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On polynomials in primes and J. Bourgain’s
circle method approach to ergodic theorems II

by

R. NAIR (Liverpool)

Abstract. We show that if ¢ is greater than one, T is a measure preserving transfor-
mation of the measure space (X, 8,u) and f is in L9(X, 8, ») then if ¢ is a non-constant
polynomial mapping the natural nwmbers to themselves, the averages

STt (N=1,2,..)

1Sp<N

converge u almost everywhere, Here p runs over the primes and 7 denotes their number
n [1, V. ‘

. Introduction. The purpose of this paper is to prove the following
theorem:

TueoREM 1. Suppose that ¥ is' a non-constent polynomial mapping the
natural numbers to themselves, that (X, 5,1, T) is o measure preserving
dynamical system and that p is a real number greater than one. Then for
each function f in LP(X, /3, @) the averages

(1) Anflz Z FIW@z)y (N =1,2,...)

1<q<N
converge almost everywhere in x with respect to the measure . Here g Tuns
over the rational primes and 7y denotes their number in [1, N].

The most important auxiliary result needed for the proof of Theorer 1 is
the following maximal inequality, which may be of interest in its own right.
Here and henceforth the letter C possibly with subscripts always refers to a
positive constant not necessarily the same at each occurrence.

THEOREM 2. Suppose that the real number pis g'r‘eatér than 1, that the
function f is in LP(X,0,1) and that the averages Anf (N =1,2,...) are
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208 R. Nair

as tn Theorem 1. Then letting
(2) Mf = sup |Ayf]
NZ1

and letting || ||, denote the LP(X, 3, u) norm we have

M filp < Cl flip-

The analogue of Theorem 1, where ¢ runs along the natural numbers
instead of the primes, at least in the case 9(z) = 2 with d in N was proved
by Bourgain [3]. His proof uses a Fourier analysis approach, which has at its
centre an application of the Hardy-Littlewood circle method from analytic
number theory. The Hardy-Littlewood method depends in an essential way
on estimates for exponential sums of the form

1 al 27id (ag )
(3) = > e e
n=1

In the case of Bourgain's results a,, = n (n = 1,2,...). In this paper a,
denotes the nth rational prime. Theorem 1 in the special case p == 2 has
already been proved by the author [5] as has the case d(z) = z with p > 1
by Wierd! [8]. In all these results L* estimates play a central role and exten-
sion to LP where p > 1 is achieved by the methods of interpolation theory.
Complementing these positive results is the fact that the corresponding er-
godic theorems fail for all p > 1 including p = co, when a, is lacunary
(i.e. there exists ¢ > 1 such that iminf, o @n+1/an > ¢). This result in
the case p < oo is due to Bellow and Losert [1]. The case p = oo is due to
J. Rosenblatt and is not as yet published.

The plan of the paper is as follows. In Section 2 we show how to use
Theorem 2 to deduce Theorem 1. This necessitates the proof of another
maximal estimate. We postpone this proof till Section 12. In Section 3,
following A. P. Calderén we show how the proof of Theorem 2 can be reduced
to the very special case where T is translation on the integers and f is
a finitely supported function also on the integers. This reduction is used
again in this paper in Sections 10 and 12 where new maximal functions are
estimated. In the simplified context of translation on the integers, using the
Fourier inversion theorem, estimating these maximal functions is equivalent
to estimating maximal functions of certain Fourier multipliers. These Fourier
multipliers turn out to be exponential sums of the form (3).

To make further progress we need certain standard facts from analytic
number theory relating to these exponential sums. These facts are collected
in Section 4. The basic method from here on is to approximate these compli-
cated Fourier multipliers sufficiently closely by other more easily managed
if less elegant multipliers. The most important for these new multipliers, by
analogy with the corresponding situation of Warings’ problem, we call the
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singular series. This is introduced in Section 5 and its basic relation to the
exponential sums (3) established.

In estimating the maximal function (2), it turns out to be effective to
break it up into parts each of whose maximal functions are then approxi-
mated by multipliers best adapted to the individual characteristics of these
parts. This process is carried out in Sections 6-10. Because of their intricacy
we forgo a detailed description of these maximal functions and the appropri-
ate multipliers here. Finally, in Section 11 this information is put together
and the proof of Theorem 2 completed. The basic method just described is
the same as that developed in [3].

Added in proof. As a consequence of Theorem 4.1 of R. L. Jones and J. Olsen, Sub-
sequence ergodic theorems for operators in LP, Israel J. Math. 77 {1992), 33-54, Theorem 1
immediately extends to the case where T is a Dunford-Schwartz operator.

2. Pointwise convergence. In the context of Birkhofl’s ergodic the-
orem the T-invariance of the L' limit of the sequence Ay f, together with
Hopf’s maximal ergodic theorem, readily imply almost everywhere conver-
gence. In the context of Theorem I, however, this T-invariance is not avail-
able. This difficulty is overcome using the following result.

THEOREM 3. Let (Nj);??__l be any sequence of positive integers such that
2N; < Njy1 ond for each € > 0, if (x| denoles the integer part of =z, let
Ze = {[(1+€)"] :n=1,2,...}. Then for every f with L? and L> norms
bounded by one, if we let Z;, = [Nj, Nijp1) N Z; and

M. f= e |[Anf — An, fl,
we have

Y IMyeflz = oDl
1<i<J

Henceforth, for convernience, we suppress reference to € and just write A;
for M; . (j =1,2,...). Theorem 2 reduces proving Theorem 1 to verifying
it on a dense subset, and rescaling if necessary, we can assume [ has L?
and L™ norms bounded by one. Suppose the averages {Anf)%=, fail to
converge almost everywhere. Then there exists o > 0 and an increasing
sequence (IN;)%2, of positive integers with Nj+y > 2Nj such that

,u,[ max |ANf - ANjfl > 60] > Eg.-
Ny < N<Njpy

Suppose M = [(1+¢&)"] £ N < [(1+&)"*!]. Then because ||flle < 1 we
have

Anf— Auf| < 4e,
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except possibly on a set of measure zero. Thus, also off this exceptional set,

Apnf —Ax. fl < max |Anvf — Ay, f| + 4e0
Njﬁ??\rw' wf Njf\_NEZjlsl nf—An, fl

and so if we set ¢ = £0/20 we have

o = ;g%u[h}g%ﬁ [Anf — A, fl > 6] > €.

This, however, means that u % < || M; f|lz uniformly in §. This contradicts
Theorem 3 and hence proves Theorem 2.

3. Reduction to IP(Z). For g : Z — R, let gn : Z — R be defined
by gn(j) = ¢(j + n). The proof of Theorem 2 can be reduced to proving
the following lemma. Here and henceforth in this paper |jgll, (1 £ p < =)
denotes the IP(Z) norm.

LEMMA 4. For g : Z — R, bounded and finitely supported, and each
positive integer Ny,

L Z go(q)

< Cllglly
™y <qzn

¥

MAax
1SN<NG
where the constant C is independent of Np.

To see how Theorem 2 follows from Lemma 4 we argue as follows. ]?‘ix a
particular z in X and for J large compared to ¥(Ng), let g(j) = f(T7z) if
JjisinZn(l,J) and g(j) = 0 elsewhere on Z. Then by Lemma 4,

3 ZfTﬁ‘ Dtig ‘<CZ (Iiz)P

LN en
1<5<T~9(No) NN eqen 1<5<T

Now integrating and using measure preservation we have

J — 9(Ny) Z 9(p)
LA\ (T
J 1<q<N

< Cllflln-
P

1<N<Nu

Letting J — co and then letting Ny — oo proves Theorem 2. The argument
we have just given is a special case of the transference principle of Calderén
[4]. Theorem 3 can similarly be reduced to the following lemma.

LemMA 5. For g: Z — R, bounded and finitely supported,

1 1
Z P Z 919(!1)“;}'; Z 99(q)

. w .
1<5<T N 1<qen i 1<q<N;

max
NEZJ',‘_-

= o(Ilglla -
2
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4. Analytic number theory. For g in IP(Z), if * denotes convolution
and 6, denotes the delta function supported at a, note that

= Y oo =9+ Kn,

Noicg<n
where
— > -
1<q<N
Hence if F(g) denotes the Fourier transform of g,

1
(f * En)(n)= [ F(F))F(Kn){a)e* ™ da,
0
where
F(KN O!) - Z eriad(q)
1<q<N

Use of the circle method requires that we collect information about the
behaviour of F(Ky)(a) for o near rationals £ = a/b in [0, 1) such that
o and b are coprime and where b is “small”. More precisely, let lar — a2y
denote min(|ay -~ ay|, |1+a1 —az|) and for large N and an unspecified positive
constant u, to be chosen when the proof of Lemma 11 is completed, suppose
126 < (log N)™. Set

My(§)={aeT:|a—¢; < (logN)*/N}.

Class:tcally these arcs on the unit circle will be referred to as the major arcs
(of order N}. Arcs in the complementary part of the circle are referred to
as the minor arcs.

LuMMA 6. Suppose ¢ denotes Euler totient function and if the polynomial

Po(z) = agz® +... + a2

has integer coefficients such that
(ad:"')alrb) =1,
set
a 1 : :
4 Sl =] = eZ'rrtm?u(r
W ()= =
r=0
(rb)=1

Then there exists §; > 0 dependent only on d such that
1S(a/b)] < OB~ .
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Lemma 7. Suppose My is an absolute positive constant and that 9(z) s
a polynomial of degree d (say), with integer coefficients. Set

1 M eQ'n’i,ﬁ"ﬂ(m)

(5) Wy (8) = ;;Mf de'

Now suppose that £ = a/b with (a,b) = 1 and that o is in My (£). Then if
we let

B=a-¢,

we have
(@) = (5 )W (8) + O((og 1))
for any 82 > O, where S{a/b) is as in Lemma 6.

In the special case ¥{z) = 2% Lemma 7 appears in [7, p. 202]. The proof
of this more general case is virtually identical and omitted.

LEMMA 8. For Wy (8) as in Lemma 7,
11— W (8)) < C|5| 2%
Proof.

M dax M e27ri,6'r.90(:1:)
S o
nt, 08T o 0g T

and by the prime number theorem,

M da
< d
<opm? [ o=
Mo

as required. m
LEMMA 9. Set 8= 6N~ and set
pm{mmum*M)ﬁosMﬂSN“%
(log N)|65| =4 4f NoL |6y .
Then we have
e2mifv(x)

M
| FE oty
M, 08T og A

Again, in the special case 9(x) = £, this lemma is proved in [7, p. 202).
The more general case needed here is proved in the same way.

We now state a lemma which will help us to treat o near rationals a/b
with & large, that is, on the minor arcs (7, p. 283].
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Lemma 10. For any o not in any major arc My (€) and any 64 > 0
(which may be chosen arbitrarily large) we have

L3 gl
TN

1=gsN

< Cllog N) ™,

where C may depend on §&,.

5. The singular series. In this section we approximate F(Ky) by
F(Ly) where the definition of F(Ly) reflects the shape of F(Ky) on the
major arcs. The definition of Ly is motivated by that of the singular series
which appears in the analysis of Waring’s problem or the Goldbach prob-
lems. To be more precise, we let Ry = {0 = 1} and for each natural number
s let

Rs ={£€Qn[0,1): {=a/b with (a,b) = 1 and 2° < b < 2571}

For each natural number N now set

0 e 3 (e e 2)

where ¢ is any smooth bump function on R, supported in {—1/5,1/5] and
equal to the identity on {—1/10,1/10]. As before, the functions Wy (x—a/b)
and S(a/b} are defined by (4) and (5) respectively. We now define

(7) F(Ly)(e) = D thsv(a).
s=0

Note that because the terms on the right of (7) are smooth the function L
is defined pointwise via the inverse Fourier transform. The purpose of this
section is to prove the following lemma.

LevmmMa 11, Given any 65 > 0 there exists a constant C > 0 dependent
on &5 but independent of « such that

[F(Kn) () — F(Ln)(a) < C(log N)™%.
Proof The proof falls into two cases. Case 1 is where o belongs to a
major arc of order N and case 2 where it does not.

Case L: Assume o is in My (£p) for some &y. Suppose & is in H;,. This
means that 2°¢ < (log N)*. Let s; be a positive integer depending on N to
be specified later. Using Lemmas 6 and 7 we see that

[F{Kn)(a) — F(Ln) (@) < |1 - ((10%(a = &o))]

+ Z sup  |Wy (a - %)l + b Cy{log N)52

0<s<s a/bERs o
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where § > 0 can be chosen arbitrarily large. Here R, o denotes R \{&} if &
isin R, and R,  denotes R, otherwise. Choose s; such that 2°* = (log N)%,

Now 10% < (log N)** and o —&| < (log N)%“/N¢ < N°~! for any £ > 0.
Therefore |1 — ¢(10% (o — &3))| = 0. We need to show that

WN(a~ %)

o — €1 = 1€ = &of — | — &ol.-
If in reduced form, £ = a/b and & = ao/by, then |£ — & = 1/(bby).
Also b3t > (log N)™* and because b < 251! (log N)% we have b™* >
(log N)~%, and thus

= O((log N)~°2).

sup
OSSSSI a/bER;,U

Note that

€6l 2 5 2 (o N) 5
Now, for any & > 0, |a ~ &| < N*71, therefore
loe — €] 2 3(log N)y™“7%.
If we set 6g = (u+ 62)/d then by Lemma 9,

(log N)%

Wa(a—£) < %

This means that

(log N)®

> sup [Wala—¢£)| <0 T

05s<s, $EH
for appropriate 67 > 0. We have therefore proved Lemma 11 in case 1.
Case 2: Suppose now that « is not in My (¢) for any £. By Lemma 10,
IF(Kn)(a)| < Clog N) ™%
and so we need only show that
IF(Ly){(@)| < Cllog N)~%.

Now using Lemma 6 we have for any positive integer s,

Wi (a— %)

Now set 2% ~ (log N)*. Choosing w large enough this reduces the proof of
Lemma 11 in case 2 to showing that

(e=3)

By}l < > sup
: 0K s<sg 4/ PERS

+ C27%

. sup

< C(log NY™%
055y W/ 0ERS

icm
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Because of the way we have defined My (£), whenever £ is in R, and 0 <
5 < sp we have | — £ = N™%log N)®, so |Wy(a —€)] < Cllog N)~%/%.
Thus

> sup [Wy(a - €)| < O(log N)2*(log N) /2,
0<s< g S5 R

which for u large enough compared to w is < C{log N)~%, completing the
proof of case 2 and hence Lemma 11. =&

6. Auxiliary [?-maximal estimate I. In this section we prove the
following lemma.

LEMMA 12, Suppose Dy denotes the natural numbers which are powers
of two and that for each pair of natural numbers s and N the function ¢, N
is defined by (6). Then there exists &g > 0 such that

| sup [F~* [, wF (N Iz < C27°% |12
NeD,;

Here F~1 denotes the inverse Fourier transform.

To prove this lemmma we need the following maximal estimate due to
Bourgain [3] that is central to this whole paper.

Lemma 13, Assume 0 < Ay < ... < Ag <1 and for each j in N define
netghbourhoods

;= : mi - <277}
T} {)\ eT lS]fE]lclélK |)\ Akll < }
Then for each function f:Z — R we have

[su0] [ FCE

, < CUog K} fll-

Before we return to the proof Lemma 12 we need the following subsidiary
leroma.

LEMMA 14. Suppose 1, v 1 defined by (6}, let x = X[, denote the
characteristic function of the interval [—1,1] viewed as a function on R, and
if the functions S(a/b) and ¢ are as in the definition of s, N, let

s200= £ oEp(re- (o)

a/bER,
Then

1 —
S e — 9N [P < 27
NeD,
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Proof. We argue as follows:
2
Sopen - Y T (%) ‘ng (a-§)
2 !
(2 (o= ) e (=-5))

NeDy k>l a/bER,
< 02-2551( > Wi (a - %) ~1

2821/ |ma/b|ti/d
2
T ). -

Wgh- (Of - %)
21/ )c—a/b|1/2

Here a/b is the unique a/b € R, picked out by ¢ and (.
Using Lemmas 8 and ¢ this is

02—2551 ( Z

25 <1/ la—a/blt/d

ME
a— &| g2rd

[ed

q

o

261/ |a—a/b|t/d

(log 2F)22=2k ¢

——2/d)

We are now ready to complete the proof of Lemma 12. Note that

I sup I o B ()]s < | sup [F WENF(

(30 Moo =02 10,

nE Dy

which is < 02725 a5 required. =

which using Lemma, 14 is

<1 o IFT R RFC o+ 027 £

This means that in proving Lemma 12 we may replace ¥, v by d)( - For
N in Dy let 27 = N? and set T; to be the 277 neighbourhood of Ry in T.

Thus if we set
0 5 (o)
a/g?. ( * b)

Vo () = Flgs)xe, -

we have
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This means as a consequence of Lemma 13 that
—17,,(1) -1
sup |[F~} F < |sup|F~ [F
I Sup [F e NI <l jali'l [F(gs)xp, )1 2

(8) < C(log | Rs))Mlgsl2 -
By definition |R,} < 4°. In addition, using Parseval’s theorem,

£ 5ole2) o

which using the fact that |S(a/b)| < C27*% and that {(10°(x — /b)) has
support near a/b tells us (8) is bounded by €225 ¢2||f||2 as required, prov-
ing Lemma 12. w

QsHZ <

7. Auxiliary L?-maximal estimate II. Our task in this section is to
prove the following maximal inequality.

LemMMA 15. Let Q, = (2°)! (s =1,2,...). Then there exists 89 > 0 such

= GLACHECICHEE )

bpostl (ab)=1
< C27°%| Fli2.

The proof of Lemma 15 will require the establishing of a number of
lemrnas which we prove first.

LEMMA 16. As earlier, let ¥ denote the characteristic function of [—1,1]
on R. Set

- T (gmle- e 3)
e (Gt

and set

= 3 % s(f)x(e-5)s(@(e-1))

bl@Q, b
5223+1 (a,b)=1

Then we have
(9) Te 3 (P (e) - PR < 02728,
NeD,

uniformly in o.
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Proof Writing out the left hand side of (9) more fully we have

w =3 1% ¥ S(%)

NeD: ' 4|Qs  1=a<d
6223+1 (a,b)=1

Do) (- (ete-)

For a fixed o suppose we are given distinct rationals a1/b; and ag/by (in
reduced form) such that b; | Qs, b > 2° and 1 < a; < b; for both i = 1
and 2. To estimate (10), because the support of { is contained in [~1/5,1/5],
we need only consider a/b such that

2

a < 1
a—— —
b~ 5@Q3
in each summand. In addition, because b; and by divide Q, we know
(biba)"! > @52 Now if '

25} 1
gt S5
because
a2 _l_,_‘a,_ﬂ
ba | T bibo by!’
we have
(%] 41
YT 2

In consequence, for each o the interval

i {a ! + !
= — T o —
“ 5Q3 5Q3
contajns at most one rational with the property assumed for the by and by

above. We shall assume this rational does exist because if not we can ignore
the corresponding term in (10). This means that

2 2 3G (o) (v (+-5) et (o-3))
(o) -x(v(a-5))

bz20t+t (ab)=1
where /b is the lone possible rational in I,,. Thus we have

reort 2 nfe-5) o{r(e-)

NED:>

2

2
S 02—2351

bl

2
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ol 2%
b ?

Using Lemmas 8 and 9 this is

< 02~2s61 ( Z

20 <[ a1/

a
o — —

2
o%kd o Z log®(2%)|a - ~

9> |a—a/b|L/2

which is < C272¢% | ag required.

LeMMA 17. Let py,...,pr denote a set of coprime integers greater than
one. Then if Zy denotes the positive integers,

(11) #{(mlz"-:mr)eZz:pTl...pT’”ga;}

1% /1 v
<1 (IOﬂ Hl/z) _
) =1 Og P4

Proof. Taking logarithms the left hand side of (11} is the number of
(ma,...,my) in Z% such that

0< ij logp; <log V.
=1

With any (ma1,...,m,) with this property associate the unit cube (my, ...
sy M)+ (B1,.. ., Br) where 0 € 8; <1 (5 = 1,...,7). The union of these
cubes is contained in the simplex which is the convex hull of the points
(0,...,0) and (}—2{% +r1/%)e;. Here e; (j = 1,...,7) denotes the jth unit
vector, The volume of this simaplex is the right hand side of (11} and so
Lemma 17 is proved. a

Note that the above lemma remains true irrespective of the base v of the
logarithm. In the proof of the next lemuma it will be convenient to take the
value of ¥ to be large.

LeEMMA 18. If ¢ denctes Buler’s totient function there exists 6g > 0 such
that

T (log¢(8))* _ C
b51 - 2.559 :

B|Qy

bt

Proof Using the fact that ¢(g) < g we have

AL S S *Y (1%

bl b, prrieeq.
b8t bzt '
where ' 1 if b divides @
_ g wides s,
x(b,Qs) = {0 otherwise .
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Using summation by parts we have

Z b%X(b: Qs) = ““l,ig( Z x(b, Qs))

20+ b, §2etigELQ,
1 1
+ > (—5“—“*———5)( > xk Q).
25+1 < <h ne (n+ 1) ? 1<ksn

We now see that Lemma 18 is proved if we show that given € > 0, there
exists O > 0 independent of s such that

(12) 3 X Q) < Gt
1<k<h

Now all the prime factors p; of Q. satisfy 1 < p; < 2°. This means that if
we set 7 = 74, then

> x(h, Q) <#{(ma,...,m,) €T g g™ < B
1<k<h
By Lemma 17 this is
T r
<all (s )
rho log., p;

Because of the explicit dependence on r = s, it is perhaps not immediately
clear that the bound (12} is attained. Nonetheless setting v > 1 /€ and using
Stirling’s formula together with a little elementary calculus establishes (12),
as the reader will verify. =

We now complete the proof of Lemma 15. First note that

lsup P PELFH 2 < || sup [F- PAE(H)] [
k1 kz1 !

1 2 1/2
(IR = PELIR) e,
k>1
which by Lemma 16 is

< sup P BELR(A] fa + 0270 £l

This means that in the proof of Lemma 15 we may asstune Pfll,z, is replaced
by P35, For N in Dy let N = 2/ and let Ty be the 2~ neighbourhood of
Sy={a/b:1<a<b, (a,b)=1}.

Note that #5, = ¢(b). Suppose h, is defined by

Flhy) = F(f) 3 s(%)c(czﬁ(a—g)).

albg Sy
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Also note that if

v T (E){eo-3) (o)

(a,b)y=1
then
Pb s,N(a)F(f) = Xp F(h’s)
Now
Isup FPFAN 2 < 3 lsup (B (P B() s
=t @z "= '
b>aet!
and

Isup [FHPy, 2P ()] 2 < | sup [ Dy, Flh)]l 12
LFe 32
Also by Lemma 13,
llsup [F™* g, F(ho)llll2 < Cllog(#:5,))lhs |2 -
e

Finally, note that by Parseval’s Theorem and Lemma 6 we have ||h;[lz <
Cb~%4| f||2. This means that

1 b))?
Issp PR s o S S gy,
= bQ.
b225+1

which by Lemma 18 is < 027%%||f||2, as required. ®

8. Auxiliary LZ-maximal estimate ITL Let B, = {k € Z: 4° < k <
451} and set

(13)  Te.= OS%DE s(&) Was (a - &)C(Qﬁ (a - Qi))

for each ¢ < 5" and each k in B,. The purpose of this section is to prove the
following lemma.

Lemma 19, There exists §1p >0 such that
| sup |f # Kon = FHIp F(A)]| 2 < C27°00 | |2 .
k24

Our use of Lemma 19, will be in the form of two immediate corollaries.

LEMMA 20. For 61g as in Lemma 19,
| sup |f = Koo — F 7 T Pl 2 < C279%|f 2.
keB,



222 R. Nair

LEMMA 21. For b1 as in Lemma 19,

| sup [B7H (D, = Tre-1)F(N]| 2 < G275 £
k>d4e

To complete the proof of Lemma 19 we need another preparatory lemma.

LEMMA 22. Let
P (a)

-2 Z wme)l(ee-5)) (o (-5))]

'Then
(14) [ Sup [P P @) F ()] 2 < C27°| £z

Proof Estlmatmg the supremum by the sum, the left hand side of {14)

< | X IF RS @E@

k>4s

is

which from the definition of PS(‘“;),“ is

<L L X |wfa-3)

k24% 0<r<sa/bER,
<[e(@(a-2)) ¢ (a-2))] Hmllfliz,

(X # s a8l

k>as  |B]>QF
By Stirling’s formula Q2 < €252 and so using Lemma 9, this finally is

< (308 < 02,

kx4

and thus

as required. =

We can now complete the proof of Lemma 19. First note that for Ly
defined by (7),

| sup | £ % Kogu —F7 I F(A]| iz
k4o
< | sup [f % (Koe — L) |2
k>4e

+ || E;}; |f* Lox — F"I[Fk,s]F(f)” 2

icm
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1/2
(15) < (30 I = L2 11l
k4o
*laple( 2 s -nroll]

+3 0l sup [F- [mm( il

>4 -

Because by Lemma 11,
Y K ~ L], < a5,
k>4
the first term of (15) is bounded by C27°%|| f|i5. In addition, note that
1
Z 1!),,.2k—~ 5(2)k (32)&:,
0<r<s

so by Lemmas 15 and 22 the second term is bounded by C27%¢1:{|fl|z. Fi-
nally, by Lemma 12 the third term is <CY 2778 f|l2 < C27%%|| |2,
as required, completing the proof of Lemma 19. =

9. Auxiliary L?-maximal estimate IV. The purpose of this section
is to prove the following lemma.
LEMMA 23. Suppose pg > 1 and that 1 < b < D, where e = o(1). Then

= 5(3) momn(o-3)

0<a<h

(16) sup

NZ>1

x((DB)er e/t gg || < Cloglog bl £, -

Po
As before the proof Lemma 23 will be achieved with the aid of a series
of lemmas. The first two we quote from [3].

LEMMA 24. Suppose pg > 1 and that 1 < b < £D with € = o(1). Then
|F(B)e* P (DBYABl Lroqmy ~ [F(B)*PVL(DB)dBl w0 z) »
that is, the LP*(R) and [P9(Z) norms are equivalent.

LEMMA 25. Suppose pg > 1 and that 1 < b < €D with € = o{1). Then if
Uwn(B8) is uniformly bounded in N, we have

Z [ Un(BYE(f ( )

0<a<h

XC(DIB)BZ':ri(ﬁ-{-a/b)dﬁ

< Cll S llzeo 2y
170 (Z)
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LEmMMA 26. The IM(Z) norm of the function
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where, for a set B, we have used p to denote its characteristic function,

O;Kbs( ) (a ) %) o Wi (8) = F(An) (_ﬁ_) ,

. #=1(N)
18 bounded by and in addition

Clloglog b}y sup [F(G)(b +2)]. RO = D7 EE) (5 )

Je? 0<w<h

Proof. We first note that so applying Lemma 26 with G(8) = Wy (8)((DB) we have

{OROLCHIE &) =74 ) 70 (5)

- We therefore ha
= (Og‘ibs(%)ezm /b)IF(G)(:c) e 1; 0;( Sfef WN( ) (D (a_ %))egm;a:c dot

0ga<b 1z
—2wi(d(r) —w)ab™t log log & : z+t-y
b) Z Z ¢ <C Z sup Fi¢] (_____) ’ dy
r’:'bj?.l 0<La<h D jEZOSI‘(b 6" D
= F(G)(z)#{r € Z/VZ : 2 € Z/bZ + H{r)} . for certain t Therefore, using the fact that ¢ is smooth and using the im-
Thus if _ plication of that for the decay of Fourier coeflicients, we see this iIs
(r, ) = L ifzisin Z/bZ + (r), (18) <Ch log log b sup .t 7
XAHE= 0 otherwise, D osec " (a: +jb)
we have D
S — b which is < C'loglogh, as required. =
(22 s(5)ele-3)) = EOE) T xnaggs .
O<ah ey ¢ (b) LEMMA 28. If po > 1 and f is in LP°(R) then we have
which, using the fact that ¢(b) > C(loglogh)b~!, is | sup IEF"I[WNIF(f)H lreoqry < Cllf Lz
< C(loglogd) bz sup |F(G)(b] + ), Proof. Note that the left hand side is || supyyy [f * Viv| ||Lro(r) where
jez 05o<h Vn(8) = An(=8/9"Y(N)) and Ay is defined by (17). As the reader will
as required. m readily verify letting s1 = s1(N) =971 (N), 52 = 1,
LeMMA 27. Suppose 1 < b < D. Then Ky(x) = K (x)
€ I = (log N w], 'ﬁ-—l(N) ) + '(E)wﬁl
Z 5( ) f Wi (rv - —)Q(D(a — _)) rice g, < Cloglogh. = (log V) ﬁ_l(Nﬂ)X[O,ﬁ"l(Ng)/ﬁ"i(N)l X[9=1(Np) /9~ 5(N).1]
0<a<h b b 1HE) - and
Proof. Note that for Wy (8) defined by (5) if we take M large enough Ka(z) = xpp 13 (z)z"/ 41

to ensure that ¥(x) is mcreasmg for z > My and that 971 My) > 1, then if

(M) Xid 1000y f=1 f p
17 Ay () = —24 [@ 2 (M) /91 (M), 1]
(17) () T (log(ﬁ‘l('ﬂ—l(M):c))*ﬂ’('l?‘"tl(M')m)))($)

and setting (K;)s,(t) = (1/s;)K;(|t]/s:) (1 = 1,2) we have
sup | * Viv| < C(sup [F * (Ki)s, (8)] + sup |F # (K3)s, (£)1)
NZ1 5120 520
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for f > 0. Here we have used the fact that K; and K3 are non-negative.
Note that both K and K have integrals bounded above absolutely, that
is, independent of N or s. Splitting f into its positive and negative parts we
have

Il sup | f # Viv| || Lromy
Nzl
< ¢ sup L x (Ka)s ()] | zeomy + | S1~1>PD|f * (Ka)ey (1)) || Loy} -

We need to show that this is bounded by C||f| zro(r). Suppose K denotes
either Ky or Ky. Again because K is non-negative, in proving Lemma 28
we may assume f is non-negative. Define the function K7 to be K on the
set {o: 27471 < K(z) < 2%}, zero on {zr : K(z) < 2-L=1} and 2% on
{z: K(z) > 2"%}. Also define B; to be the smallest interval centred at the
origin containing all # such that K(z) > 2791, Then as we readily see, if as
before ¥ B, denotes the characteristic function of B;, we have

L
—L-1 - §_ aj-1
2 XB_; + Z (21 -7 )XBj
J=-L
L

1 . .
SKp <27 + Z (2741 _ Y)x5,
j=-L
Let Ky;(x) denote s™ K (z/s); then if sB denotes the set {sz : z € B}
and [sB| denotes its Lebesgue measure, we have

(K f)(@) <27B_g|(1/1sB_rl) [ flz—vy)dy

8B
L
+ 2 @ 2Bl isB) [ fle—y)dy
j=—L By
which is ?
SZM(f)(a:)(fK).

Here M(f) denotes the Hardy-Littlewood maximal function. Lemmma 28 now
follows from the LP° houndedness of this maximal function. =

We can now complete the proof of Lemma 23. Suppose g is defined

indirectly by
F@ie)= 3 5(5)e(F (o~ 2) Jriw

BLa<h

i Zo(Z(e-5))]

Then

(19) HS’“LPo(R) =

Lo (R) :

icm
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which by Young's inequality is

RO

and by Lemma 27 this is

(20) < C(loglog )| fllLrar) -

Now note that because

(Rl §))e(ole-5) - 5P fgize

we have the left hand side of (16) equal to

<

sup
Nzl

Y [ wwowa) o+ 3 Jcwmeran ag |

0<a<h

which together with (20) completes the proof of Lemma 23. w

10. The restricted maximal function. In this section we show that
the following lemma ig true.

LeMMA 29. Suppose p > 1. Then for each Ng > 1,

[ sup |f#Ky|llp < Clloglog No)|lflp -

NoSN<NE
Let @ denote the cyclic group Z/JZ for large J. Endow G with its
normalised counting measure. Using the fact that for each ¥ > 1, Ky is a
positive kernel we gee that Lemma 29 follows from the following inequality:

(21) | sup |f * Koel| ey £ Cllog k)| flizea -
<h<2kq

oSS

The next lemimna is a well known tool in harmenic analysis due to E. Stein
(see [6]). Suppose G is a compact group with Haar measure indicated by
v = dg. Suppose 1 € p £ 2 and that (7},)5°_; is a sequence of bounded
linear transformations of LP{G) to itself such that each T}, commutes with
translation by any group element. We set

T (f)(e) = Sl;%\Tmf(m)l and By = {z:T"f(z) > a}.

LeMMA 30. Suppose that for any function f in LP(G) we have
(22) T () (=) <00
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almost everywhere. Then there is o constant A, > 0 such that

V( a) < p“fHLp(G
Note that this means that showing

(23) [ sup |f = Kn||lp < Cloglog Nojl fl,
Ny<NSNE

is reduced to showing

(24) | sup | * Eoullrrey < Clogkl flloee
ko <k<Zko

Since (24) weakens as p increases we assume ¢ = 1/(p — 1) is an integer. We
now estimate (23) in its dual form. We therefore need to show that whenever
we have functions (gz)k>0 satisfying gx > 0 and Zwo gk < 1 then

(25) ” Z i * Ko

h=kg

< Cyloghy.

To prove this statement we need the following lemma proved using major
arcs information.

LemmMa 31. Suppose ko < ky < ... < ks < 2ky. Then for an appropriate
choice of M == logky there exists B greater than one such that if we set
Nj = Kyar then

(26) Cokz * Niy) oo (gk, * Niy) % (Niy — Nig)2qey < kg

Proof. Denote g, by h, and 2% by P,.. For D and s, to be defined
later let

0= 5, 39 o)) oo 7).

It follows from.Lemmas 6, 9 and 11 that
(27)  [F(Ni,.)(e) - L) < C((log )™ + 275 4 (log P,) D~/

From the definition of Ry we have [|[F~(I3) |10z € C4%, giving the uniform
estimate

(28) |FHOF(R)]| < C4te
This means as a consequence that
(29) ke % Nio, = F~ IV ()] || Ly
< C((log P) ™% 4-27%% ¢ (log P,) D~ 1/4)
We estimate the left hand side of (26) as
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< [|(ha * Niey) - FHToF (ho)]l| 22y
+ B [2F (h)] ol (B * Nig) = F*[T3F 2 (g)]} 12(c)

SRPRE || 14 (hz)]\l NFH Ty F Ry )]
(30) {XH(hq*Nruq% [FF Hma)l

(31) + [ET R (Ry)] .. 1[Fqﬂ"( )l * (Niy = Niy )22 -
By (28) and (29} we know (30) is bounded by

a
Oy 47 ((log )™ 4 2750 4 (log P)D ).
$=2

Making appropriate choice of the numbers s; =~ log kg, this is

1.
(32) < 75k + k5((log P2) ™% + (log Py) D~ V1),

Note that the Fourier transform of
FHIoF (Rs)] .. . FYI,F(hy)]
vanishes outside a DP; neighbourhood of the set
U={a/beTNQ:0<b< 2?5},
Therefore (31} is bounded by

(33) [E=H IR (ha)] - FH I F (Rl 22(cy sup [F(Ng, ~ Nig )] -

As with (30), the first factor is bounded by C4®2F+5¢ < k.
From the definition of U and Lemmas 7 and 8 one easily verifies that if
D < (log PpY* and 2% < (log Py)%,
as can easily be arranged, we have '
Pl —62
sup [F(Ni, — Nig)a)| < €D{ 7 + Cllog Fa) ™2 .
el
This means that (33) is
(34) < CES[D2™ M4 4+ 1og(2M ko) ~%).
Combining (32) and (34), Lemma 31 is proved. =
We now return to the proof of (25) with M = log ko. Clearly (25) follows
if we show
(35) H Z gk*LkH < Oy,
ko< h<2ko
whenever g > Gand 3,595 < 1. Let 7 be the least possible Cy. Expanding
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the gth power of the left hand side of (35) and integrating,

z Gk * Nk“j

ko< k<2ky
(38) <C > f (grs * Niy) - - (g, * Ni, ) dyg
ko<ky <. . <hg<2ko &
g1
(37) +C f [ Z gi * Nk} dg .

g ko <k<2ky

Clearly (36) is bounded by ¢! and as a consequence of Lemma 31,
‘ f {9k, * (-Nk1 - Nku))(gkz * Nks) cen (gkq * qu) dg‘ < C’k&)_q )
G

so we estimate (36) by
(38)

c+ 3 f [(

Z gk) * Nko](gkz * Nigg) -+ (gn, * Ny, ) dg.
k}o{kg(...<kq<2kn &

ko<k<2kg

Since the first factor in the integral is bounded by 1, (38) turns out to
be bounded by (37) and hence by Cp?~!. Consequently, one gets n?¢ <
C+ Cy*~1, giving n < C and completing the proof of Lemma 29. =

11. Proof of Theorem 2. We now complete the proof of the central
maximal estimate of this paper, which we stated as Theorem 2. First note
that for Iy ; defined by (13) we have

fxBoye = FH Dy (F(F)] + F (T ~ T, )F(f)]
+ o A F (T = T )E(A)] 4 [f # Koo — F I F(H]]
go for p > 1,

sup | f * Konlp
k=1

(39) < sup [F (e — T, 1)F(F)]|
s=] k24
(40) + 3 sup |f % Kow — F Iy JF(f)]] -
s=0 ¥

Suppose 1 < pg < p < 2. It follows from Lemma 23 and subtraction that
| sup E= (T = Teysm ) )F ()] llpo < CslIFl1po -

icm
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We also showed in Lemma 21 that
i Sup F™H (Des = Tes-0)F()| l2 < C27%9° Fl2.
Interpolation gives

Il sup [F(Thys — Dot )B(I o < C2757% £l

ko> 4o
Now,
|| sup [f = Ko = F I F(H)]] o
ke B,
(41) < | sup [f * Kokl {lp,
keB,
(42) + | sup [F™HTe S FCNH s -
kEB,

Using the restricted maximal function estimate, (41) is bounded by s|fll»
and by Lemma 23 a similar bound can be found for (42). Also by Lemma. 20,

| sup 1 % Ko~ F T B2 < O Sl
This means that by interpolation we have
| smp 1 » e~ F LB lp < €275 1l
Returning to (39) and (40) we have
lsup £ Kosl Iy < C( 302757 + 327" )1 < Cl .
2 520 820

as required, for all p such that 1 < p < 2, thereby completing the proof of
Theorem 2. =

12. Proof of Theorem 3. We need the following lemma [2].

LEMMA 32. Suppose w : R — [0, 1] is smooth and supported in the inter-
val [, 7]. For a non-negative function K :‘R — R in LYR), decreasing as
2| — oo, set K(x) =t~ K (z/t). For f € I*(Z) and t >0, let

Dif(s) = [ Blf)a)w(o)F(K)(@)e* ™ da.
oo .

Then

o0

(21

k=1

Ve
sip DS~ D fl1B) " < Clfle.
Nezk,s
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Note that
_ 1/2
M;f < sup lf*(LN”LNj)I’f*z{ > \f*(KN—LN)Ig} _
NGZjE
4 NeZj.e
Therefore
> IMflEs (Y | sw 1« (Ey - Lyl I
1<k<d 1<k VEZue
t 30 W By - L))
NcZ,

By Parseval’s inequality

Do M+ By =25 < (Y IF(KR) ~ F(Zy)12) /13

Nez, NeZ,

Using Lerama 11, this is less than Z || f{|2. Now let

Z%L’UN

]F nN)

Then by Lemma 6,
I sup 1F Loy = Puso)lla < €30 27%%) | flla < 274 1.

Yy>n
Hence
2 IMfIP < 37 lsuplf o (Paw = Pu)l I3+ CI275 | 7|2
1<k< kg Fre “
and
2 H sup if * (Pn,N - PTL,Nk)‘ “%
1<k<y  Bre
oo a
<47 sup o | e (100 (o~ 2))
a’b’ylsng NeZ;,. _"!O g
. . 2
Wy — Wy,) (nf - E) ¥ Joy
2

Here the supremum is taken over all pairs a,b such that 1 < ¢ < b and

(a,b) = 1 and all R, they belong to. Applying Lemma 32, we have
Y IMefl3 < o + g2y 52

LSk

Thus for an appropnate choice of n, we have Theorem 3 and hence Theo-

rem 1.
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