282 W. Banaszczyk

s ‘ 3
Zuz/(K + 3Bq) S Z’U‘,.@/(K’ + BBQ.') .
This means that, without loss of generality, we may assume dim E < co. In
this case, however, our lemma follows easily from the preceding one. =

Proof of Theorem 3. Let (g;);er be a strongly summable family in
a nuciear group (. We are to show that (g;)ies is absolutely summable. As
in the proof of Theorem 1, we may assume that G = F/K where K is a
closed subgroup of some nuclear vector group F. Let ¢ : F' — F/K be the
natural projection.

Take an arbitrary U € Np(F). Due to Lemma 2, we can find a linear
subspace F of F' and pre-Hilbert seminorms p, g on E such that 38, C U,
B, € No(F) and 3,7, d2(By, By) < 1. As (g)ier is strongly summable,
there is a finite subset J of I such that } .., g; € @(By) for each finite
subset L of I\ J. It is enough fo prove that

(22) Y 9/ e(3Bg) < co.

iENT

For each i € I, choose some u; € ¢~ (g;). Then Y., u; € K + By, for
each finite I, C I'\ J. Lemma 9 yields

> wi/(K +3B,) <11,
ieINJ

whence (22) follows because g;/@(3Bg) = u;/(K + 3B,) for every ¢. =
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An inverse Sidon type ineguality
by

5. FRIDLI (Budapest}

Abstract. Sidon proved the inequality named after him in 1939. Tt is an upper esti-
mate for the integral norm of a linear combination of trigonometric Dirichlet kernels ex-
pressed in terms of the coefficients. Since the estimate has many applications for instance
in I convergence problems and summation methods with respect to trigonometric series,
newer and newer improvements of the original inequality has been proved by several au-
thors. Most of them are invariant with respect to the rearrangement of the coefficients.
Although the newest results are close to best possible, no nontrivial lower estimate has
been given o far. The aim of this paper is to give the best rearrangement invariant function
of coefficients that can be used in a Sidon type inequality. We also show that it is equivalent
to an Orlicz type and a Hardy type norm. Examples of applications are also given.

1. Introduction. Let L'[—m, 7] denote the set of 2r-periodic Lebesgue-
integrable functions with norm denoted by || ||pi[ws, n- Furthermore, let
the real Hardy space H[—m, 7| be defined as the Banach space of functions

f € LY[—m, ) the trigonometric conjugate f of which is integrable, and
||f”H[—1r,7r] b “f![Ll[wvr,:vr] + ”f“l)l[—'rr,vr]-
We will also need the Banach spaces L¥[0,1] (1 < p < o0) with the

usual norm denoted by | |[p, and the dyadic Hardy space H[D,1]. For any
f € L'[0,1] let the dyadic maximal function f* be defined as follows:

f*(m):sup{ﬁ)—‘ ff(t)dt\:IEI,IBm} (z €10,1)),
T

where 7 is the set of dyadic intervals, i.e.
T=A{[k27" (k+1)27"):kneN, 0<k< 2™},

and u(l) denotes the length of I. (N stands for the set of natural numbers. )
Then, H[0,1] is the set of integrable functions f for which f* is integrable,
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and the norm. ||f||z is defined to be the L'[0,1] norm of f*. 1@quiva,le-am;
definitions exist for H[—m, 7| and H|[0, 1]. We refer to [5], [L1], {13] for details.
Let D;, denote the well known Dirichlet kernel, i.e.

k
1 ) _
Dy = 5+Zcosgm (keN, zel[-mn]).

j=1
We will consider the expression
1 Fe N)

cpDiy(x {dm n & N),

(1.1) n+1f > ey D) (

0 k=0
where ¢;’s are arbitrary real numbers. The following inequality was proved
by Sidon [12] in 193%:

(1.2) n—i—l |
0

(C, C1,Cq, Ca,Cy will denote absolute positive constants, and C' (#) positive
constants depending only on p, all of them not necessarily the same at
different occurrences.)

In Section 2 we give the best rearrangement invariant function of coef-
ficients that can serve as the right side of such an inequality. As a general-
ization we prove a similar result for the shifted case. Then a short summary
on the history of Sidon type inequalities is given.

In Section 3 we show that the rearrangement invariant function of coefli-
cients introduced in Section 2 is equivalent to a norm generated by the dyadic
Hardy norm, and also to an Orlicz type norm. We also give some appliczim—
tions of the results of Section 2 to L1 convergence problems for trigonometric
series.

chDk(m)’ dze < Oo%?’écn lex]  (neNj.
k=0 S

2. Lower estimate in Sidon type inequalities. The shifted ver-
sion. For any n € N denote by P, the set of permutations of {0,1,... ,n}.

THEOREM 1. Let (ei) be o sequence of real numbers. Then

Al 4 Al 1 1 -+ l(:kt )
§Ckpk(m)}dmgc12Ck|( tlog* )

T

© f

0 k=0
T N
i . d
() mw [ 1Y epDulo)do
0 k=0
>C iic |<1+10g+ o] ) (N &N)
-t 4] '
i (V1) el
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We make some historical comments and remarks on various improve-

ments of Sidon’s original result. The first step was made by Bojanic and
Stanojevié¢ [1} who proved that

1 T n—1 ( 1 n-—1 1/p

fal N il r
(2.1) . ’Zc;ﬂDk(m)‘dm <c (n 3 el )

0 k=0 k=G

We note that this estimate is essentially contained in Fomin [4]. It is easy
to see that (2.1) is not valid for p = 1. Indeed, if ¢, = 1 and ¢, = 0 (k # n,
k € N) then the left side is of order (logn)/n while the right side is of order
1/n as n — oo. Still, a certain balancing of the p = 1 and p > 1 cages is
possible. Namely, Tanovié-Miller [14] showed that (1.1} can be dominated by

(p>1).

o1

log o 1wt 1/»
(22) c® (_g;.{— S few| +a Ve (;{ 3 mp) )
k=0 R=0

(@>1,1<p<2,1l/p+1/g=1).

Let (cx) be a real sequence, n € N, and let the characteristic function of
a set A of real numbers be denoted by x ,. If the coefficient vector (e )5 "
is associated with the step function I, defined on [0,1] by

21
To = Z CkXga-n, (k+1)2-m) 1
k=0
then the right sides of (1.2}, (2.1), and {2.2) can be expressed in terms of
[T%]]» (1 <p < oo). Indeed, for the indices 2" {n € N) the right sides of {1.2)

and (2.1) are simply ||, |loe and ||[7%]], (p > 1). Similarly, (2.2) corresponds
to the mixed norm

(loga) | Lulls + a4 Tul, (L<p<2).

Schipp [10] observed that the original Sidom inequality for coefficients
having zero sum and the uniform boundedness of the L* norm of the Fejér
kernels are closely connected with the so called atomic decomposition of I,.
On the basis of this observation he proved that

L ™ 2" ~1
(2.3) = | }:c,cp,ﬂ(m)|dwg\|n,,1|ﬂ (neN).
0 k=0

Furthermore, Schipp showed that (1.2), {2.1), and (2.2) can he deduced from
(2.3). He also showed that similar results hold for several systems other than
the real trigonometric system, We note that he originally proved the above
inequality by using the norm of the so called nonperiodic Hardy space (see
e.g. [5]) which is generally smaller than the dyadic Hardy norm. However,
this difference does not affect the results of this paper.
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Observe that in all cases except (2.3) the right sides of the estimates
are invariant with respect to the rearrangement of the coefficients. The
left side of course depends on the order of the coefficients. However, the
dyadic Hardy norm is not rearrangement invariant, but [|I', ||z depends on
the order of ¢p's (0 < k < 2™) in a quite different way as (1.1). For in-
stance, if one of e;’s (0 < k < 2"), say the jth, is 1 and all the others
are 0, then (1.1) is of order (logj)/n, while the Hardy norm (invariant
with respect to the dyadic translation) of the corresponding step function
can be estimated below by C'(logn)/n. Similarly, as a consequence of the
uniform boundedness of the L' norm of the Fejér kernels, if ¢;’s are posi-
tive and decreasing, then (1.1) can be dominated by the L' norm of the
corresponding step function. Consequently, (1.1) and |[I', ||z depend in an
essentially different way on the order of the coefficients. Another difficulty
with || 17, || is that it would be very complicated to express it directly by the
cr’s. We note that Theorem 1(i) can be derived from the result of Schipp, i.e.
from {2.3).

In some applications a shifted version of the above inequalities is useful.
Méricz proved in [8] that for any K < N and [ < p < 2,

6[ | Z e Dyl );dxgo(l—klogNN;il) Z |ex|

N P 1/P
+C(P)(N_K+1)( _|c’”—) ,
kZmKN—K+1

A modification of this inequality has been given by Buntinas and Tanovié-
Miller [2]. Similarly to the original case, we will give the best rearrangement
invarlant estimate for the shifted Sidon inequality. It is a generalization of
Theorem 1 and the results of Méricz, and of Buntinas and Tanovié-Miller.

THEOREM 2. Let (c) be o sequence of real numbers, .(.mcl K <N

(K,N eN). Then
gy J12
0

C;‘,D]n ) d

k=R

N N
< (tog 3| Lo

N
NS DY (RN TR—))

E=K (V=K + 115 kel

and
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T N-K
i Iax ¢ Diyer(z |d:c
G e [ |3 exenDro)

zoﬂ(bgrvTlegﬁ\

N
lex
+ |ow) (1 4+ log™ .
,f\; (N — K +1)71 0L e les]

3. Applications. In this section we show some congsequences of the
inequalities of Theorems 1 and 2. The first one concerns Hardy and Orlicz
spaces. Namely, we prove that the largest rearrangement invariant subspace
of H ig equivalent to an Orlicz space.

Let Lo denote the set of measure preserving bijections from [0,1] onto
itself. It is known that the Hardy morm is not rearrangement invariant.
Moreover (see e.g. [11]), there exist f € H and v € Lo such that fov & H.
Denote by H* the largest subset of H which is invariant with respect to
rearrangements, i.e.

Hi={feH:foveH, vel}.
Then a rearrangement invariant norm on H # can be defined by
Il =sup{|fovln:vela} (feH").

We note that the finiteness of || f|| gy for every f € H* will be shown later.
Define the Young function M as the integral function of

=t if0<t<1,
PEI=\14logt if t=1.

Then

[Ed .
o /) i 0<o <1,
A””“Jﬁmﬂ“{uumm@ﬂmifmzf

The Young function N complementary to M is the integral function of

L (t  Ho<gt<i,
O=3 g1 3 431,
AP i 0< e <1
1/2)|x if 0< |2 <1,
N{z) = {e'“’l Lo1/2 if |z = 1.

The Orlicz space Ly is the collection of functions f € L0, 1] for which

fM ©))dz < oo
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The corresponding norm is

[flne = J p(kIf(@))F(2)ldz (f € La),
0

where the real number & is determined by

1
[ N(pk|f(e)))) de =

For the theory of Orlicz spaces we refer to [7]. The next theorem shows that
HY and Ljs are isomorphic.

THEOREM 3. Ly = H", and
Cillfllae < [ fllmy < Collfllae (f € Lag)-

Remark. In view of Theorem 3 the result of Theorem 1 can be for-
mulated as follows. The rearrangement invariant norm generated by (1.1)
in the n-dimensional space is equivalent (uniformly in n) to an Orlicz type
norm. -

Sidon type inequalities can also be used in the investigation of the in-
tegrability problems of cosine and sine series. Indeed, if (ax) is a sequence
of real numbers, then the partial sums of the series Z:«O:o ay cos ke can be
expressed as

n-1
Zak cos kx = Z AayDy+a,D, (nelN),
k=0 k=0

where Aay = ap — ag1. The Fourier series of f € L{—w, 7] will be denoted
by Sf(x). Similarly, S, f(x) denotes the nth Fourier partial sum of f.

The Fourier series of a 2m-periodic even function integrable on [0, ]
is a cosine series. Let the collection of sequences of Fourier coefficients of
all such functions be denoted by £. The subsets of £ are called integra-
bility classes. Suppose 7 € L, (ay) € J and denote by f the function
whose Fourier series is 2?:0 ay cos kx. If lim, o ||Snf — fil1 = 0 holds
if and only if lim, o0 anlogn = 0 then J is called an L' convergence
class.

Ne characterization is known for the elements of £ in terms of the prop-
erties of the sequences; however, several sufficient conditions exist for a class
to be an L* convergence class. In the following we define conditions that gen-
erate integrability and L convergence classes. Conditions for convergence of
cosine series in Hardy norm will also be given. By conjugation these results
can be transferred to trigonometric and sine series.
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Let & denote the collection of null sequences (ay) for which there exists
a strictly increasing sequence (NV;) of natural numbers such that

oo Njp1—=1
(3.1} Z (Eog Z Aa;‘) <o
7+l

=0

and
oo Nyp1—1

+ | Aay|
> makl(ulog e ZNJ+1"1|AGI><DO

J=0 k=N; (Nf‘l‘l

Furthermore, denote by S* the subset of § the elements of which satisfy
(3.2) and

) Nive Njqg1-1
3.3 (10g—————:’il——- ' |Aak\) < 00
@9 25 wL-w

Thus & is an integrability class, and S* is an L' convergence class.

THEOREM 4. Suppose that (ay) € S. Then

(i) the function f(x) = Y peqancoskz (x # 0) is in L' |-, 7],

(i) Ypopaxcosks is the Fourier series of f,

(i) if (ag) € S* then > ,_,arcoskz converges to f in mean if and only
if @ logn = o{l) as n — oo.

Now, we consider the convergence of trigonometric series in Hardy norm.
By taking N; = 2 (§ € N) in the definition of 8, (3.1) and (3.2) reduce to
the form

oo TPl

IAG.A,‘
(3.4) >N IAa;J(l—b—log T3 aa] < 00
i=0 k=24 {=2i !

If f € H is an even function with Fourier coefficients {a), then (a;) satisfies
the so calied Hardy inequality, i.e.

(3.5) iw}h—w < o0

he==1

It is easy to see that Hardy's inequality cannot he deduced from (3.4).
However, if condition (3.5) is added to (3.4) then the following theoremn
holds about H convergence.

THEOREM 5, Suppose that (ap) satisfies (3.4). Then

(i) the function f(z) = pegarcoskr (¢ # 0) & in H{—w, 7] if and
only if (ai) satisfes (3.5), and in thal case,

(i) 3 hwq @r cos ke converges to f in Hardy norm if and only if a, logn
= o(l) as n — oc.
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Applying the above result to sine series we have the following corollary.

COROLLARY 1. Suppose that (by) satisfies both (3.4) and (3.5). Then
S bisinkz is the Fourier series of a function g € H[—m, ]. Moreover,
Yooy bksinkz converges to f as n — oo in Hardy norm if and only if
by togn = o(1).

Rem ar k. Several sufficient conditions have been given for the integrabil-
ity of odd trigonometric series, for instance in the papers of Telyakovskil [16]
and Méricz [9]. We note that their results can be deduced from Theorem 5,

The combination of the above results yields

COROLLARY 2. Suppose that (ay) satisfies (3.4), and (by) satisfies (3.4)
and (3.5). Then 3 o, (ax cos kz + by, sin k) is the Fourier series of an f €
L} [—n, ). Moreover, 3 7_,(aicoskz + bysinkz) converges to f in mean
as n — co if and only if (|an| + |bul)logn = o(1). If also (ag) satisfies
(3.5) then f € H[-m,n|, and the Fourier partial sums of f converge to f
in Hardy norm if and only if {|an| -+ 16,])logn = o(1).

In order to show how & relates to the previously known integrability
and L' convergence classes we need some historical comments. In the rest
of this section we will always assume that the sequence in question is a null
sequence.

Young [17] proved that the class K of convex sequences (i.e. A%az, > 0)
is an integrability and L' convergence class. The same is true for the set
Q of quasiconvex sequences (i.e. with 7o, k|A%az! < o0), as was proved
by Kolmogorov [6]. The first conditon based on a Sidon type inequality was
given by Telyakovskil [15]. That leads to the class 7" of sequences (ay) for
which there exists a monotone sequence (Ay) such that |Aay| < Ay and
Y reoAk < co. Fomin [4] extended the above class by using the estimate
(2.1) in the following way. A sequence (aj) belongs to the class F, if

00 il 1/p

Aay|?
E 2”( E | 21:"') <oo (1<p<oo).
=0 f=2n

On the basis of (2.2) Tanovi¢-Miller enlarged 7, to a class denoted by F.
Recently, Buutinas and Tanovié-Miller introduced the clagses hv? O Ve
(1 <p < o0). hoP is the set of sequences (ay) for which there exist sequences
of natural numbers: (1) nondecreasing and (k;) increasing, such that v; <
]ﬂj.'_l and

kjyr—1 kjri—1

ElOQ%JT—l > |Aﬂk|+f/;/q( > \Aaklp)l/pmo.

§=0 T ke k=k;
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As was proved in [4], [14], [2],
KCcQCcF CcF Ch.

hv? is based on a Sidon type inequality which is invariant with respect to the
rearrangements of the coellicients, in the same way as &. Therefore, hv? C &
is a consequence of Theorem 2(ii), i.e. the following result is true.

THEOREM 6. & and & contain oll of the above listed classes.

Remark. We note that several convergence classes have been defined
which do not rely on Siden type inequalities. A thorough survey is given in
the paper of Buntinas and Tanovié-Miller [3].

4. Lemmas. In order to prove our theorems we need some lemmas.

LemMMA 1. Let f be o nonnegative decreasing function on [a,b] (e > 0).
Then

b
| :If f(m)tg(:c)dg;' < 4@7

where t5(x) = cos bz or sin bz (§ > 0).

Proof. One may assume that § = 1. Let ¢(x) = cosz or singz, and

& -
_ _ | sinz if t{z) = cosz,
Ie) = !t(y)dy— {—cosm+1 if t(z) = sinz.
Integration by parts yields
b

b b
[ f@tz)de = [ f(z)dT(z) = fOTE) - f(@)T(a) = [ T(2)df(a).

@

Thus

| [ Fiwhtie) do| < 201£®)] = |£@)]) + 21F(a) ~ F5)] = 4 (a)

Consequently, |jtf Fla)ts(e)de| < 4f(a)/6. m
LEMMA 2. Leb ng = 2% my < 27~ (n kmy €N, n> 4,2 <k
< loggn). Set

T

Lo K (-T) = Z an-i-j—l—K(-'E)

fe=—mg

(x € [0,7], K € N}

and
)'rr,Q""(”“QE)'fr) (1 <1< logyn).

Then
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(i) [ T xc(@) sin(ng + K + §)w do > Cr(2my, + 1)2%
Ji

(i) f (T () — T 0,5 (2)) sin(ng + K + §)wdz > Comy2*,

(iii) | f To e k(%) 8in(ny + K + )n: dmw

< Cy(2m + 1)2m(2h1_2"‘)
Proof. By an easy computation we have
Sb o gin(ng + 7+ K + Dz

(1K)

T, () = Z 2sin Ltz
J=-mi 2
sm(nk + K + Hzsin(my + 3)z
28 blIlQ L
Consequently,

f T 5o (@) sin(ng + K + 1) do

Jr
1 L Ly, gin2 1
= - ————sin(my + )z sin®(ng + K 4 5)xdx.
2 fsinzéx (s 2) (s 3
Similarly,
f (T‘nmmk,K(m) - Tﬂm&K (m)) Sin(nk + K+ %) dx
Tk
1
= % f —5— (sin(mg + %)m —sinlz) sin?(ny, + K - %)1 dz .
5, sin® g
Since

(mk+%)m<%'2”*2 z<w/2 (z€ i),
by applying the elementary inequality (2/m)o < sine < a (0 < a < #/2)
we have

1 2 \
—s— >4= and sin(m; + L)z > }(mk + 3)z

mz (ff" E Jk«') ‘

Similarly, sin(my + §)z — sin %:r > C'mypx. Thus

41) [ Toymyx(@)sin(ng, + K + §)zdz
Ik

1
>C(2me+1) f ;sinz{nk+I{+%):Edm,
Jo
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(42) [ (Topmi k() = Tap 0, (2)) sin(ng + K + )z do
Jr

1
> ~ gin® +4
> Cmy, f _ sin (e + K+ 5)zde.
I
Since 1/z is decreasing and sin®(ny, + K + 1)z > 0, we have
1
f " sin(ny + K + %)w dx
I

ok-1_q Qn(ﬂmz"—l-j—uﬂ_

5L

7=0 zﬁ(n_Zk—l_j)Tr

v

sin(ng + K + Hwde.

An elementary computation and 2n; + 2K +1 > 2. gn—2"""—j vield that

the last integral is bounded below by

1 k—1 . l k-1 .
— . g—{n=2"""-j) — > g inl i)
T ok +2K+1°
Coungequently,
1
(4.3) f , sin®(ng + K + §)wdz > C2F,

Jye

The proof of (i) and (i) can be completed by substituting (4.3) into (4.1)
and (4.2).

To prove (iii) we first suppose that
]
(4.4) (my + §)27 2

We will use Lemina 1. To this end write

(4.5) ank e k() sin{ny + K + Dada
Ju

IA
[T

=1 f sin 7m 3 (cos(m — M)z~ cos(ng + ng + 2K + Da) de .

sin® Lo
By {4.4) we have
(mu+ 3z < il

(IL’ & Jl) .

Then cosjz (1 € 7 < my), and hence also sin(my, + )m/Sm z=2(1+
>7 cos jz), are decreasing in J;. On the other hand, 1 / sin 2 is obv1ously
decreasing in Jj.
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Applying Lemma 1 twice to f(z) = sin(my + )/ sin® 2z and ts,(z) =
cos [ng — ng |, ts, (x) = cos(ny 4 ng + 2K -+ 1)z, we obtain

‘ f Ty, i (@) sin(ng + K + %)mdm|
5

< e (e * )
sin2% L (n=2 )y |ng =g myFng+2K04+1)0
The first factor can be estimated as follows:
sin(mk + %)(2‘(nn2l—1))7r
sin® 1 - 2~ (-2
On the other hand, either n; > 2ny (I < k), or ng = 2my (& < ). This
implies

S O(mk + %)Zn_..ziwl )

1 1 < 1

ng b ng -+ 2K T ng'

g — |

Consequently,

| f Tn;c,m;c,K(SC) Sin('n,l -+ K + %) dzx
Jy

; -1 1] i
< O(mk+ _2,1;)2714—2* 1'n_ _ C(?’Tu\, + %)zﬁ(zi L)) ,
I
a3 was stated.
Lat us now consider the case
(4.6) (my + 127270 >

We note that in this case [ > k.
On the basis of the trigonometric identity

sin{my + )z cos((ny + K + §) & (ny + K + §))a
=g(sin(me+E+ (m+ K+ 5 % (ng+ K+ )
+sin(mg+ 3 — (e + K+ %) F (ng + K + §))z)

b=

the integral in (4.5) can be split into four terms. Indeed,

f T i (@) sin(ng + K + Yo da

J

Ji

1 . , .
= ;@(— sin{ng — ng — my — )z + sin(ng — ny + my + §)z

] =

+ sinfny + m + 2K +my + 3@ — sin{ng + 0 + 2K — my, + 1)z) da.

icm

Sidon type inegquality 295

Using Lemma 1 four times for the function f(z) = 1/sin”® 1z, and for the
periodic functicns of the above expression we obtain

l f T i (2) 8in(ng + K + 3)z dm‘
Ji
1 1
Mg = Ny My + 4

<o

I
Mg — Ny — My — 3

1 1
LT T gr nk+n;+2K—mk+§) '
Since n; € 3ny and my + 3 < gn=2"-1 & Nk, we have
nE = ng—mg — 5 > %nk.

On the other hand, it follows from (4.6) that

(2727 < (2my +1)2772
Consequently,

l f Trag.mi. k() sin{ng + K + %—)m dx
T
< C(2my + 1)2“—?"1% = C(2my, + )27 @70

There is only one case left. Consider 0 < {* < loggn for which
(me+ $)270 Y < § < i+ 2700

We note that I > k. Using the first method for the interval [2‘(”‘2”—1}7r,
m/(2my + 1)] and the second for [7/(2m4 -+ 1), 2= (2" 7] we obtain
LS S
1 f T,k (@) sin(nge + K + §)ade| < C(my, + %)2‘(2 -
Jiw
The prool of Lemma 2 is complete, =
LEMMA 3. Let ay (2 S k < logyn) be arbitrary real numbers (4 < n
€ N). Using the notation of Lemma 2 set
Tk = Trzk,’rn,k,K e '*':T?L,\;,(),K (2 k< logﬁn: i=0or 1) .
Then
w
f I Z aka(m)‘(ﬂmE_ Z |ak|(2mk+1—i)(01 -2k —02).

0 2k <log,yn 2€k<loggn
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Proof Denote by J; (2 €1 < logyn) the same nonoverlapping subin-
tervals of [0, 1) as in Lemma 2. Then we have

f Z a;cT;c(x)! dz
0

2<k<logyn

> Z f Z arTe(x) (signa) sin{ny + K + )z do

2<I<logan J; 2Lk <logan

I\

Z ( f arTi{)(sign o) sin(ng + K + §)eda

2<k<logan Ty

- § r f E axTr () (sign ar) sin(ng + K + %)=z da:D .
2<i<logyn Jr 2<i<logyn
[

Applying Lemma 2 we obtain

fl Z anT( m)‘dw

2<k<logyn
200 >

2<k<logan

- 2 CEMkH%nk+1-—ﬂ2“w“¢wwg
2<i<log,n
{2k

> Z |ak|(2mk+l—~i)(01-2’"—C*g). o

2<k<log,n

(Ia;.,l(ka L)k

LEmMA 4. Let K,N € N (K < N). Then

cmN—K+U(H4gﬁﬂ%%T)

N

> Dilw)|de

(.

7r
<
0

LN -K+1) (l + log N%)

Proof. Since

N : -
ZDk( Slnz(N+fi+l)n: smi(N K+ 1a

2sin? é &
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we have
ki T -
N ANTETD)  ANET1) 3
f ZDk(m)‘dm=( f + f + f )
0 k=K 0 T

2(N+FK+1) A(N—K+1)
lsin (N + K + L)z} - sin (N — K + 1)x| d

sin’z

= A+ Az + As.
The estimates (2/7)t < sint <¢ (0 <t < n/2) and |siné] < 1 imply
|41 € O(N —K +1), |As| < CN K +1),
N+ K+1
N-K+1

Adding these estimates we obtain the desired upper estimate. For the lower
estimate we note that

|Az| £ C(N — K + 1)log

T N
J |3 Dty do
0 k=K
FN—RTT), .
2 N+K+1
> As| > 2N~ K +1) f Isin( + + )mld
w et 810 &
ANTE+D)
N+K+1
> —_ _
> C(N K+1)lOgN—K+1

can be proved by standard arguments.

On the other hand, obviously [ 1SN Dk(fﬂ)!dﬂ]>A1>C(N K +1).
Lemma 4 is proved. w

5. Proofs. Before starting the proof of the theorems we note that the
following inequality can easily be deduced from the paper of Schipp [10].
Let e () = exp(ijz) (§ € N,i = /—1) denote the complex trigonometric

. R . . 2™ =1
system with nonnegative indices. If L,ﬂ:j‘- e = 0 then

. K427 —
(5.1) él_nf % (ckﬁl;oej ©)|de< Dl (Kineh).

2"
Recall that I}, == Zk=01 ChtK * X[ga—r (k+1)2-)"
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Proof of Theorem 2. Letnsatisfy N ~K+1=2"4+m (0<m
< 2™). For the proof of (i} set

5 {cj —omntDT e HK<jSN,
N S D i N << K +2m+,
Then
N K42t N Kot
Z ¢ Dy = Z d; 05 + (2-—(%'-1) Zﬂz) Z Dj = B 4 By,
=K j=K =K K

Applying Lemma 4 we have
N
N+1
5.2 <
(5.2) f|52 )lde < C(”lOgN K~}~1)}JZ}‘CJ'
Since Z;:}?Ml_l d; =0, by (5.1) we have

[ 1Bi(a)|dz < C2* ) Ay |z,
0

_ 2ty ‘
where 111 - =0 dl+K ! X[l2“(n'|'1),(l-|-1)2---'(M»l)]- 1f
N-K '
I'= Z Cl+K - X[m»(n.-f1)}(1_1_1)2_.(?1.4.1)] )
=0

and Ay denotes the constant function 2—(*+1) E‘;\L x ¢ then Ay = I' —

Ag. Obviously, ||Az||g = 2~ (D) 'EN x| ST < ||7||g- This implies
[A1llz < 2||F|| 5. Consequently,

f By (z)) dzr < C2V| 1|l
0

[ N+1 N ﬂ
(5.3) Ef ‘dm<0(( _Hog“ﬁmff—i-l)l%4_“#”*"”””)'

On the other hand, it is known (see e.g. [11]) that the dyadic Hardy norm
can be estimated as follows:

Jmi

R L Of #(@)|log |f(@da +1) (¢ € HI0,1]).
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Applying (5.4) to the step function I'/{|I7]|; we obtain

N
121
(5.5) 1Ma <C c~(1+log+ .
J;c ’ (N - K+ 17 5 [l

Now (i) follows from (5.3) and (5.5).
In the proof of (ii} we may assume that ¢,’s are ordered as follows:
(5.6) !GK‘ 2.2 |CK+21n_1|2 .2|CN‘

Since both sides of (ii) are homogeneous with respect to ¢;'s, we may also
assume without loss of generality that

K42"—1
(5.7) > lel=2
i=K
Set
T N-K
M= oDy, Id .
pePa ; gcﬁk’ pi+k(Z)|dz

Now we give three lower estimates for M. Their appropriate convex linear
combination leads to {ii). The first estimate is obtained by applying Lemma,
4 to the average over the permutations

> Z ¢i+x Dic1p; ()

pEPN_x 7=0

&

(5.8) M= f d

IPN x|

Xkl N N+1
N 31?4:71 I‘ZD )ldmzcl‘g;(cj‘logw—ff-}-l'

(Here, |A| stands for the cardinality of the finite set 4.)
For the next estimate set
P={K<jsN:g20, m=I[P,
NZ{I(SjSN:Cj<O}, ng = [NM].
Let p € Py_x such that pj e N (0 €7 < nz2). Then the (K + na)th

Fourier coefficient of Z —() Cpsric Dyt i 18 Z]ET’ ¢;. Consequently, M =
C L jep ¢j- Similarly, M 2 O3 en lesl, and so

(5.9) M>Cy Z le;1.
j=K

QOur final inequality reads

N N
ics]
(5.10) M =Cs Y lo|log™ — —Ca Y eyl
Far A (N—EK+0) Tl elal S
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In order to show (5.10) the set {0,..., N — K } will be divided into subsets.
First for each k (3 < k < logyn) set
Apr={0<j <2 2F <loglejx| € 2%, ok > 0,
Apo= {o<j<2™: 2% < ]0g|Cj+j{| < 2"‘—"1, Cipi < 0.
Then define
Apr 3504, el log™ 2es 441
Ay, = 2 Zje Apz Jej gz (L 4 log™ 2l k),
Apy  otherwise.
Next, let As be a set for which
A C{0<F< 2" lopur| €28 |Aa] =20,
The existence of such a set follows from (5.7). Finally, let

loggn
Ar=1{0,...,N=K}\ | 4s.

P

The sets Ay (2 < k < logyn) are obviously pairwise digjoint. We note that

Ay U Ao D{Oﬁj <"~ 1 ‘C._.;,Hd < 2}.
Consequently, |A;| > 2775,
The arithmetic mean of ¢;’s belonging to 4z (k = 3) will be denoted by
o, L&

‘Akl_l ZJGAJL- Cy if Ak: 7é w'n

0 if Ap=0 (B<k<logyn).

Clearly, |ag] > 22" if Ay # B Note that aq, a2 are not yet defined. By the
definition of Ay, and by (5.6) and (5.7), we have

N N
le; | Lo
(5.11) _S_ ;| log™ - ! E lej| log™ 2]ey)
j=K ’ (N - K+ 'L)wj' Eﬁa[{ |Cg‘ j= K ’

gy (Z 2 )](’fi“'*’\'““!-’ﬁ 21ij-|~rc|)

3<h<logyn.  JEAR  JEALe

+ >

{0KJ SN~ K i logy |og4 5| 529}

N
<2 2 (Z les] log ™ 2\<=.-,-|) +9 3 lel

ap =

] log™ 2lejax]

d<klogyn JEA j=K
N
<8 Y (A2t +9 ) el
3<hk<logan J=K

icm
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With each Ay we will associate a set By of indices. To this end let ny
denote the same natural number as in Lemma 2, and let my be the integer
part of |Axl/2 (2 < k < logyn). Set

0 if A, =0,
Brp=< {ny+7:0<7<mg/2) if [Ag|is odd,
{net7:0<j<mg/2} if [Ag] > 0is even

If mg > 0 then

(2 <k < loggn).

kaQQk < |Ak|22k < Z lcipr| <27,
JEAK
Consequently, my < 27~2"~1 (2 < k < logyn). This implies ng — mp >

Tgr1 + Mpt1 (2 € k < logyn), which means that By’s are pairwise disjoint.
Note that using the notation of Lemma 3 we have

Tr = Doy ¢~ 1Ly om0 == E Dk
leEB),

(2 <k <logyn),

where ¢ = 1 if || is even, and 0 otherwise.

Set By = {0,...,N — K}\ %" By. Obviously, |4y = 1By (1< k <
logsn). Let P* denote the collection of permutations of {0,..., N - K} which
map Ay onto By for every 3 < k < logyn.

Recall that a1, ap have not been defined yet. Let now

Z CitK -

1 1
AL = T TAT Cij+E, Gz = 7
[Aa] + 142 Z } = JEAIUA:

FEALUA,
Then

1 N-K
=g SN ciurDyax

peP* j=0
o Y Dyctar Y Dy

= 2

3 k<log,n jEAL JEALUA,

= Z 33 E Diyr —ag Z Dy vr+ E Dy, vk
A< k<log,mn e By JjE€Aq JEAIUA,

= Z apdy + ((&1 — ay) Z Dipre + Z Dz-u{) :
ZLh<logan e s le B,

The first term satisfies the conditions of Lemma 3, therefore

) cka;,,(m)}eimZC’l S el An2t =0 S k]| Agl -

2 k<log,n 2k <logan 2<k<logyn

]
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By (5.11) we have

(5.12) f’ Z aka(x)\dw

0 2Zk<logyn

N N

|51 ~
> C1 Y lejllog™ - Y el
=K ’ (N = K+ 171 i el jek !

The second term will be bounded above by using Theorewm 2(i). Obgerve
that by definition

(a1 — a2)|Ba| + o[ By} = 0.

On the other hand, as was shown above, |Ba| = 2"~8 and |By| > 2"%. Thus
(N = K +1)"Y(|Be||laz — a1| + | Builos))

> 270 D(| Bylag] + (|1 B] — [Bal)al) 2 2°(Jay

On the basis of these observations, by Theorem 2(i) we have

fw (a1 — a2) Z Dyx(z)+ar Z D5+K(x)} di

0 le By leB;

< C(ith(Iall + laal)

+ |z}

Flaal
x [ 1+ logT , o1
( & WK 1 Ba[a; — az] - | By||aa]

“ ort |ay]
181 1+ o (N—K+1>~1Bzual—azl-rw-:-~|Bz>|al))
N

C(|Balag] + [ Billa]) S C Y lesl .
=K
The combination of thiy estimate with (5.12) yields (5.10). The proof of
Theorem 2 is completed by taking an appropriate convex linear combination
of the inequalities (5.8), (6.9), and (5.10). =

Proof of Theorem 3. Pirst we give an outline of the proof of the
following relation:

11l

We may suppose that || fi|y = 1. Recall that k is the real number for which

L o
(5.13) Cillfl < flf(w)l(lﬂog*M)SCJgthM (f € Lug).
0

1
[ N(p(k|f(z))) da =1,
0
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Divide the integral into the sets {k|f(z)] < 1} and {k|f(z)| > 1}. Using
Cauchy’s inequality for the first, and an elementary estimate for the second
we deduce that k > 1. In a similar way, it can be shown that k < 3.

By definition

= [ kf@Pde+ [ 1+ lghlf@))if()lda.
{k[F(z) <1} {&|F(=)|21}
It is not hard to see that the right side is increasing in k. Recalling that
[Ifilt=1and 1 <k <3, we have

ez [ 1f@fdo+
{If ()| <1}

[ 1+ logif(@)))|f(z)!de
{If(2)I21}

> & [ 5 (14 Tog™ |f(a)))do
40
Similarly,
Ifles [ 8if@)fPdz+ [ (1+1og3|f(2))|f ()l da
{38]F (=)<t} {3|f(=)I21}

1
<3 f | F(2)](1+10g™ [ £(=)]) da.

Next we will prove Ly, = HY Tt is clear from (5.4) and (5.13) that
L ¢ HY, and so we only have to prove HY ¢ Ly Let f € HY. We may
suppose that f is decreasing. Denote by f, and f_ the positive and negative
parts of f on [0,1). Then there exist K, N € N such that

[0,27) € supp f4 C [0,27H),
[1—2"%,1) Csupp f. C[i—2 E-N 1y,
The monotonicity of f and f. implies
)= e (wel0,27V),  fe)2 i) @ell-27%1).
Furtherwore, f} is decreasing and f* is increasing. Thus
170 = 2 M 2 S

This means that f € HY implies fy,f- € H, ie [f| € H. It is known
(soe e.g. [11]) that a nonnegative function g belongs to H if and only if
fo z) log™ g(a) dx < co. Consequently, by (5.13}, f € HY implies f € Lar,
whlch was to be proved.

It follows from (2.3), Theorem 2, (5.4}, and (5.13) that

Cullalar < N|Blare < Callhl|a
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for any dyadic step function h. By (5.4) the right inequality holds for any
f € H*. To prove the left side for any f € H ¥ we note that the set of dyadic
step functions is dense in Lpr. This follows from the fact that convergence
in norm is equivalent to mean convergence since M satisfies the so called
Ag-condition (see [7]). Then
£z = Wl = [1f = Rllen = CullRlisr — Collf
> Collfllag = (G + O ~ hllag,y

where f € H', and his an arbitrary dyadic step function. Theorem 3 ig
proved. =

Proof of Theorem 4. It is clear that if (ag) € & then ¥ 5., | Aoy
< 00. Then the existence of

n ne-1
flz) = lim (92-0«+Ea,kcoskm) = lim (ZAchD;c )+anDn(w))

304

hHM

=Y AaDi(z) (0 <z<m)
k=0
follows from Dy(z) = O(1/xz) (x # 0). Since Theorem 2 and (ay) € § imply
oo m  Njta
(5.14) S| Awbu)|de < o0,
§=0 0  k=N;

we have f € L![—x, 7]. Set

21(1\:

fwf (z)coskzdr (keN).
0

It follows from the definition of f that

! Njp-l

F0) = antaveal = 2| [ (f@) -3 3 Aab
0

F=0 pmNj

!

) cos ke dz

IA
]
—
g

H

g

=
=

=l 0 =N

for any { € N with Nywy > k. If | — oo then (5.14) yields | F(k) ~ ay| = 0.
Consequently, ag/2 + E,?f__l ar cos kz ig the Fourler sories of f.
In order to prove (iii) let
Nyp1—~Nj—1

Iy = Z AGN; +E X oM pprya-vyy (€ NJ,
k=0
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where 2M:~1 < N, 1 — N; < 2™, Furthermore, let

Nj.{,l—Nj-—l

I = Z A(INj+kx[k2~Mj‘(k+l)2—.Mj) (0<I <Ny = N; — 1).
b=l

Then by (5.3) we have

Njq1-1
fl Z ACL;‘,D;C(w|
0 k=N
Njpi—1
Ny +1 41
$O<(1+}.0 —J;.TE_N——ITIN Z A%M‘”FMHH)

k=N;+l

It follows from |I};| € (I3 (0 <1< Njip — N; — 1) and from the definition
of the Hardy norm that | || la < V|5 |-
Consequently, (5.3) and (5.5) yield

i N1
RNn-H = f f(:L) - ( + Z akcoskx) —a'NnHDNn—t—l( ) dz
0 k=1
:f Z AapDy( m)’dm
0 k=Np+l
o0 x Nip1—1 o Nepr=1
<> [ Z A0, Dy ()| da + f| S AwDya)|ds
j=n+l 0 N; k=N, I
oo Njp1—1 N Njy1—1
J+l ,
o355 (rren 2 3 lawl )+ 31 )
j=n k=Nj; 7 J k=Nj J=n
oo Nyp1—1 Nip1—-1
<
_G(Z (1+10gN 1_N Z IAa”)
j=n k=N J
|Aag
- ]/_‘Aaﬂ( + log™ e .
.L_ZN, (Ni+1_Na‘)'1Z,I;V;H "1 Ayl

iy oo By = 0 follows from (ax) € S*. Then [ [Dy(z)dx = O(logk)
implies that ag/2 + ¥_p.p 61 coskz tends to f in mean as n — oo if and
only if lim, .o @y, logn = 0. This completes the proof of Theorem 4. =

Proof of Theorem 5. Let fbe the pointwise limit of the conjugate
series, i.e,
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= Z agsinkz = Z Aakﬁ;ﬂ(m) (-~
k=1 k=]

]Ii\.
]
A
2

where Dy(z) = Z;” L sin jz.

To prove Theorem 5 it is enough to show that fe L'[~m 7] if and only
if (a)) satisfies (3.5), and then 3 p_; ax sin kw converges to J in mean if and
only if a, logn = o(1) as n tends to co.

The necessity of (3.5) follows from Hardy’s inequality. Councerning the
sufficiency we first note that (3.5) and 3., [dax| < oo together imply
T2 o laan| < oo. Indeed, since agn = agn i + Ej” 2”,“ LAy (0 < k=2,
we have

am gretl

2 PHESY (211, Z 1%7'4 -+ j% IAGJD
< Z|Aa,€} +2}: el

Then the statements of Theorem 5 can be deduced from the inequality

(5.15) f > Aakﬁk(m)ldm
0

k=21

o) zl-l-‘l
|4':\(14‘-1
< G(Z Z |Aa,;‘»|(l +log™ - E:gu |A(L |

lm=n =0l a2t
o0
+ Y leal+ n\az"—wl) :
Immnpl
In order to prove (5.15) set

—(Aang_j - Aagn»|~1)/2” if 2m “ ko< 2% o J 1
d;\: == Aak - (Aa,gﬂ_h? - A(Lg’n.-l‘l)/:zn ir 2“‘ +“j f;: ;\7 < 2“”’“l y
Aay, — (Aay = Aagir)/2! ir2l g k< 2 (Lo,

Then
oo Gl anht
Z ACE;D; (Z L (i;\,DA, ) (a,;u JZ T L DA(«! )
L= 4§ l=n f=d! fdn
0o aher ot
+( Z Qi (2—4 Dy(x) - 21 Z 5;9(33)))
=l fms 28 Frem gl

= A3 (@) + Az(z) + As(z).
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Using the same considerations as in the proof of Thecrem 2(i) and Theorem
4(iii}, we see by (5.1} that

P

A
f | Ay (@) de < C D> | Ayl (1 +log* 2|£+1a~;cl| - |)
_ o

1
I=n k=2! Zm:ﬂ

and

[ l4stelde <03 ay.
0 l=n~1
Obviously,

[ 14s(z)| dz < Cnlagn ).

0
(5.15) follows from the above estimates. The proof of Theorem 5 is com-
plete. =
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