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Disjointness results for some classes of stable processes
by

MICHAEL HERNANDEZ (College Park, Md.) and
CHRISTIAN HOUDRE (Stanford, Calif.)

Abstract, We discuss the disjointness of two classes of stable stochastic processes:
moving averages and Fourier iransforms. Results on the incompatibility of these two repre-
sentations date back to Urbanik. Here we extend various disjointuess results to encompass
larger clagses of processes.

Introduction. There are two commonly used representations of sto-
chastic processes: a Fourier transform representation,

(11) X()= [emaz(y),
R

where a random signal is represented as a superposition of harmonics with
random amplitude, and a moving average representation,

(1.2) X(t)= [ h{t—s)d¥(s),
R

where a random signal is represented as filtered noise. As is well known, a
stationary Gaussian process is a moving average of Brownian moetion if and
only if its spectral distribution is absolutely continuous, However, for stable
non-Gaussian processes, Urbanik showed that the two models can be incom-
patible. In Theorem 2 of [15] he characterizes the discrete time stationary
moving averages as stationary completely nondeterministic sequences (cf.
Theorem 4.2 of [16] for the continuous parameter case). On the other hand,
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he shows that the stationary “harmonizable” completely nondeterministic
sequences are null in Theorem 4.4 of [17].

Urbanik's disjointness result has recently been extended to larger classes
of stationary stable processes ([2], [3], [11]). The methods of proof vary
greatly. For example in [2], the disjointness relies on a characterization of
SaS noises as (p, g)-bounded processes. Furthertwore, only moving averages
of a-stable Lévy motions are considered there. Here, we relax these condi-
tions to address random noises with independent but not necessarily station-
ary increments, hence considering a broader class (in general not. stationary)
of moving averages. We also generalize the notion of (p, g)-boundedness and
characterize some of these processes ag Fourier integrals in the summabilicy
sense.

The disjointness result of [2] also relies on the Hausdorff Young theorem,
so it is natural to look for extensions of this theorem in order to obtain the
disjointness for a larger class of stochastic processes. Here we use “weighted”
extensions of Hausdorff-Young in which we employ a regular Borel measure
v in the norm of the Fourier transform side of the inequality. On the other
hand, the control measure u of the noise ¥ in (1.2) is the weight we use
on the other gide of the inequality. There are many results available for
weighted norm inequalities with absolutely continuous weights, which is our
focus. A theorem of Benedetto and Hleinig [1] is of particular interest here.
We also exarmine a special case of a theorem of Johnson [8], which justifies
the consideration of an absolutely continuous “space measure” 1,

In Section 2 we give definitions and theorems which are used throughout.
In the same section we introduce stable random variables and processes.
We also modify the definition of (p, g)-boundedness by replacing Lebesgue
measure with a regular Borel measure v and present conditions on this
“space measure” to characterize some Fourier integrals as v-(p, g¥-bounded
processes. Lastly, in Section 3 we prove some disjointness results. We present
extensions of the results found in (2] using the generalizations of Hausdorff-
Young mentioned above. These are then applied to the disjointness problem
for stable processes, and in particular recover all the known results. We finish
the paper by showing that, nevertheless, moving averages of an o-atable
- Lévy motion are Fourier transforms of noises which, of course, cannot he
(p: g)-bounded. This last result completes Theorem 3.1 of [2]

2. Preliminaries. In this section we give definitions, lemmas and theo-
rems which are used throughout. We let B (R} denote the -ring of Borel sets
on the real line, and we denote the é-ring of bounded Borel sets by By (IR).
In the sequel, when the measures v and u are absolutely continuous with

respect to Lebesgue measure, we use the functions v and u to denote their
respective Radon-Nikodym derivatives. Norms are usually written in the
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form || - |lp, = (fg | * [P ds)*/%. If only one index is used then it is the power
index, and we assume that the measure in the integration is Lebesgue. We
use the symbol LE(R) or L*(u) to denote the weighted Lebesgue space of
p-integrable functions. For 1 < p < oo, the indices p and p’ always denote

conjugate indices; Le., 1/p 4+ 1/p" = 1. We let the symbol S(R) denote the

Schwartz class of rapidly decreasing C™ (R) functions. Two norms || - || and
|+ || are said to be equivalent, written || - || = || - |, if there exist positive

constants C'y and Cy such that Cyf| - | < -7 < Cafl - |

For fel'([8), we define the Fourier transform by f(fy): Rf (z)e~ 17" de.
R denotes the dual or character group of R which is isomorphic 1o R. We
usually use i for elernents of R and y for elements of R but are not compulsive
about this. The range of the Fourier transform is denoted by A(R); that is,
A(RY = {_]? f e LY (R)}, Similarly, whenever the Fourier transform makes
sense, (L(u))" = {f: f € L*(p)}.

The symbol (L7(R))¥ denotes the space of functions f & LY(R) such that
the Fourier transform f € L9(R). Likewise, the symbol (L9(v))¥ denotes the
space of functions in L*{R) whose Fourier transforms are g-integrable with
respect to the measure v, When ¢ = oo we use the convention (L*(R))Y =
LY(R). BV(R) is the space of functions of bounded variation on the line and
thie symbol Var f denotes the total variation of the function f. (2,8, P) is
a probability space, and £ denotes expectation (i.e. integration with respect
to P). In general, ' denotes some positive constant whose value may or may
not be the same from one line to the next.

2.1. Stable processes. We recall some basic facts about stable variables
and processes (see Samorodnitsky and Tagqu [14] for more details). A real
random variable X is called symmetric a-stable, or SaS for short, if its
characteristic function Eet¥ is of the form e~%*" | where ¢ > 0. We consider
here the case where 1 < o < 2, since the weighted norm inequalities alluded
to in the introduction are for such indices. Furthermore, this range of indices
corresponds to a Banach space structure for the linear space of the process.
The real random variables {X;}}., are jointly Saf, or the real random
vector X = (Xy, .., X,) is S8, if all (real) linear combinations 2;’21 a; X;
are SeeS. Equivalently, their joint characteristic function £e6%) is of the
form :

exp (- [ (o))" dlx()),

wheve ¢ = (t),...,t,) € R, (¢, 2} is the usual scalar product in R®, and
Ix is a symunetric measure on the n-sphere S™ (see [14]). A real stochastic
process X = {X(¢) : t € R} is SaS if all finite linear combinations of
its random variables are SaS. Note that if @ = 2, this is nothing more
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than the usual definition for symmetric (zero-mean) Gaussian variables and
processes.

A complex random variable X = X + Xy is Sad if the real random
variables X, X3 are jointly SaS; that is, for t € C, £ = ¢, +-itz, and ¢ > 0,

geiﬁ(fX) — 581'(51)(1+th2) = exp ( _ f ttlml +'L’2.’L‘2|a dI—‘X}.,Xq (1‘1,.’1!2)) )
SB

When the complex SaS random variable is invariant under rotations it is
called radially symmetric (or isotropic). That is, for # € R, e X and X are
identically distributed. In this case, I'x, x, is the uniform distribution on
§2. and the characteristic function has the nicer form Ee™0X) = g-cltl®,
A collection of complex random variables is SaS if the respective real and
imaginary parts of the variables are jointly SaS. As in the case of real pro-
cesses, a complex stochastic process X is Sa§ if all finite linear combinations
of its random variables are S S.

The linear space of S5 random variables will be denoted by £. A norm
for this space is given by ||-|| , and is equivalent to convergence in probability
[14}]. For a complex SaS random variable X we have

1 X = (1XIP)P,

where 1 < p < « (see [14]). _

We develop now some of the theory of random measures and integra-
tion which is used throughout. The vector space of random variables is
denoted by the symbol L°(12, B, P), or LY{P) for shert, equipped with the
pseudonorm || - {|g ({15]). By a random measure Z we mean a finitely addi-
tive set function into the space of random variables: Z : Bo(R) — LO(P). If
for every A € By(R) and & > 0 there exists an open set O € Byp(R) and a
compact set K € Bp{R) such that K C A C © and || Z(B)||o < ¢ for every
B ¢ O\ K, then the random measure Z is called regular.

Let v be a regular Borel measure. For random measures with values in
IP(P),1<p <2 and 1 £ ¢ € 0o, we may define the v-(p, g)-variation of
Z over a set A € Bp(R) to be

i p 1/21. N
@) 2y =sw {(g] S az] )" | S,
=1 [

where {4;} C By(R) is a finite partition of A and a; € C.

<1},
/i

DEPINITION 2.1. A random measure Z has finite v-(p, q)-variation if
Z(Ay e LP(P) for A€ By(R), 1 <p < 2 and if

(22) 2] = suwp {1Z](4)} < oe.
) AeBo(R) :
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When ¢ = oo, this definition reduces to the usual definition of semi-
variation. On B(R), the vector measure Z is of bounded semi-variation if
and only if it is o-additive (see [4, IV]).

Let f be a simple, complex-valued function, f = Ej\;l %X 4,0 A; €
Bo(R). If Z is a random measure of fnite v-(p, ¢)-variation, define

N
[ fdz = a;2(4;).
'3 Ja=l

Making the identification A = U;'le A; then gives

(e] J £o2)"" <120
Iy

For 1 € ¢ < oo, this integral can be extended so that it is defined for
functions f € L9(v). Similarly, for ¢ = ¢o, the integral can be extended
to Borel bounded functions. On B(R), when the random measure Z is o-
additive this integral is congistent with the Bartle, Dunford and Schwartz
integral [4, TV].

A random measure Z is independently scattered if the random variables
{Z(A),..., Z(A,)} are mutually independent for every collection of pair-
wise disjoint sets {A4,,} C By(R). Some special cases of random measures (or
noises) which we consicer are the SaS motions. The independently scattered
Se8 motions, sometimes referred to as independently scaltered stable noises
and which we denote by Y, have independent increments. The moment of
order p and the [*(u) norm are equivalent giving us

(&] J rav p)l/px(f\fl“dn)m,
I R

where 1 < p < @, and p is called the control measure of Y {12]. The integral
defined in this way is a special case of the integral mentioned previously.
When the inerements are stationary, or shift invariant, the control measure is
Lebesgue and we have a SeS Lévy motion. This is referred to as an o-stable
Lévy motion and is denoted by M. The stationarity and the independence
of the increments allows equivalence to become equality, Le. for f € L*(R),

(8’ ffclM|”)1/zzm /W( f \fl“dm)l/a,
R

R
Let ¥ be an independently scattered SoS noise, and let p be its control
meagure. Then X defined via :

X(t)= [ht—s)d¥(s), teR,
R

l€p<a.

is called a moving average of Y.
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2.2. v-(p, g)-bounded processes

DerNITION 2.2. Let » be a regular Borel measure on R, 1 < p < oo and
1 < g < oo. An LP(P)-bounded process X is called v-(p, ¢)-bounded if X is
strongly measurable and if there exists a constant €' > 0 guch that

09 (o] froxwal)” scifl,  viewo).
jid

Here we use the convention that for ¢ = oc we replace L™ (v) with
Cy (@) (the continuous functions going to zero at infinity). This definition
coincides with the definition of (p, g)-boundedness given in [7] if we take v
to be Lebesgue measure. Hence m-(p, ¢)-boundedness is identical to (p, g)-
boundedness, and henceforth any reference to this condition will be made
by the latter. The integral

J roX@dt,  feI'R),
1t4

in (2.3) is well defined as a Bochner integral when X = {X(¢) : t € R} is
strongly measurable and L?(P)-bounded, i.e., E|X(#)|? < C.

In [7], the (p,q)-bounded processes are characterized as weak Fourier
integrals. In our broader framework, where we allow a different measure to be
used in the norm of the Fourier transform, we find that the characterization
still holds under some assumptions on v,

We now give half of the characterization of v-(p, ¢)-bounded processes
as weak Fourier integrals,

TurorREM 2.3. Let the process X = {X(4) : ¢ € R} be LP(P)-bounded,
strongly continuous and v-(p, q)-bounded. Then there ezists a regular random
measure Z' of finite v-(p, 9)-variation such that

' P AW
(2.4) X(t)zggo f (h%)emdzw).
—A

The convergence is in LY(P) and is uniform on compact subsets of R.

Proof. By definition, an LP(P)-bounded process X is v-(p, g)-bounded
if it is strongly measurable and if there exists ¢’ > 0 such that

(¢l J rox@al)" < Olfla, s e @),
4

The operator T : A(R)NL2(v) — L*(P), Frs Jp F(E)X(t) dt, is well defined,

linear and bounded on A(R) N L?(v) since X is v-(p, g)-bounded. A(R) N

L2(v) is dense in L%(v) since C.(R), the space of continuous compactly
supported functions, is dense in each of thege spaces. Then as in the proof of
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Theorem 3.2 of [7] there exists a regular random measure Z : Bo(v) — LO(P)
of finite »-(p, ¢)-variation such that

(2.5) Jroxmae= [ Fayaz), vre@iwy.

R R
Let Kx(t) = [, (1~ |7]/A)e™ dy, and let By(v) = (1 - RN TR G)
be ibs Fourier transform. Then K € L*(R) and K € L¥(v) so from (2.5)

we get

A
(2.6) [ B\t =X (rydr = [ (1- %)e—m dZ (7).
I
Now,

~A
(E‘X(t) . :f (1 - l%l) e 47 () p) 1/p

< sup (E1X() = X(¢ — 7)[P)M? [ |EA(7) dr

Ir|=é Ir|<6

+ 2sup(€|X (&)[P)/7 fIKA(T)|dT-
teR 7|56

But X is an LP(P)-bounded process and ||K,||; = O(1) so we have
A ] » P P
n - iy
(8&)((&) - J,: (1 ) )e dZ () )

< O sup (E)X () - Xt - )PP+ C f A (T)dr

Ir|%8 s
Since X is strongly continuous, on |7| £ § we get
(2.7) lim sup (E|X(t) - X(t —r)[P)? = 0.
oo} ‘Tlf.:b

Furthermore, the Fejér kernel (or any other approximate identity) has the
property that
2.8 i Ir=0.
(2.8) Jiw [ KA(n)dr
|r|=d
Combining (2.7) and (2.8) proves the theorem. mw
Remark 2.4. The full chatacterization appears in [7] for the case v = m.

Here, & converse to Theorem 2.3 is only possible under some conditions on
v: Using a generalization of the Haugdorff-Young theorem we mention.in
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the mext section, i.e., whenever sup,o(1/s) Jy v(7)dy < oo, we see that a
proof for the converse follows as in [7].

In contrast to the Gaussian case, not every stationary SaS process,
o < 2, has a Fourier representation in the above sense (o fortiori since
1-{p, ¢)-bounded processes are possibly not stationary). In the rest of the
paper, we consider the class of (non-stationary) SaS processes which are v-
(p, ¢)-bounded and the class of (non-stationary) SeuS processes which have a
moving average representation (with regpect to an independently scattered
SaS random measure). Fven when restricted to stationary processes, neither
class exhansts the SaS stationary processes.

3. Moving averages vs. Fourier transforms. As it Is our intention
to discuss the incompatibility of the moving average and Fourier transform
rmodels, we offer the following introduction. Let us suppose that the continu-
ous time process X is a moving average of the independently scattered Saf
noise ¥, 1 < a < 2, i.e., that X{t) = [Lh(t —s)dY (s), t € R, h € L*(u).
For f € L'(R) we then have

(3.1) froxwar= [ (f«h)(s)dv(s),

R R
where the change of order of integration is justified by a Fubini-type theorem
due to Rosinski [13]. Now, the form of the characteristic function ensures
that for 1 < p < a we have

(¢ [ (rem@ar@[)”
iy

= Copllf * hllaryu-

If in addition we assume that the LP(P)-bounded process X is (p,q)-
bounded, then using the above together with Definition 2.2 yields

(3.2) 1F % hllaw < Clflgm, V¥ & (LIRYY.

In this way we see that proving the disjointness of the two classes of processes
is equivalent to showing that the inequality (3.2) cannot hold unless h == 0.

To show that A = 0, we now introduce a special typs of operator which
we term a multiplicator. Using harmonic and functional analysis iethods
we prove that for some measures u there are only trivial multiplicators, The
disjointness of the two representations then follows as a direct consequence,
In subsection 2 we give an analogue of those multiplicators in which a dif-
ferent space measure v is employed, and a similar disjointness theorem is
proved for those v-multiplicators. We finish the section by showing that al-
though not {p, g)-bounded, a moving average of a stable Lévy motion does
have a Fourier representation.
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3.1. Mulliplicators. The measurable function ¢ : B — C is termed &
multiplicator if of € (L*(u))" for all f & L2 (R). With such a multiplicator
we associate the corresponding well defined operator T, : LYR) — L*(p),
f = (@f)Y; or equivalently (T,f)" = of € (L*(1))*. We call a function
h € L®(u) a premultiplicator if its Fourier transform h is a multiplicator.
That is, b 18 a premultiplicator if (T f)A = hf e (L2 (u))™, Yf € LY(R).
We saw in the introduction to this section that if X () is a moving average
of an independently scattered SoS motion which is (p, g)-bounded, then we
must have the following inequality;

1F Bl e < ClHFllgorm -

We use the language of multiplicators to show the disjointness of the two
clagses, moving averages and Fourier transforms, by proving that under this
(p, q)-boundedness assumption, for certain choices of y, there are no mul-
tiplicators except the zero or trivial multiplicator. To do this we make use
of the following Hausdorff-Young type inequality which is due to Benedetto
and Heinig [1].

Lemma 3.1 Let 1| < o €2, l/a+ /o’ = 1, and suppose that u and
v are positive, even functions such that w and 1/v are nondecreasing on
(0,00). Then

1Flaro < Cll o VF € LHR) N LE(RY),

if and only if

179 Ve , & . 1/
(3.3) sup( f v(y) (lfy) (ful”""‘ (z) dm) <o0o0.
a0 0 o

This was proved independently by Jurkat and Sampson [9] using differ-
ent methods at about the same time. Their theorem removes the evenness
criterion for the necessity.

In the following lemuna we show that for certain choices of w, the mul-
tiplicator operator 7o, as defined above, is a bounded linear operator from
LAY into Le(w).

LimMMA 3.2, Suppose 1 < a5 2, 1 € g < oo, and let j € m satisfy the
condition (3.3) of Lemma 3.1 with v.= 1, Then the mulliplicator operator
Tyt LTRY = L™(p) is bounded.

When g == cc we replace L™(R) with Ch(R) as previously mentioned,

Proof To prove this we use the Closed Graph theorem. So, we take

. , LA L¥(p
a sequence {fn} © LAU(IR), fo Rt § such that o, f, ‘e g; and show
that T, f == g, By hypothesis p satisfies the sufficiency conditions of the
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Benedetto—Heinig inequality giving us
HTtpfn - gua,u 2 “‘an - IQ\Ha',m- ,
. y L (]R) "
As n — oo, the above left hand side approaches 0, i.e., we have ¢ o — G
Now, for a subsequence {fn, } G { fa} we have @fp, — § a.e. Leb. However,

since we took fn g f, it must be that frn, — f a.e. Leb. Thus § == @f =
(T,f)" and so g = T, f. Thus, by the Closed Graph theorem, t:he oper.al.;nr
T, is continuous and hence bounded. So, [Tyl < C where O is a positive
constant and the norm || - | denotes the nsual operator normm. Thus we have

1T s < VTl 1 g s VF € LT(R). m

LeMMa 3.3. Let 1 < @ <€ 2,1 < ¢ £ o0, and let p K m satisfy the
condition. (3.3) of Lemma 3.1 with v = 1. Then h s a premultiplicator iff

1 # bl < Cllfllm, ¥ € (LR
As in Lemma 3.2, for ¢ = oo we replace Lw(@) with Cg(lﬁ).

Proof. (=) First we suppose that h is a premultiplicator. Then by
definition b is a multiplicator and so from Lemma 3.2,

“{TLQ)VH%M < Ollglig,m. Vg € LY(R).
So, for f € (L2(R))Y,

17 % Wla = 1B e < CUFligm -
(&) Conversely, suppose h is such that

15 * Blags < Cllfllgm -

Take a sequence {g,} € S (@), the Schwartz space of rapidly decreagsing C'*°
P LA o~

functions on R, such that g, Rt g, g € LY(R). Define the sequence {fn}

so that gn = Fn. In this way, since the Fourier transform 7 : §{R) — S(R)

is onto, f, € S(R), and so f,, € LY(R). Yor n,k € Z, we have by Lemma

31,

Hagn "Tigcha’,m = H.fn *h— fk * h“m,u
< O“fﬂ - fk“q,m = O“gn - .‘Jk*.“q‘m - 0.

Thus {hg,.} and {fn*h} are Cauchy sequences, and we know that fy,%h -1
fnd g 1 . Lr" lﬁﬁ

in L%(y) and hgy, — [ in L (R). However, we took {g,} such that gy, Q) g

so there exists a subsequence {gn, } such that gn, — g a.e. Leb. and hgn, —

a.e. Leb. Thus hg =1 a.e. Leb., or hg € (L*())", Vg € LI(R), Hence h

must be a premultiplicator as required. =
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We are now in good position to show that under some agsumptions on the
control measure g, there are no nontrivial multiplicators. As we mentioned
earlier, this in turn implies that the corresponding class of moving averages
of independently scattered SaS motions is disjoint from the class of (p, g)-
bounded processes.

FI‘HI:E}OI{I-}MV 3.4 Let | <o <2, 1< q< 00, and let Y be an independently
seattered ScuS motion with control measure y < m satisfying

1 7 p
sap - | ul® (z)dx < oc
ax 4 ’
- 0

where u is nondecreasing on (0,00). Let the LP(P)-bounded process X be a
moving average of 'Y,

Xty = [ hit—s)d¥(s),

I3

teR, heloy).

Then X cannot be (p, q)-bounded, 1 < p < «, unless it is null; i.e. there are
no nontrivial rulliplicators.

Prool Suppose ¢ is a multiplicator with compact support. Then by
Lemina 3.2,
1e9) N € Cllgllam, Vg€ LIUR).

Using the Benedetto-THeinig inequality, it is not difficult to see that the
product ¢g & L*(R).
For f & L* (1), by Hélder's inequality and Lemma 3.2 we have

(3.4) | [ (09)YFau| < Clloloml Floc
Tt
It f € L2, (R}, then by Parseval’s formula we also have
(3.5) [ o) Fdu= [ o(fu)gde.
e R

Thus for all f € L”'(,u.) M thg (R) and g & L2(R) by combining equation
(3.5) with the inequality (3.4) we get

| [ elfugae| s C
]

|9Hq.muf”a’,,w .

Since g & L7(IR), we may define the bounded linear functional [ as follows:

L(g)= [ p(fulgds, g€LU(R).
I
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By the Riesz Representation Theorem, we have L] = ||cp(ﬁ)||q:,m leaving
us with

(36) oGl m < Ol ot -

Thus the inequality (3.6) reduces to

(3.7) 7w laram < C 16 o

Let A = {z € R : u(z) > 0}, where without loss of generality we
assume m(A) # 0. Making the identification & = (ux A)‘l””‘ , for any g &
LAR) 1 LY (R) we have

f=-m e LR NI ().

X 4
Hence using the inequality (3.7) we get
(38) @8 < ClgT " ewms Yo € LPR)NLE ).

We now make the following
CLAIM. @ satisfying inequality (3.8) must necessarily be zero.

To see this, suppose ¢ # 0 a.e. Leb. Then, since « is nondecreasing, there
exist ¢ > 0 and g € C¢° such that

(3.9) 0 < [Bdlam < CleE ™ Tatm < O gllat m

where we make use of the fact that 1—o/ is negative in the last inequality. V‘.':o
define the function g, for z > 0 by its Fourier transform: §.(v) = §(v)e™ .

Combining the fact that |5,(7)] = [§(y)e™7" | = [§(7)] with (3.9) yields

0<[#Gllgm = [ Tallgrm < Cllgallar in -
Furthermore, by a lemma due to Hérmander (see [2]),

gzl < Claf*~=72|15]3.

Recall that o’ > 2, 50 as z — 00, [|gz|lat,m — 0. However, this contra-
dicts the fact that 0 < C||galla’,m. Therefore, we conclude that when ¢ has
compact support, ¢ = 0.

Now suppose ¢ is any multiplicator. Given any compact set K, there
exists a function ¢ € C.(R) such that ¢|x = 1. So, given g € LY(R), the
product ¥g € Li(R). Furthermore, (¢y)g = (1hg)e € (L*(u))". Thus, ¢
is a multiplicator with compact support, and so we conclude that there are
no nontrivial multiplicators. m

Remark 3.5. There are instances in which showing that inequality (3.2)
implies A = 0 is almost immediate. Using the Benedetto-Heinig inequality
with (3.2) and following the reasoning in Theorem 3.2 of [6] yields the result
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for ¢ < o' Tt i also clear (by Holder’s inequality and Plancherel’s theo-
rem) that whenever u € L¥CZ"(R), 1 < o < 2, and 7 € L/ A(R),
2 < g < 00, & moving average is (p, g)-hounded, 1 < p < a. It is also clear
that the disjointness proof given above carries over to processes whose ran-
dom measure is “bounded below” and in particular applies to corresponding
classes of semistable moving averages and Fourier transforms (see Proposi-
tion 3.8 in [12]).

Another way of showlng the disjointness in the case g = oo is due to Mak-
agon and Mandrekar [11] and uses a multiplier theorem due to Edwards. A
fagter and simpler proof, still using Edwards’ theorem, is possible employing
the methods of Lenunas 3.2 and 3.3 above, as we see in the following

THEOREM 3.0, If the process X is (p,00)-bounded and a moving average
of an a-stable Lévy motion, then X = 0. :

Proof Since X is (p, co)-bounded, we uge inequality (3.2) to get

1S # Alla < Cllflloo;  7f € S(R).

Bdwards’ theorem states that if a function ¢ on R is such that fy €
Urcaca(LERNA for every f € Co(R), then ¢ = 0. But if A satisfies
the above inequality, it must be that Fh e (L*(R))A. To see this, take
{fn} © S(R) such that ?;L & f Using the above inequality together with
Hausdorff Young yields

anﬂ - .ﬁﬁ“a' < Cl!?""ﬁ”w

So, this sequence is Cauchy and we have f.*h N th and ﬁal’—z 0. However,
fu = f ae Leb. and for a subsequence we also have fr Rk — . Thus
= f’ff e (LY(RNA. It follows from Edwards’ theorem that h = 0, hence
X=0 m

3.9, v-multiplicators. The goal of this section is to show that even by
enlarging the definition of the Fourier transform, i.e., by considering v-(p, 9)-
bourled processes, disjointness can persist. To do so, we generalize the
multiplicator operators deflned in the previous section. We consider maps
of the form T, : LI(v) ~ L*(R) where ¢ is a p-measurable function and
where T', 18 defined in terms of its Fourier transform:

(TofY = of, YfeLi(v).
That is to say, T, f is the Le(R) function which has ¢ J as its Fourier trans-
fornt, The corresponding functions ¢ are then termed v-multiplicators. The
fact that T\, is bounded for some choices of ¢ is the subject of Lernma 3.9. We
labe! the measure ¥ in the weighted norm inequality the “space measure”,
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and we concern ourselves with inequalities of the form

1F v < Cll Fllayen -

That is, we consider Lebesgue control measure in the Hausdorff-Young type
inequalities. We have already seen that Lemma 3.1 guarantees an inequal-
ity of the form we require with certain conditions on the measure v. When
considering Lebesgue control measure Theorem 3.8 shows that we need only
consider absolutely continuous space measure weiglibs. We begin with a nec-
essary condition (see Theorem 3.1.4 in [10]) which is actually a generalization
of the theorem of Jurkat and Sampson.

THEOREM 3.7. Let v be a positive measure on R, u & Ii (R), 1 < a,q
< oo. If

17 llg < Cllfllas,  ¥F € L'(R) N LE(R)
then there exists C independent of xg and v such that

sup ( f du('y))”q( f yle (x} dm) e < C.

s>0
Iro—v]<s lzo—=[£1/a

We use this to prove the following special case of a theorem of Johnson
8] that Lakey proves for the case o = ¢ = 2. The moral of the forthcoming
theorem is that in order to get disjointness results (with the same type of
proof), it is necessary to have ¥ &« m with dv/dz € L>(R).

'THEOREM 3.8. Suppose 1/a+1/a' =1, 1< a<2. Then

Fllors < Cllfllam,  ¥F € LHR),
if ond only if v is absolutely continuous with essentially bounded Radon-
Nikodjm derivative, i.e., if dv/dz = v € L®(R).
Proof. (=) If | fllars < C||F]lam, then Theorem 3.7 tells us that

1
(3.10) sup sup - f dv <.
ek #>0 Sl’ro-m’rlsﬁ
To see that v must be absolutely continnous, let § > 0 be given and let
{Zx}i-, be a finite disjoint collection of intervals in R such that kaM ||
< 8. Then from (3.10) we get B

N N
> Sy in<cs,

k=1 I b,
Thus v must be absolutely continuous. So, v = v € LL,, and v(v) < C,

V7 € Leb(v), the set of Lebesgue points of v. Thus v € L (R).
(=) To prove this we use Hausdorfi-Young and the fact that

”f”oe’,v < HU”oo“f“a’,m- L
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As in the previous section we want to show that a multiplier inequal-
ity implies the disjointuess. To do this, we modify the inequality (3.2) by
considering »-(p, g)-bounded processes. Thus our new inequality is
(3.11) If o hllm < Cllfllgw -

We now give a result which corresponds to Lemmas 3.2 and 3.3. This is
used Lo show that, under some conditions on v, this new inequality implies

LuMmMa 3.9, For 1 < o < 2,1 < q < oo, and v € m satisfying the
condition (3.3) (with also p = 1), the v-mulliplicator operator T, : L9(v) —
L2 (R) is bounded. In addition, and under the same hypotheses, o function
hois a w-promadtiplicator iff

| f % hlja < Ouf”q,v .

Of course we also have the following generalization of Theorem 3.4 for
p-multiplicators, whose proof parallels the proof of Theorem 4.2(ii) of [2].

TumoreM 3.0, Let 1 < p < a <2, 1< g < oo, v a positive Borel
measure s tn Lernma 3.9, and let M be an o-stable Lévy motion. If the

X)) = fﬁh,(t ~s)dM(s), heL%R),

then h = 0. In other words, there are no nontrivial v-multiplicators.

Proof. Suppose ¢ is a v-multiplicator with compact support. By Lemma
3.9 we have

I(eg)" lla € Cligllgw, Vo€ LHR)NLIW).
As (pg)¥ € L*(R), by Hausdorff-Young we have g € L“’(R), and_ since
@ has compact support, @g € L2, For f € C,(R) by Holder’s inequality we
have

< 1 llam L0 lorm < CllgligallFollarm

‘ j . (‘P!J)Vﬁf dae
&
On the other haud, il J ¢ C(IR), then by Parseval we have

[ o) Foda = [ p(fvigds.
[ R

Thus Vf ¢ CL(IR) we get
[ e(Foygdz < Clgllgul follo -
K
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We now define the bounded linear functional L{y):

g = [ e(fr)gde, g€Liv).
R
By the Riesz representation theorem, ||L|f = [j¢ Follg . This gives us the
inequality
(3.12) 1B g < Ol follar,m

From here on, the proof is exactly the same as the proof of Theorem 3.4. u

It is clear that disjointness results can also be obtained by combining the

p and v results. Instead of doing so, we first give a theorem which extends

Edwards’ theorem, i.e., the range of T, can be extended to { J; . oo (™ (1))
 (see also Remark 4.1 and 4.2 of [2]}.

THEOREM 3.11. Let 1 < ¢ < 00 and {et (4, 1) (respectively (1,1)) satisfy
the condition (3.3). Then

{cp measurable : fo € U (L*(u)Y™, for oll f & LQ(H{)} = {0}

l<a<2

(resp. {(,o measurable : f € U (L*(RN®, for all f € L‘l(u)} w {0})
l<ag
Proof. Apply a Baire category argument to Theorem 3.4 (resp. Theorem
310). m

We pow end this section by stating a disjointness result removing the
nondecreasing condition on the absolutely continuous control measure ji.
It is clear that as soon as a Hausdorfi~Young type inequality is obtained,
a disjointness result follows. Lakey [10] contains many such inequalities
(Theorems 1.27, 3.32, 3.34, 3.35, 4.24, 4.25 as well as Proposition 3.39).
As a sample we state the following disjointness result whose proof is simj-
lar to those of Theorems 3.4 or 3.10 using the corresponding version of the
Hausdorff-Young theorem (Theorem 3.34 of {10]).

THEOREM 3.12. Let X(t) = [ h(t ~ 5) dY (s), where ¥ has absolulely
continuous conbrol measure u such that 3007 o 8up, ¢y u(z) < oo, Then
X ={X(t): t € R} cannot be (p, q)-bounded unless it 15 null.

3.3. Unbounded noise. That a large clags of moving averages are weak
Fourier transforms of stable noises with dependent increments is shown in
[2] (for h € LYNL*(R)), 1 € v < ). With the aid of an inequality due
to Stechkin (see [5]) and using a proof similar to the one in [2], we extend
this result to all of L*(R). This in turn shows us that the crux of the
incompatibility of the two representations lies in the (p, ¢)-boundedness,
ie., in the way of defining the integral.
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In the jc)llowuu, theorem, the dependently but not stationarily scattered

SoS noise = {Y(B) : B € Bi(R)}, where Bi(R) is the §-ring of finite
unions of boundul half-open intervals, is given by

Y(B)= [ %,%h(t)dM(z).
Y

’I‘IILQM.M 313, Let M be o SoS Lévy motion, 1 < a < 2, and let
i [ At =) dM(7), h € L*(R). Then

A tua

A
X{1) = lim ] (1 - M) ““”‘(IY( )y teR,

where convergence is in probability for each i.

Prool Iet B € By(R); then clearly x,, € LYR) N BV(R). Now
Stechikin'y inequality states that for ¢ € L*(R) N BV(R) and h € L' (R) N
L(r(R)

12 # hlle < Co max(|e(0)], Var ) ||All, .
Using the arguments of Lemma 3.3, we can extend this to all of L*(R) and
thus get
< h e L*(R).

Hence Y{(B) = [o(X, % h)(¢)dM(t) is well-defined and additive. In this
Wiy We 806 tha.t for every step function with bounded support we have
Jp FdY = ju(f*h, YAM. Let G = {f € LYR)NBV(R) : 3{f,} step functions
with bounded support, f(0) = F(0), and limp.weo fn = f in variation}.
Then for f &€ ¢ we have

]deM lim ffdem lim LJ(f,,xh)dﬂJ:A(f*h)dM

3

||;,\“;ﬁf # Nl = C'max(y ,(0), Var X ) Bl as

Of course gy 5 (7) = (1 - |7/ A) e‘“”"”fx(w)w\) (4) € G as this is just a modula-
tion of the tent function over a compact set, This gives us

A

[ (@ x R)(r) dM (7).

|4

. C e . i Xp )
Pinally, since g, 5 is an approximate identity, G * b = h in L¥(R) and

A
X(#)= lim [ (.x M)-""‘"’Yd}’() in probability.

Ao
A

That ¥ is not stationarily scattered is obtained as in the proof of Theorem
31 of 2. w
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A remark on disjointnoess results for stable processes
by

ALEKSANDER WERON (Wroctaw)

In a recent paper M. Herndndes and C. Houdré [3] bave applied the
Fourler analysis methods (o prove disjointness results for some classes of
stable stochastic processes, However, these methods forced the authors to
restrict the range of the index of stability to 1 < @ < 2, instead of 0 < v < 2.

In this note we would like to show how the disjointness results, going
back to the pioneering work of K. Urbanik [3], can be easily understood
in the more general setup of symmetric infinitely divisible (ID) stationary
processes, including stationary symimetric a-stable (SaS) processes for all
0 < e < 2. Here we will employ some basic facts concerning the hierarchy
of ergodic properties for stationary II2 processes [2]. In the Gaussian case
the moving averages form a subclass of harmonizable processes; however,
for nou-Craussian L) processes we have

PROPOSITION. In the class of symmeiric non-Gaussion ID stationary
processes a nondegenerate moving average process is never harmonizable.

Proof. All symmetric D) moving averages are stationary and mixing {2].
Therefore they arve ergoclic. Harmonizable processes, i.e., the Fourier trans-
forms of independently scattered random measures are stationary iff the
random measure is rotation invariant, In sharp contrast with the Gaussian
case, symmetric now-Gaussian [D harmonizable processes are not ergodic
{cf. {4] and [1] for the Sced case). Tt follows that both classes are disjoint.
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