(H))$ , actually a bijective map from  $L^1(N)_{\gamma}$  onto  $L^1(H, A(H))$  where A(H) denotes the Fourier algebra of H. The map is an isometric \*-isomorphism of involutive Banach algebras if the norm, involution and convolution on  $L^1(H, A(H))$  are defined by

(13) 
$$\|\widehat{f}\| = \int_{H} \|f(h, -)\|_{A(H)} dh,$$

$$\widehat{f}^{*}(h, k) = \widehat{f}(h^{-1}, k + h)^{-},$$

$$(\widehat{f} * \widehat{g})(h, k) = \int_{R} \widehat{f}(h + x, k - x)\widehat{g}(-x, k) dx.$$

The proof of these facts is straightforward and omitted. For more information on algebras of this type see, for instance, [5]. In particular, it is shown there that  $L^1(H, A(H))$  is a simple Banach algebra, hence  $L^1(N)_{\gamma}$  is simple as well. Moreover,  $f \mapsto \widehat{f}$  is S-equivariant if  $\widehat{f}^s$  is defined by

(14) 
$$\widehat{f}^s(h,k) = \delta(s)^{-1} \widehat{f}(\varphi(s)(h), \varphi(s)(k))$$

for  $s \in S$ ,  $h, k \in H$ ,  $\widehat{f} \in L^1(H, A(H))$ .

To obtain (9)-(11) from considerations in  $L^1(H, A(H))$  one clearly has to know  $\widehat{\mathfrak{q}}_s$ .

(15) If u denotes the characteristic function of K then

$$\widehat{\mathfrak{q}}_s(h,x) = \delta(s)^{-1/2} u(x) u(\varphi(s)(h+x)),$$

in particular,  $\widehat{\mathfrak{p}}(h,x) = \widehat{\mathfrak{q}}_e(h,x) = u(x)u(h+x)$ , for  $h,x \in H$ .

If  $h \notin \varphi(s)^{-1}(K) + K$  then  $\widehat{\mathfrak{q}}_s(h, x) = 0$ . Suppose now that h = l + k with  $l \in \varphi(s)^{-1}(K)$  and  $k \in K$ . Then

$$\widehat{\mathfrak{q}}_s(l+k,x) = \int\limits_{\{H/K\cap\varphi(s)^{-1}(K)\}^{\wedge}} d\chi \, \delta(s)^{-1/2} |K\cap\varphi(s)^{-1}(K)| \langle \chi,k\rangle^{-1} \langle \chi,x\rangle^{-1} \,.$$

This integral is zero unless  $k+x \in K \cap \varphi(s)^{-1}(K)$ . In that case one obtains  $\widehat{\mathfrak{q}}_s(l+k,x) = \delta(s)^{-1/2}|K \cap \varphi(s)^{-1}(K)| \cdot |\{H/K \cap \varphi(s)^{-1}(K)\}^{\wedge}| = \delta(s)^{-1/2}$ .

Example of a representation

195

But for a given pair (h, x) in  $H \times H$  the conditions:  $h \in \varphi(s)^{-1}(K) + K$  and for some (any) decomposition h = l + k with  $l \in \varphi(s)^{-1}(K)$  and  $k \in K$  the sum k + x lies in  $K \cap \varphi(s)^{-1}(K)$ , are equivalent to:  $x \in K$  and  $h + x \in \varphi(s)^{-1}(K)$ . Therefore,  $\widehat{\mathfrak{q}}_s$  is of the form as claimed in (15).

To prove  $\mathfrak{q}_s^* * \mathfrak{q}_s = \mathfrak{p}$  of (9) one first observes that since, by (13), one has  $(\mathfrak{q}_s^*)^{\wedge}(h,x) = (\mathfrak{q}_s^{\wedge})^*(h,x) = \widehat{\mathfrak{q}}_s(-h,x+h)^-$ , it follows that  $(\mathfrak{q}_s^*)^{\wedge}(h,x) = \delta(s)^{-1/2}u(x+h)u(\varphi(s)(x))$  by (15). Using (13) one obtains

$$(\mathfrak{q}_s^* * \mathfrak{q}_s)^{\wedge}(h, k) = \int\limits_H (\mathfrak{q}_s^*)^{\wedge}(h + x, k - x)\widehat{\mathfrak{q}}_s(-x, k) dx$$

$$= \int\limits_H \delta(s)^{-1} u(h + k) u(\varphi(s)(k - x)) u(k) u(\varphi(s)(k - x)) dx$$

$$= u(h + k) u(k) \int\limits_H \delta(s)^{-1} u(\varphi(s)(x))^2 dx$$

$$= \widehat{\mathfrak{p}}(h, k) \int\limits_H u(x)^2 dx = \widehat{\mathfrak{p}}(h, k).$$

The proof for  $q_s * q_s^* = p^s$  is similar and omitted. To show  $p^s * q_s = q_s$  one first uses (14) to obtain

(16) 
$$\mathfrak{p}^{s \wedge}(h, k) = \delta(s)^{-1} \widehat{\mathfrak{p}}(\varphi(s)(h), \varphi(s)(k)) \\ = \delta(s)^{-1} u(\varphi(s)(k)) u(\varphi(s)(h+k)).$$

Hence by (13),

$$(\mathfrak{p}^{s} * \mathfrak{q}_{s})^{\wedge}(h, k) = \int_{H} \mathfrak{p}^{s \wedge}(h + x, k - x)\widehat{\mathfrak{q}}_{s}(-x, k) dx$$

$$= \int_{H} \delta(s)^{-1}u(\varphi(s)(k - x))u(\varphi(s)(h + k))$$

$$\times \delta(s)^{-1/2}u(k)u(\varphi(s)(k - x)) dx$$

$$= \delta(s)^{-1/2}u(k)u(\varphi(s)(h + k)) \int_{H} \delta(s)^{-1}u(\varphi(s)(x))^{2} dx$$

$$= \widehat{\mathfrak{q}}_{s}(h, k).$$

Also the proof of  $q_s = q_s * p$  is omitted as well as the proof of (11); they are straightforward calculations of the same type.

To show (10) one has to compute  $\mathfrak{p}^{s \wedge} * \widehat{f} * \widehat{\mathfrak{p}}$  for any  $\widehat{f} \in L^1(H, A(H))$ . First one observes that for  $\widehat{f} = \widehat{\mathfrak{q}}_s$  one has  $\mathfrak{p}^{s \wedge} * \widehat{\mathfrak{q}}_s * \widehat{\mathfrak{p}} = \mathfrak{q}_s^{\wedge}$  by (9), hence

 $\mathfrak{p}^s * L^1(N)_{\gamma} * \mathfrak{p} \supset \mathbb{C}\mathfrak{q}_s$ . Now let  $\widehat{f}$  be arbitrary. By (13),

$$(\widehat{f} * \widehat{\mathfrak{p}})(h,k) = \int_{\mathcal{H}} \widehat{f}(h+x,k-x)u(k)u(k-x) dx,$$

and by (16) and (13),

$$(\mathfrak{p}^{s \wedge} * \widehat{f} * \widehat{\mathfrak{p}})(h, k) = \int_{H} \mathfrak{p}^{s \wedge} (h + y, k - y)(\widehat{f} * \widehat{\mathfrak{p}})(-y, k) \, dy$$

$$= \delta(s)^{-1/2} u(\varphi(s)(h + k))u(k)\delta(s)^{-1/2}$$

$$\times \int_{H} \int_{H} u(\varphi(s)(k - y))u(k - x)\widehat{f}(x - y, k - x) \, dx \, dy.$$

Substituting y' = k - y and x' = k - x yields

$$(\mathfrak{p}^{s \wedge} * \widehat{f} * \widehat{\mathfrak{p}})(h, k) = \delta(s)^{-1/2} u(\varphi(s)(h+k)) \ u(k)\delta(s)^{-1/2}$$

$$\times \int_{H} \int_{H} u(\varphi(s)(y))u(x)\widehat{f}(y-x, x) \, dx \, dy \,,$$

which is  $q_s^{\wedge}(h, k)$  times a scalar independent of h and k.

The map  $w: S \to \mathbb{R}$  defined by

$$w(s) = \|\mathfrak{q}_s\|_1 = \#(K/K \cap \varphi(s)(K))^{1/2} \cdot \#(K/K \cap \varphi(s)^{-1}(K))^{1/2}$$

(cf. (8)) is clearly submultiplicative and greater than or equal to one, i.e., it is a weight function. For this notion see [7]. Therefore,

$$\ell^{1}(S, w) = \left\{ f : S \to \mathbb{C} \left| \sum_{s \in S} |f(s)| w(s) < \infty \right. \right\}$$

is a subalgebra of the convolution algebra  $\ell^1(S)$ . Moreover, w is symmetric,  $w(s^{-1}) = w(s)$ , hence  $\ell^1(S, w)$  is an involutive subalgebra of  $\ell^1(S)$ .

Using the foregoing notations and formulas one can show the following proposition.

PROPOSITION. The map  $\ell^1(S,w) \to L^1(G)_{\gamma}$ ,  $\Phi \mapsto \Phi'$ , given by  $\Phi'(s,h,\chi,t) = \Phi(s)\mathfrak{q}_s(h,\chi,t)$  is an isometric \*-isomorphism from  $\ell^1(S,w)$  onto  $\mathfrak{p} * L^1(G)_{\gamma} * \mathfrak{p}$ . If  $\pi$  is a continuous unitary representation of G in  $\mathfrak{H}$  with  $\pi(t) = t = \gamma(t)$  for  $t \in \mathbb{T}$  then  $\pi$  yields involutive representations of  $L^1(G)_{\gamma}$  and of  $L^1(N)_{\gamma}$ , also denoted by  $\pi$ . The operator  $\pi(\mathfrak{p})$  is a nonzero orthogonal projection onto  $\mathfrak{H}^{\mathfrak{p}}$ , say. The map  $\ell^1(S,w) \ni \Phi \mapsto \pi(\Phi')|\mathfrak{H}^{\mathfrak{p}}$  is an involutive representation of  $\ell^1(S,w)$ . It is obtained by integrating the unitary representation  $\pi^{\mathfrak{p}}$  of S given by  $\pi^{\mathfrak{p}}(s) = \pi(s)\pi(\mathfrak{q}_s)|\mathfrak{H}^{\mathfrak{p}}$ . The representation  $\pi$  is irreducible iff  $\pi^{\mathfrak{p}}$  is.

In case that  $\pi$  is irreducible the following equivalences hold true.

Example of a representation

The algebra  $\pi(C^*(G))$  contains the algebra of compact operators on  $\mathfrak{H}$  iff  $\pi^{\mathfrak{p}}(C^*(S))$  contains the algebra of compact operators on  $\mathfrak{H}^{\mathfrak{p}}$ . The algebra  $\pi(L^1(G))$  contains a nonzero compact operator iff  $\pi^{\mathfrak{p}}(\ell^1(S,w))$  does.

Proof. The equality  $\|\Phi'\|_{L^1(G)} = \|\Phi\|_{\ell^1(S,w)}$  is an immediate consequence of the definitions. To prove the multiplicativity of  $\Phi \mapsto \Phi'$  let  $\Phi, \Psi \in \ell^1(S,w)$ . Then

$$(\Phi * \Psi)'(rx) = (\Phi * \Psi)(r)\mathfrak{q}_r(x)$$
 for  $r \in S$ ,  $x \in N$ ,

and

$$\begin{split} (\varPhi' * \varPsi')(rx) &= \sum_{s \in S} \int\limits_{N} dy \, \varPhi'(rxsy) \varPsi'((sy)^{-1}) \\ &= \sum_{s \in S} \int\limits_{N} dy \, \varPhi'(rss^{-1}xsy) \varPsi'(s^{-1}sy^{-1}s^{-1}) \\ &= \sum_{s \in S} \int\limits_{N} dy \, \varPhi(rs) \mathfrak{q}_{rs}(s^{-1}xsy) \varPsi(s^{-1}) \mathfrak{q}_{s^{-1}}^{s}(y^{-1}) \\ &= \sum_{s \in S} \varPhi(rs) \varPsi(s^{-1}) (\mathfrak{q}_{rs} * \mathfrak{q}_{s^{-1}}^{s}) (s^{-1}xs) \,. \end{split}$$

But  $(\mathfrak{q}_{rs} * \mathfrak{q}_{s-1}^s)(s^{-1}xs) = (\mathfrak{q}_{rs} * \mathfrak{q}_{s-1}^s)^{s^{-1}}(x) = (\mathfrak{q}_{rs}^{s^{-1}} * \mathfrak{q}_{s-1})(x) = \mathfrak{q}_r(x)$  by (11). Therefore,

$$(\varPhi'*\varPsi')(rx) = \sum_{s \in S} \varPhi(rs)\varPsi(s^{-1})\mathsf{q}_r(x) = (\varPhi*\varPsi)(r)\mathsf{q}_r(x)$$

as desired.

The equality  $(\Phi')^* = (\Phi^*)'$  for  $\Phi \in \ell^1(S, w)$  is an easy consequence of (6), we omit the details. Hence  $\Phi \mapsto \Phi'$  is an isometric \*-morphism from  $\ell^1(S, w)$  into  $L^1(G)_{\gamma}$ .

To show that each  $\Phi'$  is contained in  $\mathfrak{p} * L^1(G)_{\gamma} * \mathfrak{p}$  it suffices to prove that  $\mathfrak{p} * \Phi' = \Phi'$  and  $\Phi' * \mathfrak{p} = \Phi'$  because  $\mathfrak{p} * \mathfrak{p} = \mathfrak{p}$  by (9). But

$$\begin{split} (\mathfrak{p} * \varPhi')(rx) &= \int\limits_{N} dy \, \mathfrak{p}(y) \varPhi'(y^{-1}rx) \\ &= \int\limits_{N} dy \, \mathfrak{p}(y) \varPhi'(rr^{-1}y^{-1}rx) \\ &= \varPhi(r) \int\limits_{N} dy \, \mathfrak{p}(y) \mathfrak{q}_{r}(r^{-1}y^{-1}rx) \\ &= \varPhi(r) \int\limits_{N} dy \, \mathfrak{p}(y) \mathfrak{q}_{r}^{r^{-1}}(y^{-1}rxr^{-1}) = \varPhi(r)(\mathfrak{p} * \mathfrak{q}_{r}^{r^{-1}})(rxr^{-1}) \\ &= \varPhi(r)(\mathfrak{p}^{r} * \mathfrak{q}_{r})(x) = \varPhi(r)\mathfrak{q}_{r}(x) \quad \text{by (9)} \, . \end{split}$$

The proof for  $\Phi' * \mathfrak{p} = \Phi'$  is similar, one has to use  $\mathfrak{q}_s * \mathfrak{p} = \mathfrak{q}_s$  (see (9)).

To show that the image of  $\Phi \mapsto \Phi'$  coincides with  $\mathfrak{p} * L^1(G)_{\gamma} * \mathfrak{p}$  let f in the latter set be given. One readily computes that for  $s \in S$  the function f(s-) on N is in  $\mathfrak{p}^s * L^1(N)_{\gamma} * \mathfrak{p}$ . Since the latter space is one-dimensional, consisting of multiples of  $\mathfrak{q}_s$  (see (10)), there is a function  $\widetilde{f}: S \to \mathbb{C}$  such that

$$f(s-) = \widetilde{f}(s)q_s,$$

or

$$f(sx) = \widetilde{f}(s)q_s(x)$$
 for  $s \in S$ ,  $x \in N$ .

But as f is an  $L^1$ -function the function  $\widetilde{f}$  has to be in  $\ell^1(S, w)$ , and one finds  $f = (\widetilde{f})'$ .

It is clear that a representation  $\pi$  as in the Proposition yields by integration representations of  $L^1(G)_{\gamma}$  and  $L^1(N)_{\gamma}$ . From (7) and (9) it follows that  $\pi(\mathfrak{p})$  is an orthogonal projection. If  $\pi(\mathfrak{p})$  were zero, this would yield that  $\pi(L^1(N)_{\gamma} * \mathfrak{p} * L^1(N)_{\gamma})$  would be zero. But as  $L^1(N)_{\gamma}$  is a simple Banach algebra, and hence  $L^1(N)_{\gamma} * \mathfrak{p} * L^1(N)_{\gamma}$  is total in  $L^1(N)_{\gamma}$ , one would obtain  $\pi(L^1(N)_{\gamma}) = 0$ , which is impossible.

Since  $\ell^1(S,w)$  is \*-isomorphic to  $\mathfrak{p} * L^1(G)_{\gamma} * \mathfrak{p}$  it is obvious that  $\Phi \mapsto \pi(\Phi')|\mathfrak{H}^p$  is an involutive representation of  $\ell^1(S,w)$ . It follows easily from the definitions that this representation is obtained by integrating  $\pi^{\mathfrak{p}}$  as given in the Proposition. From this fact it follows that  $\pi^{\mathfrak{p}}$  is a unitary representation. This can also be verified directly, using (6) and (11).

Suppose now that  $\pi$  is not irreducible, i.e., that  $\pi$  is the direct sum  $\sigma \oplus \tau$  of two nonzero unitary representations  $\sigma$  and  $\tau$  of G with  $\sigma|_{\mathbb{T}} = \gamma \operatorname{Id}$  and  $\tau|_{\mathbb{T}} = \gamma \operatorname{Id}$ . Then it is easily checked that  $\pi^{\mathfrak{p}}$  is the direct sum of the nonzero representations  $\sigma^{\mathfrak{p}}$  and  $\tau^{\mathfrak{p}}$ . Therefore, the irreducibility of  $\pi^{\mathfrak{p}}$  implies the irreducibility of  $\pi$ .

On the other hand, if  $\pi$  is irreducible let  $\xi$  be any nonzero vector in  $\mathfrak{H}^{\mathfrak{p}}$ . It is sufficient to show that  $\pi^{\mathfrak{p}}(\ell^{1}(S,w))\xi = \pi(\mathfrak{p}*L^{1}(G)_{\gamma}*\mathfrak{p})\xi$  is dense in  $\mathfrak{H}^{\mathfrak{p}}$ . But  $\pi(\mathfrak{p}*L^{1}(G)_{\gamma}*\mathfrak{p})\xi = \pi(\mathfrak{p})\pi(L^{1}(G))\xi$ . Since  $\pi(L^{1}(G))\xi$  is dense in  $\mathfrak{H}^{\mathfrak{p}}$  the claim follows.

For the rest of the proof let  $\pi$  be irreducible. Denote by  $\mathcal{K}(\mathfrak{H})$  and  $\mathcal{K}(\mathfrak{H}^{\mathfrak{p}})$  the algebras of compact operators on  $\mathfrak{H}$  and  $\mathfrak{H}^{\mathfrak{p}}$ , respectively. Suppose that  $\pi^{\mathfrak{p}}(\ell^{1}(S,w))$  contains a nonzero compact operator, say  $\pi^{\mathfrak{p}}(\Phi), \Phi \in \ell^{1}(S,w)$ . Then  $\pi(\Phi')$  is a nonzero compact operator. Next suppose that  $\pi(L^{1}(G))$  contains nonzero compact operators. Then let I be the ideal of all  $f \in L^{1}(G)_{\gamma}$  such that  $\pi(f)$  is compact. If  $\xi$  is any nonzero vector in  $\mathfrak{H}^{\mathfrak{p}}$  then  $\pi(I)\xi$  is dense in  $\mathfrak{H}$  as  $\pi$  is irreducible. In particular,  $\pi(\mathfrak{p})\pi(I)\xi = \pi(\mathfrak{p})\pi(I)\pi(\mathfrak{p})\xi$  is different from zero. Hence there exist  $f \in I$  such that  $\pi(\mathfrak{p})\pi(f)\pi(\mathfrak{p}) = \pi(\mathfrak{p} * f * \mathfrak{p}) \neq 0$ . If  $\Phi \in \ell^{1}(S,w)$  satisfies  $\Phi' = \mathfrak{p} * f * \mathfrak{p}$  then  $\pi^{\mathfrak{p}}(\Phi)$  is a nonzero compact operator.

Now suppose that  $\pi(C^*(G)) = \pi(L^1(G))^-$  contains  $\mathcal{K}(\mathfrak{H})$  where the closure is taken in the operator norm. In particular, for each  $T \in \mathcal{K}(\mathfrak{H}^{\mathfrak{p}})$  (the latter space being considered in the most obvious way as a subset of  $\mathcal{K}(\mathfrak{H})$ ) there exists a sequence  $(f_n)$  in  $L^1(G)_{\gamma}$  such that  $(\pi(f_n))$  converges to T. Then  $(\pi(\mathfrak{p}*f_n*\mathfrak{p}))$  converges to T. If  $\Phi_n$  in  $\ell^1(S,w)$  is determined by  $\Phi'_n = \mathfrak{p}*f_n*\mathfrak{p}$  then  $(\pi^{\mathfrak{p}}(\Phi_n))$  converges to T.

Finally, suppose that  $\pi^{\mathfrak{p}}(C^*(S))$  contains  $\mathcal{K}(\mathfrak{H}^{\mathfrak{p}})$ . Since  $\pi^{\mathfrak{p}}(C^*(S)) = \pi^{\mathfrak{p}}(\ell^1(S))^- = \pi^{\mathfrak{p}}(\ell^1(S,w))^-$ , for each  $T \in \mathcal{K}(\mathfrak{H}^{\mathfrak{p}})$  there exists a sequence  $(\Phi_n)$  in  $\ell^1(S,w)$  such that  $(\pi^{\mathfrak{p}}(\Phi_n))$  converges to T. Then  $(\pi(\Phi'_n))$  converges to T, hence  $\pi(C^*(G))$  contains  $\mathcal{K}(\mathfrak{H}^{\mathfrak{p}})$ . By the irreducibility of  $\pi$  it contains all of  $\mathcal{K}(\mathfrak{H})$ .

Remark. By a theorem of Green [2], the  $C^*$ -hull  $C^*(G)_{\gamma}$  of  $L^1(G)_{\gamma}$  is isomorphic to the  $C^*$ -tensor product of  $C^*(S)$  and  $\mathcal{K}(L^2(H))$ . This explains why irreducible or irreducible generalized completely continuous representations of S correspond to those of G as long as the latter are equal to  $\gamma$  on  $\mathbb{T}$ .

To obtain the desired example the groups H, K, S and the homomorphism  $\varphi: S \to \operatorname{Aut}(H)$  are now specified. Let p be any prime number, denote by  $\mathbb{Q}_p$  the field of p-adic numbers and by  $\mathbb{Z}_p$  the ring of p-adic integers with its usual topology. We will mainly view  $\mathbb{Q}_p$  and  $\mathbb{Z}_p$  as locally compact abelian groups under addition; their multiplicative structure is used to define automorphisms.

Let H be the restricted direct product of copies of  $\mathbb{Q}_p$  over the integers with respect to the compact open subgroup  $\mathbb{Z}_p$ , i.e.,

$$H = \{h : \mathbb{Z} \to \mathbb{Q}_p \mid h(j) \in \mathbb{Z}_p \text{ for almost all } j \in \mathbb{Z}\}.$$

The subgroup K of H consisting of all maps  $h: \mathbb{Z} \to \mathbb{Z}_p$ , which is isomorphic to  $\mathbb{Z}_p^{\mathbb{Z}}$ , is declared to be open in H, and K is endowed with the product topology. This way H is a locally compact abelian group.

The group S is the semidirect product of  $A = \mathbb{Z}$  and  $B = \mathbb{Z}^{(\mathbb{Z})}$ , the direct sum over  $\mathbb{Z}$  of copies of  $\mathbb{Z}$ . The multiplication in  $S = A \ltimes B$  is given by

$$(a,b) (a',b') = (a+a',b'')$$

where the jth component  $b''_j$  of  $b'' \in \mathbb{Z}^{(\mathbb{Z})}$  is defined by  $b''_j = b_{j+a'} + b'_j$ . Finally, the homomorphism  $\varphi: S \to \operatorname{Aut}(H)$  is defined by

(17) 
$$[\varphi(a,b)h](j) = p^{b_{j-a}}h(j-a).$$

Altogether, on  $G = A \times B \times H \times \widehat{H} \times \mathbb{T}$  endowed with the product topology, the general formula (1) gives a group multiplication

$$(a, b, h, \chi, t) (a', b', h', \chi', t') = (a'', b'', h'', \chi'', t''),$$

where a'' = a + a',  $b''_j = b_{j+a'} + b'_j$ ,  $h'' = \varphi(a', b')^{-1}(h) + h'$ ,  $\langle \chi'', x \rangle = \langle \chi, \varphi(a', b')(x) \rangle \chi'(x)$  for  $x \in H$ , and  $t'' = tt' \langle \chi, \varphi(a', b')(-h') \rangle$ .

LEMMA 1. The locally compact group G is compactly generated and separable, i.e., it has a countable basis of the topology. The weight function w and the modular function  $\delta$  of the action of  $S=A\ltimes B$  on H (compare (8) and (3)) are given by

$$w(a,b) = p^{\frac{1}{2}\sum_{j=-\infty}^{\infty}|b_j|}, \quad \delta(a,b) = p^{\sum_{j=-\infty}^{\infty}b_j} \quad \text{if} \quad b = (b_j) \in B = \mathbb{Z}^{(\mathbb{Z})}.$$

Proof. Let  $b^0 \in B$  be defined by  $b^0_0 = 1$  and  $b^0_j = 0$  for  $j \neq 0$ . It is evident that S is generated by (1,0) and  $(0,b^0)$ . Hence the subgroup L of G generated by the compact set  $K \times (H/K)^{\wedge} \times \mathbb{T} \cup \{(1,0),(0,b^0)\}$  contains S and  $K \times (H/K)^{\wedge} \times \mathbb{T}$ . Conjugating  $K \times (H/K)^{\wedge} \times \mathbb{T}$  by elements in  $B \subset S$  produces the whole of  $H \times \widehat{H} \times \mathbb{T}$ . Hence L = G.

The question of separability reduces at once to H and  $\widehat{H}$ . But H is a countable extension of the compact metrizable group  $K=\mathbb{Z}_p^{\mathbb{Z}}$ , hence is separable. Moreover, the group H is selfdual. This can be seen as follows. The quotient  $\mathbb{Q}_p/\mathbb{Z}_p$  is isomorphic to  $\mathbb{Z}[1/p]/\mathbb{Z}$ . The latter group can be identified with a subgroup of  $\mathbb{Q}/\mathbb{Z}$  or of  $\mathbb{R}/\mathbb{Z}$  which is isomorphic to  $\mathbb{T}$  in the usual manner. This way we find a canonical  $\kappa \in \mathbb{Q}_p^{\wedge}$  with  $\ker \kappa = \mathbb{Z}_p$ . Then define  $H \times H \to \mathbb{T}$  by

$$((q_j),(r_j))\mapsto \prod_{j=-\infty}^\infty \kappa(q_j\,r_j)\,.$$

It is easy to see that this pairing establishes an isomorphism from H onto  $\widehat{H}$ .

The formulas for w and  $\delta$  follow at once from the fact that for  $n \in \mathbb{Z}$  the cardinality of  $\mathbb{Z}_p/p^n\mathbb{Z}_p \cap \mathbb{Z}_p$  is one for  $n \leq 0$  and  $p^n$  for  $n \geq 0$ .

The Pontryagin dual  $\widehat{B}$  is isomorphic to  $\mathbb{T}^{\mathbb{Z}}$ . Each  $z=(z_j)\in\mathbb{T}^{\mathbb{Z}}$  defines a character  $\eta_z\in\widehat{B}$  by

(19) 
$$\eta_z(b) = \prod_{j=-\infty}^{\infty} z_j^{b_j}.$$

The character  $\eta_z$  extends to a character  $\widetilde{\eta}_z$  of the subgroup  $\{0\} \times B \times \{0\} \times \widehat{H} \times \mathbb{T}$  of G by  $\widetilde{\eta}_z(0, b, 0, \chi, t) = t\eta_z(b)$ . This character is induced to obtain a representation, say  $\pi_z$ , of G. The representation  $\pi_z$  can be realized in  $L^2(A \times H)$  where  $A \times H$  carries the product measure of the Haar measures on  $A = \mathbb{Z}$  and H. One finds that

$$\{\pi_z(a,b,h,\chi,t)\xi\}(a',h') = \delta(a,b)^{1/2}t\langle\chi,h-\varphi(a'-a,\beta)(h')\rangle\eta_z(-\beta) \times \xi(a'-a,\varphi(0,\beta)(h')-\varphi(a-a',0)(h))$$

where  $\beta \in B$  is given by  $\beta_i = -b_{i+a'-a}$ .

With  $\pi_z$  there is associated (see the Proposition) a representation  $\pi_z^{\mathfrak{p}}$  of  $S = A \ltimes B$  in  $\mathfrak{H}^{\mathfrak{p}}$ . The space  $\mathfrak{H}^{\mathfrak{p}} = \pi_z(\mathfrak{p})(L^2(A \times H))$  is easily identified. More generally, we shall compute the operator  $\pi_z(\mathfrak{q}_s), s \in S$ ; for the definition of  $\mathfrak{q}_s$ , see (5) and (15).

For  $\xi \in L^2(A \times H)$ ,

$$\{\pi_{z}(\mathfrak{q}_{s})\xi\}(a',h') = \int_{H} dh \int_{\widehat{H}} d\chi \int_{\mathbb{T}} dt \,\mathfrak{q}_{s}(h,\chi,t)$$

$$\times t\langle \chi, h - \varphi(a',0)(h')\rangle \xi(a',h' - \varphi(-a',0)(h))$$

$$= \int_{H} dh \,\widehat{\mathfrak{q}}_{s}(h,\varphi(a',0)(h') - h)\xi(a',h' - \varphi(-a',0)(h))$$

$$= \int_{H} dh \,\delta(s)^{-1/2}u(\varphi(a',0)(h') - h)$$

$$\times u(\varphi(s)\varphi(a',0)(h'))\xi(a',h' - \varphi(-a',0)(h)).$$

Substituting  $h'' = h' - \varphi(-a', 0)(h)$  yields

$$\{\pi_z(\mathfrak{q}_s)\xi\}(a',h') = \delta(s)^{-1/2}u(\varphi(s)\varphi(a',0)(h'))\int\limits_H dh\, u(\varphi(a',0)(h))\,\xi(a',h)\,.$$

In particular,

$$\{\pi_z(\mathfrak{p})\xi\}(a',h') = u(\varphi(a',0)(h')) \int_{H} dh \, u(\varphi(a',0)) \, \xi(a',h) \,.$$

One verifies easily that

(21) The map 
$$V: \ell^2(A) \to \mathfrak{H}^{\mathfrak{p}}$$
 defined by 
$$(V\zeta)(a',h') = u(\varphi(a',0)(h'))\zeta(a')$$

is unitary.

Transferring via V the representation  $\pi_z^{\mathfrak{p}}$  of S in  $\mathfrak{H}^{\mathfrak{p}}$  into the space  $\ell^2(A)$  one gets a representation  $\varrho_z$  of S in  $\ell^2(A)$  given by

(22) 
$$\{\varrho_z(a,b)\zeta\}(a') = \eta_z((b_{j+a'-a})_j)\zeta(a'-a) = \prod_{j=-\infty}^{\infty} z_j^{b_{j+a'-a}}\zeta(a'-a).$$

This formula follows from the definitions of V and  $\pi_z^{\mathfrak{p}}$ ,  $\pi_z^{\mathfrak{p}}(s) = \pi_z(s)\pi_z(\mathfrak{q}_s)$ , and from the above determined structure of  $\pi_z(\mathfrak{q}_s)$ . The easy computation is omitted. Of course,  $\varrho_z$  is nothing but  $\operatorname{ind}_B^S \eta_z$  realized in  $\ell^2(A)$ .

LEMMA 2. The representation  $\pi_z$  of  $G, z \in \mathbb{T}^{\mathbb{Z}}$ , is irreducible if and only if the sequence z is not periodic, i.e., there is no positive integer m such that  $z_{j+m} = z_j$  for all  $j \in \mathbb{Z}$ . If this condition is satisfied then  $\pi_z$  is a

generalized completely continuous representation if and only if the A-orbit  $\Omega_z = \{(z_{j+a})_j \mid a \in A\}$  is locally closed in  $\mathbb{T}^{\mathbb{Z}}$ .

Remark. In order to establish the relation to the results in [3] we observe that the condition " $\Omega_z$  is locally closed in  $\mathbb{T}^{\mathbb{Z}}$ " is equivalent to " $\Omega_z$  is a discrete subset of  $\mathbb{T}^{\mathbb{Z}}$ " for the following reasons. Clearly, any discrete subspace is locally closed. If the A-orbit  $\Omega_z$  is locally closed then under the map  $a\mapsto az=(z_{j-a})_j$  the subspace  $\Omega_z$  is homeomorphic to A as the stabilizer group is trivial. Hence  $\Omega_z$  is discrete.

Proof of Lemma 2. By the Proposition the questions of whether  $\pi_z$  is irreducible or whether  $\pi_z$  is a generalized completely continuous representation, can be reduced to the corresponding questions for the representation  $\varrho_z$  of S. In the latter case the answers are known (see [3]). We shall repeat here the essential arguments. This gives the opportunity to introduce some notations which will be needed later anyway.

If z is periodic, say  $z_{j+m} = z_j$  for all j, then the operator  $M: \ell^2(A) \to \ell^2(A)$ ,  $(M\zeta)(a') = \zeta(a'+m)$  commutes with  $\varrho_z(S)$ , hence  $\varrho_z$  is not irreducible.

Now suppose that z is not periodic, and let  $U: \ell^2(A) \to \ell^2(A)$  be any intertwining operator for  $\varrho_z$ . Let  $\varepsilon_0$  be the "Dirac delta" in  $\ell^2(A)$ , and let  $\varepsilon := U\varepsilon_0 \in \ell^2(A)$ . From  $U\varrho(0,b) = \varrho(0,b)U$  it follows that  $\varrho(0,b)\varepsilon = \eta_z(b)\varepsilon$  for all  $b \in B$ . As z is not periodic the latter identity implies that  $\varepsilon$  is a scalar multiple of  $\varepsilon_0$ , say  $\varepsilon = \lambda \varepsilon_0$ . Since U commutes with the translations  $\varrho(a,0)$ , and since the translates of  $\varepsilon_0$  span  $\ell^2(A)$ , one concludes that  $U = \lambda \operatorname{Id}$ .

The  $L^1$ -group algebra of the semidirect product  $S = A \ltimes B$  may be considered in the usual way as the  $L^1$ -covariance algebra  $\ell^1(A,\ell^1(B))$  (see [4]). Via Fourier transform the  $C^*$ -hull of  $\ell^1(B)$  is nothing but  $C(\widehat{B})$ , and  $C^*(S)$  is the  $C^*$ -covariance algebra  $C^*(A,C(\widehat{B}))$ . The  $L^1$ -covariance algebra  $\ell^1(A,C(\widehat{B}))$  lies half way between  $\ell^1(S)$  and  $C^*(S)$ : there are (norm-decreasing) embeddings

$$\ell^1(A,\ell^1(B)) \to \ell^1(A,C(\widehat{B})) \to C^*(A,C(\widehat{B}))$$
.

The representation  $\varrho_z$  yields representations of  $\ell^1(A,C(\widehat{B}))$  and of  $C^*(A,C(\widehat{B}))$ , also denoted by  $\varrho_z$ . The image  $\varrho_z(C^*(S))$  contains nonzero compact operators if and only if there exist continuous functions  $\Phi$  on  $\widehat{B}=\mathbb{T}^{\mathbb{Z}}$  such that  $\Phi$  is not identically zero on  $\Omega_z$ , but  $\Phi$  is zero on  $\overline{\Omega}_z\setminus\Omega_z$  where  $\overline{\Omega}_z$  denotes the closure of  $\Omega_z$ . Such functions exist precisely when  $\Omega_z$  is locally closed. In this case for  $g\in\ell^1(A,C(\widehat{B}))$  the operator  $\varrho_z(g)$  is compact if and only if for all  $a\in A$  the function  $g(a)\in C(\widehat{B})$  vanishes on  $\overline{\Omega}_z\setminus\Omega_z$ .

The proof of Lemma 2 is finished. It has also shown what we have to do further. We have to specify a locally closed A-orbit  $\Omega_z$  such that the above

condition on g is not satisfied for functions in the image of  $\ell^1(S, w)$  under the map  $\ell^1(A, \ell^1(B)) \to \ell^1(A, C(\widehat{B}))$ , unless  $\varrho_z(g) = 0$  (compare the Proposition). To this end we need a little lemma on a particular decomposition of the integers.

LEMMA 3. Let D be a countable set. There exists a decomposition  $\mathbb{Z} = \bigcup_{d \in D} C_d$  of the set of integers with the following property: If n is any positive integer and if  $d_{-n}, \ldots, d_{-1}, d_0, \ldots, d_n$  are any elements in D then the intersection

$$\bigcap_{j=-n}^{n} (C_{d_j} - j)$$

is not empty (and hence infinite). In particular, all the sets  $C_d$  are infinite.

Proof. Let  $(D_n)_{n\in\mathbb{N}}$  be an increasing sequence of finite subsets of D with  $\bigcup_{n\in\mathbb{N}} D_n = D$ . First we claim that for each  $n\in\mathbb{N}$  there exists a collection  $(C_d^{(n)})_{d\in D_n}$  of disjoint finite subsets of  $\mathbb{Z}$  with the following properties:

(i) 
$$\left\{ \bigcup_{d \in D_n} C_d^{(n)} \right\} \cap \left\{ \bigcup_{m < n} \bigcup_{d \in D_m} C_d^{(m)} \right\} = \emptyset.$$

(ii) If  $d_{-n}, \ldots, d_0, \ldots, d_n$  are any elements in  $D_n$  then  $\bigcap_{j=n-n}^n (C_{d_j}^{(n)} - j)$  is not empty.

It is easy to see that such collections exist because in (ii) there are only finitely many conditions to be fulfilled; and clearly for a given n the sets  $C_d^{(n)}$ ,  $d \in D_n$ , can be chosen in the complement of the previously constructed finitely many finite sets.

Then for each  $d \in D$  choose an  $m \in \mathbb{N}$  with  $d \in D_m$  and put  $C'_d = \bigcup_{n \geq m} C_d^{(n)}$ . The sets  $C'_d$ ,  $d \in D$ , are pairwise disjoint. Finally, choose any family  $C_d$ ,  $d \in D$ , with  $C'_d \subset C_d$  for each d and  $\mathbb{Z} = \bigcup_{d \in D} C_d$  (for instance  $C'_d = C_d$  for all  $d \in D$  except for a distinguished point  $d_0$ ). Such a family has the claimed property.

To see that for any given n and any given sequence  $d_{-n}, \ldots, d_0, \ldots, d_n$  in D the intersection  $\bigcap_{j=-n}^n (C_{d_j}-j)$  is automatically an infinite set, let t be any positive integer, let m=n+t(2n+1), and define the sequence  $d'_{-m},\ldots,d'_m$  in D by  $d'_k=d_j$  if  $k\equiv j \mod(2n+1)$  and  $|j|\leq n$ . As  $\bigcap_{k=-m}^m (C_{d'_k}-k)\neq\emptyset$ , we may take a number y in this intersection. It is easily verified that then the numbers y+s(2n+1),  $s\in\mathbb{Z}$ ,  $|s|\leq t$ , are contained in  $\bigcap_{j=-n}^n (C_{d_j}-j)$ , hence the latter intersection contains at least 2t+1 elements.

In particular, let D be a countable subset of  $\mathbb T$  such that  $1 \not\in D$  and that the closure  $\overline{D}$  equals  $D \cup \{1\}$ . For each  $d \in D$  choose  $r_d > 0$  such that

$$\{x \in \mathbb{C} \mid |x - d| \le 2r_d\} \cap \overline{D} = \{d\}.$$

Let  $\mathbb{Z} = \bigcup_{d \in D} C_d$  be a decomposition according to Lemma 3. Choose  $z = (z_j) \in \mathbb{T}^{\mathbb{Z}}$  with the following properties:

- (24) The map  $\mathbb{Z} \ni j \mapsto z_j \in \mathbb{T}$  is injective.
- (25) If  $j \in C_d$  then  $0 < |z_j d| < r_d$ .
- (26) For each  $d \in D$  and each r > 0 the set  $\{j \in C_d \mid |z_j d| \ge r\}$  is finite.

These conditions imply that d is the only cluster point of  $\{z_j \mid j \in C_d\}$ , that  $\overline{D}$  and  $\{z_j \mid j \in \mathbb{Z}\}$  are disjoint, and that  $\overline{D} \cup \{z_j \mid j \in \mathbb{Z}\}$  is a closed subset of  $\mathbb{T}$ .

LEMMA 4. Let  $z \in \mathbb{T}^{\mathbb{Z}}$  be as above and let  $\Omega = \Omega_z$  be its orbit under the "shift group", i.e.,  $\Omega = \{(z_{j+a})_j \mid a \in \mathbb{Z}\}$ . Then  $\Omega$  is locally closed in  $\mathbb{T}^{\mathbb{Z}}$  and the closure  $\overline{\Omega}$  equals  $\Omega \cup \overline{D}^{\mathbb{Z}}$ , which is a disjoint union since  $\overline{D}$  and  $\{z_j \mid j \in \mathbb{Z}\}$  are disjoint subsets of  $\mathbb{T}$ .

Proof. To prove that  $\Omega \cup \overline{D}^{\mathbb{Z}}$  is contained in  $\overline{\Omega}$  it is clearly sufficient to verify that any  $x = (x_j) \in D^{\mathbb{Z}}$  is contained in  $\overline{\Omega}$ . To this end, let any  $n \in \mathbb{N}$  and  $\varepsilon > 0$  be given. We have to show that there exists an  $a \in A = \mathbb{Z}$  such that

$$(27) |z_{j+a}-x_j|<\varepsilon for |j|\leq n.$$

By Lemma 3 the set  $A' := \{a \in A \mid j+a \in C_{x_j} \text{ for } |j| \leq n\}$  is infinite. By (26), for almost all  $a \in A'$  the inequalities (27) are true.

To prove conversely that  $\overline{\Omega}$  is contained in  $\Omega \cup \overline{D}^{\mathbb{Z}}$ , let x be a given point in  $\overline{\Omega}$ . Since  $\overline{D} \cup \{z_j \mid j \in \mathbb{Z}\}$  is closed in  $\mathbb{T}$ , each  $x_k$  is contained in this set. If each  $x_k$  is contained even in  $\overline{D}$  we are done. So, assume that there is a  $k_0 \in \mathbb{Z}$  with  $x_{k_0} = z_{j_0}$  for some  $j_0$ . We have to show that then  $x \in \Omega$ . By applying a suitable element in the shift group we may suppose that  $x_{j_0} = z_{j_0}$  for some  $j_0$ , and our claim reduces to x = z. Given  $j_0$  from the properties (24)–(26) of z it follows that there exists an  $\varepsilon_0 > 0$  such that

$$(28) |z_j - z_{j_0}| < \varepsilon_0 implies j = j_0.$$

Then take any  $j \in \mathbb{Z}$  and any  $\varepsilon$ ,  $0 < \varepsilon < \varepsilon_0$ . Since x is in  $\overline{\Omega}$  there is an  $a = a(j, \varepsilon) \in A$  such that

$$|z_{j+a}-x_j| .$$

As  $x_{j_0} = z_{j_0}$  from (28) we deduce that a = 0, hence  $|z_j - x_j| < \varepsilon$ . Since  $\varepsilon$  and j were arbitrary, we conclude that x = z.

The known structure of  $\overline{\Omega}$  yields  $\overline{\Omega} \setminus \Omega = \overline{D}^{\mathbb{Z}}$ , which is a closed subset of  $\mathbb{T}^{\mathbb{Z}}$ . Therefore,  $\Omega$  is locally closed.

THEOREM. Let  $G = A \times B \times H \times \widehat{H} \times \mathbb{T}$  be the group as constructed above (see in particular (17) and (18)), and let  $z \in \mathbb{T}^{\mathbb{Z}}$  be a point as above

(compare (23) through (26)). Then the continuous unitary representation  $\pi_z$  of G (see (20), (17) and Lemma 1) is irreducible and  $\pi_z(C^*(G))$  contains the algebra of compact operators, while  $\pi_z(L^1(G))$  contains no compact operator except for zero.

Proof. By Lemma 2, since clearly z is not periodic and since the A-orbit  $\Omega_z$  of z is locally closed by Lemma 4,  $\pi_z$  is an irreducible generalized completely continuous representation. To prove that  $\pi_z(L^1(G))$  contains no nonzero compact operator, by the Proposition it is sufficient to show the corresponding property for  $\varrho_z(\ell^1(S,w))$ . By what we have seen in the proof of Lemma 2, the operator  $\varrho_z(f)$ ,  $f \in \ell^1(S,w) \subset \ell^1(S)$ , is compact if and only if for all  $a \in A$  the function  $g_a \in C(\mathbb{T}^{\mathbb{Z}})$  defined by

$$g_a(x) = \sum_{b \in B} f(ab) \eta_x(b)^{-1} = \sum_{b \in B} f(ab) \prod_{j = -\infty}^{\infty} x_j^{-b_j}$$

vanishes on  $\overline{\Omega}_z \setminus \Omega_z$ . Hence we have to show that if f satisfies this condition, then  $\varrho_z(f) = 0$ . We claim that even better: f is then necessarily identically zero.

From the structure of w,  $w(ab) = p^{\frac{1}{2}\sum_{j=-\infty}^{\infty}|b_j|}$  (compare Lemma 1); it follows easily that the series  $\sum_{b\in B} f(ab) \prod_{j=-\infty}^{\infty} x_j^{-b_j}$  converges not only for  $x\in \mathbb{T}^{\mathbb{Z}}$ , but also for  $x\in Y^{\mathbb{Z}}$  where Y denotes the annulus  $\{y\in \mathbb{C}\mid p^{-1/2}\leq |y|\leq p^{1/2}\}$ . Define  $\widetilde{g}_a(x)$ ,  $x\in Y^{\mathbb{Z}}$ , to be the sum of this series. For  $n\in \mathbb{N}$  let  $i^{(n)}$  be the canonical embedding from  $Y^{2n+1}=\{(y_{-n},\ldots,y_0,\ldots,y_n)\mid y_k\in Y \text{ for } |k|\leq n\}$  into  $Y^{\mathbb{Z}}$ , i.e.,

$$i^{(n)}(y_{-n},\ldots,y_0,\ldots,y_n)_j = \begin{cases} y_j & \text{if } |j| \le n, \\ 1 & \text{if } |j| > n. \end{cases}$$

The function  $\widetilde{g}_a \circ i^{(n)}$  is continuous on  $Y^{2n+1}$  and analytic in the interior  $\mathring{Y}^{2n+1}$ . Since  $g_a$  vanishes on  $\overline{\Omega}_z \setminus \Omega_z = \overline{D}^{\mathbb{Z}}$  (see Lemma 4) we conclude that  $\widetilde{g}_a \circ i^{(n)}$  vanishes on the subset  $\overline{D}^{2n+1}$  of  $Y^{2n+1}$ . As  $\widetilde{g}_a \circ i^{(n)}$  is analytic this yields that  $\widetilde{g}_a \circ i^{(n)}$  is identically zero. In particular,  $g_a$  vanishes on  $i^{(n)}(\mathbb{T}^{2n+1})$ . Since  $\bigcup_{n \in \mathbb{N}} i^{(n)}(\mathbb{T}^{2n+1})$  is dense in  $\mathbb{T}^{\mathbb{Z}}$ , it follows that  $g_a$  is identically zero. Hence for each  $a \in A$  the function  $b \mapsto f(ab)$  is identically zero and, therefore, f is identically zero.

## References

[4] H. Leptin, Verallgemeinerte L<sup>1</sup>-Algebra und projektive Darstellungen lokal kompakter Gruppen, Invent. Math. 3 (1967), 257-281, 4 (1967), 68-86.

[5] H. Leptin and D. Poguntke, Symmetry and nonsymmetry for locally compact groups, J. Funct. Anal. 33 (1979), 119-134.

[6] D. Poguntke, Unitary representations of Lie groups and operators of finite rank, Ann. of Math., to appear.

 [7] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon, Oxford 1968.

UNIVERSITÄT BIELEFELD FAKULFÄT FÜR MATHEMATIK POSTFACH 100131 W-4800 BIELEFELD, GERMANY

Received December 18, 1992

(3039)

<sup>[1]</sup> J. Dixmier, Les C\*-algèbres et leurs représentations, Gauthier-Villars, Paris 1969.

<sup>[2]</sup> Ph. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88-104.

A. Guichardet, Caractères des algèbres de Banach involutives, Ann. Inst. Fourier (Grenoble) 13 (1963), 1-81.