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Ergodic properties of skew products
with Lasota~Yorke type maps in the base

by

ZBIGNIEW 8. KOWALSKI (Wroclaw)

Abstract. We consider skew products T(z,y) = (f(x), To(my) preserving a mea-
stre which is absolutely continmous with respect to the product measure. Here f is a
1sided Marlkov shift with a finite set of states or a Lasota~Yorke type transformation and
T;, i=1,...,maxe, are nonsingular transformations of some probability space. We obtain
the description of the set of eigenfunctions of the Frobenius—Perron operator for T and
consequently we get the conditions ensuring the ergodicity, weak mixing and exactness
of T. We apply these results to random perturbations.

0. Introduction. Let {T;}{_, be a finite family of nonsingular trans-
formations of a probability space (¥, B,p). Given a nonsingular transforma-
tion f of a probability space (X, A, u) and a mapping e from X to {1,...,s}h
we define the skew product transformation

T(may) = (f(2), Te(m)y) .

The purpose of this paper is the description of the ergodic properties of T,
To this end we use our results on eigenfunctions of the Frobenius-Perron
operator for T. The above problem was considered in [10] and [11] where
the transformation f preserves the Bernoulli measure s and the family of
transformations may be infinite.

The paper consists of two parts. In the first part we assume that f is a
L-sided Markov shift preserving the measure y with a finite set of states. In
the second part we assume f to be a general Lasota-Yorke type transfor-
mation, Le. f is plecewise ¢! and uniformly expanding.

PART I

1. Introduction. Let o be the shift endomorphism in & space X C
{1,...,s}" preserving u. The measure p i3 Markov and it is determined by
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a pair 7, {), where @ = [g;;] is a stochastic matrix and = = (¢1,...,¢,) a
probabilistic vector with 7Q = m. Let B = {(i,4) : ¢i; > 0}. Let {T};} i syep
be a family of measurable negative nonsingular transformations of a proba-
bility space (¥, B, p). We define the skew product transformation

(1) T(z,y) = (o(2), To(r)a(2yy) -
The Frobenius—Perron operator for T is given by the formula

PT(g ® f) (:L'., 3/) = Z %qijg(im)lﬂj (m)(PTij f)(y) )
*J

where the summation is taken over (i, ) € B. Here (g® f)(x,y) = g(2)f(v),
where g € Li(u), f € Li(p), (iz) = (4,2(1),2(2),...), 4; = {z : 2(1) = i}
and Pr,, denotes the Frobenius—Perron operator for T,

In Section 2, under the above assumptions, we prove that if a fanction
F € Li(px p) satisfies FoT = AF for some A € C, then there are functions
fi € Li(p) such that

8

Fla.y) =Y 1a{n)fily) pxpae.
i=] .

This is a generalization of Morita’s result [11] for the Bernoulli case. From

this we obtain conditions ensuring the weak mixing and exactness of abgo-
lutely continuous invariant measures (a.cim.).

Ergodic properties of skew products with a Bernoulli shift in the base
are considered, e.g., in {1], [3], [9], [13].

In Section 3 we apply the above results to perturbations of automor-
phisms.

2. Ergodic properties. The following lemma provides the description
of eigenfunctions for Pr.

LEMMA 1. If F' € Ly (p x p) satisfies A\PpF = F for some A & C, A =1,
then there exist f; € Li(p), i = 1,...,8, such that

Flz,y) = 1a,(@)fily) nxp-ae
i=1

Proof. Let A;,, ;, = {z:2(1) = ity 2(n) = dn} and let f € Ly(p).
Then

Pr(ia, . ® f)(z,y)= gmqu ()(Pr,,., £)(y) .

i2
Therefore

P’?(lfhl...in ® f)(m,y) = Z 14, (w)gs(y) , where g; € Ll(p), t=1,...,8.
i=]
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Next we reason as in the proof of Theorem 3.1 of [11]. u

COROLLARY 1. Any T-a.cim. has the form $i_ pa, X Ty, where
pa(A) = (AN A;) andB; is a p-a.com. fori=1,.. s,

COROLLARY 2. Assume that v = 35, jua, x P, is T-a.cim. If F €
Ly(v) satisfies F ol = AF for some A\ € C, |\ = 1, then there exist
fi € Li(B:), @ = 1,...,s, such that F(z,y) = S.7_, 14,(2)fi(y) v-a.e. In
particular, if A is o T-invariant set (T~'A = A) then A = | J;_; 4; x B; for
some sets B; ¢ B.

Proof This is an easy consequence of Lemma 1 and the equality
hPr.G = Pp(Gh} for G € Ly(v), Here Pr,, is the Frobenius-Perron oper-
ator for the measure v and h == dv/d{p x p). =

We apply Corollary 2 to the description of weakly mixing skew products.
To this end we introduce the property (R) of the family {Ti;}i.5yen and a
measure ¥ = ¥ 0 . 4. X Py

(R}  There exists a pair (4,7) € B such that {4 : T;'T 1A = 7717704

for every I, m such that (s,m), (m,s),(1,3),(s,!) € B} = {I,Y} up
to P,-null sets for & =1, 7.

We say that a negative nonsingular transformation is nonsingular if it
maps sets of meagure zero to sets of measure zero.

THEOREM 1. Let the measure p be mizing and let v be a T-a.c.i.m. If
the transformations {Ti;} i jyep ore nonsingular and have the property (R),
then the endomorphism T is weakly mizing.

Proof. It is sufficient to show that T x T is ergodic. By the definition
of T,

(T x T)((ﬂ’},y), (u: U)) = (((7 X a)(m,u), (Tm(l)m(Q) x Tu(l)u(Q))(y:v)) :

Therefore T x T is a skew product with Markov base o x ¢. Let A be a
T x T-invariant set. By Corollary 2, A = |J; g 4Am X Ap X Bmp. Let
(i,7) be a pair given by the property (R). We get (T;;" x T;,2)Bim, = Byj.
By nonsingularity of {T%;} ¢ j)en we have Bim O (Ti x ijle{j- Therefore
Bij 3 (TuTy % TyajTyjon) Bij and (T 05 x Tia T 1) Bij = By;. Hence
(2) I % Tyl Tmi By € Big,  TuTuTly Tpi % IByj C By

dqn
\ el — I p— —
Let BY; = {v: (y,v) € By}. By (2), T Trmi Bl = Tj, T BY, for P-ae. y.
Hence by (R) we get BY; =Y for B;-a.e. y. Consequently, B;; = E x ¥ for
some set F. By applying (2) to &, we get E = Y and hence ij :—_‘Y xY.
Therefore A D A; x A; x Y x Y and the ergodicity of o X o implies 4 =
AxX=x¥VxY. m .
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Now, let p be a Borel measure on [0, 1] which is positive on open sets.
Moreover, let {Ti;}(; j)ep be piecewise monotonic and continuous transfor-
mations of [0, 1] into itself so that there exists a partition 8y = {11, I»,...}
of finite entropy with I; = (t;—1,%:), 0 = top < &1 < ..., limt; = 1, such
that Tj;|(Z1, f1+1) is continuous and strictly monotonic for all (4,5) € B, I =
0,1,2,...

THEOREM 2. Suppose yu is mizing and the transformations Ti;, (1,7) € B,
are piecewise monotonic and continuous. Moreover, let v be a T-invariant
equivalent measure and assume that T4, (i,7) € B, are 1-1 p-a.e. Then the
property (R) implies: if v = pxP; for some measure Py = p and Ty does not
preserve the measure By for some (1,7), then T is an ezact endomorphism.

Proof. By Theorem 1 we get the ergodicity of T'. Theorem 1 of [7] and
the weak mixing property of T imply the exactness of 7. =

Remark 1. If 4 is a Bernoulli measure, then we can replace the prop-
erty (R) by {4: T, "4 = Tj"lA, i,j=1,...,8} ={B,Y}

3. Application to some class of generalized skew products. Let

{T: }ee(a,by be a one-parameter family of transformations of the interval [0, 1]
into itself such that

(3) T (y) = (1 - e)y +eg(y),
where g € C?{0,1], g(0) =0, 9(1) = 1, and o = (1 —supg’)~, b = (1 —
inf g")~*. Moreover, assume that there exists exactly one point yg for which
g'{yo) = 1.

We take functions {T¢; };j)ep such that 3., gigijes; = 0 for §j =
1,...,s. Let T be an endomorphism of the Lebesgue space ([0, 1], B, m).
The transformation

T(:r:,y) = (U(x):TEzu)z(g)T(y))
preserves the product measure 4 X m.

THEOREM 3. Let p be a mizing measure. If T is an automorphism and
there exists a pair (i,7) € B such that gim; # €im, # Cimgs Emyi = Emngi =
Emgi = 0, 851, F Ejly F Ejlgs Ehj = Ehj = €5 = 0, for some my, L,
i =1,2,3, then the transformation T 45 weakly mizing.

Proof. By Theorem 1, it is sufficient to check the property (R). Let
A#£Pand s=iorj If

TmlsTTsml TA= ngsTTsmz TA= Tm;;sTTWm;, TA
then by the assumptions we get

Ty TA = Tom,TA = Ty, TA .
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For D = TA we have Ty, D = T}y, D = Ty, D. By Lemma, 2 of [6] we
obtain D = [0, 1] and consequently 4 =[0,1]. =

Let T be an infinite interval exchange transformation of [0,1] of the
following type:
(1) there exists a partition g = {I, >
O=ip <ty <..., limt; =1, H(,@()) < 09,
{ii) there exist real constants a; so that T(t) = £ + a; for t € I,
(iit) the only accumulation point of {£;-1 + a;} U {t; + a;} is 1,
(iv) T is a 1-1 transformation.

,---} given by I; = (#;-1,%;) with

CorOLLARY 3. If T is an infinite interval exchange transformation
of [0,1], then under the assumptions of Theorem 3, T is an exact endo-
morphisn.

In some particular cases we can obtain the exactness of T' without the
agsumpétion of nullity of some parameters £;;. For example, the following
gtatement is true.

THEOREM 4, If T = I, where I(y) = vy, and if there exists (¢,j) € B
such that £, > €imys 0> 8y > Ejmgy 0 < Eniyy < Egmy 0Nd €1y > E4ly,
0> g1 > €igs 0 < €y < 84y, for some numbers my, l;, i = 1, 2,3, then the
transformation T is ezact.

We fAnish this section with an application of Theorem 1 to the class of
random maps of interval which are considered in [12]. Let o be a 1-sided
(r,#)-Bernoulli shift and let Ty, Ty be transformations of [0,1] such that

(a) Ty is C%, T1(0) = 0,77 >0 and 1/2 < T{ < 1, and

{b) Ty is a Lasota~Yorke type map with partition o, I,..., I,; that is,
Ti(y) > 2 wherever defined, T5(0) = 0 and 73'(y) = 0 for y € Io, while
T’('Q’)SE]'EDHJEIl,-an- ‘

Tet T(x,y) = (o{®), Tooyy). Then by Theorem 2 of [12], T has an in-
variant measure g X p such that p < m.

THEORKM B, If the transformation Ty YTy can be extended io a Lasota-
Yorke map (on [0, 1]) which s ergodic with respect to an invariant measure v,
v e, then T s exact.

Proof, By Remark 1 and Theorem 1, T is weakly mixing. Then the
wenk compaciness of the iterations of the Frobenius-Perron operator Py
implies the exactness of 7. m _

EXAMPLE. If Ty (y) = /2, To(y) = 2y mod I and 1/2 <t < 2/3, then T
is exact.
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PART IT

4. Introduction. Let f be a Lasota—Yorke type transformation of [0, 1]
into itself, i.e.

{a) there exists a partition 0 = ag < a1 < ... < o, = 1 of [0,1] such that
the restriction f; of f to {a;-1,a;) is C,

(b) 1/|f{| extends to a function of bounded variation on [a;-1, a;] for
i=1...,q,

(c) inf |f'] > 1.

Let P; denote the Frobenius-~Perron operator for f. Then for every func-
tion g of bounded variation {see [14])

1 1
(4) VPrg <337 Vg4

3a-t G
" f]gldm.
0

Here A = inf |f'} and o = min;(a; ~ a;-1).

Let {T3}7.; be a family of measurable transformations of a Lebesgue
space (Y, 8B,p). We require that if p(A) = 0 then p(7;"74A) = p(TLA) = 0
for i = 1,...,¢. Under this assumption T;, i = 1,..., ¢, is nonsingular and
positively measurable transformation. We define the skew product transfor-
mation

T(m':y) = (f(m): Te{m)y) .
Here e: X — {1,...,q} is such that e(z) =i forx € I;, i = 1,...,q, where
Iy =la;—1,a;) fori=1,...,¢— 1 and I = [a,-1, 1].
"The Frobenius-Perron operator for 7" with respect to the measure m x p
is given by the formula

PrG(z,y) = ZPiG(fi_l(m)7y)|(fi—l)!(m)llfi(fi)(x)'

Here G € Li(m x p) and P; denotes the Frobenius-Perron operator for T},
For a function G from [0, 1]x ¥ into C, let V; G denote the total variation

of G(-,y), for every y € ¥. Moreover, for G € Li(m x p) we introduce the
following definitions:

VG’:inf{ f \ydep:Fis anyversionofG},

BV = {G e Li(mxp): VG <} and
‘ D={CeLimxp):G>0, G =1},
which are modifications of the analogous definitions from [2].
In Section 5 we prove that if for every function @ & Li(m x p) the
limit limy,—eq & EZ;& PEG exists in Ly then for every bounded function F
satisfying FI(T) = aF for some ¢ € C, |a| = 1, and each H € D such
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that PrH = H we have H ¢ BV and FH € BV. In Section 6 we obtain
the description of T-invariant sets. In the case of a markovian partition, i.e.
when

m{f(L;)NI;) >0 implies I; ¢ f(L) fori,j=1,...,q,
we prove that if A is a T-invariant set and G € D, PrG = G, then

q
An{G>0}=|JLixB;.
fa=1
Otherwise, if inf |f’| > 2 then AN {G > 0} D I; x B for some %, where
p(B) > 0.
In the same manner as in part T we apply the above results to describe
the ergodic properties of T

5. Regularity of the eigenfunctions of the Frobenius—Perron
operator

LevMMa 2. If G € BV then VE,G < VG fori=1,...,q.
Proof. Let F be such that F =G a.e. and [V, Fdp < oc. Then
[ Vrdp= [ RVFdp
v v

= [ B{sup 3 IF(esp) — Flawn)l) o
k

v

[ 5up (3 F (e ) = Flwne,v)l) do

v

J 5w (3 IPP(e,y) ~ PPl@i, y)|) dp
k

= [ VEFdp. »
Livma 3. If G € BV then
VPG <301 VG + %ﬂuaul .
Proof. Let F =G ae and [V, Fdp < oo. Then

[ veerdp
- Y

i

q ; ~Lg Lyt ) d
/ }fZleF(f.i @) DI @) (@) dp

g

¢

IA

VRF (7Y@, (1) (@)1 ey () dp
1

i=
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q
< f ZXF(fi”l(m),y)!(fi_l)’(m)_llf(m(:c)dp (hy Lemma 2)
i=1

)\~1
<3t f Yde-i—BT G| d(m x p).

The last inequality is a consequence of {4). m

ProreERTY 1 ([2]). If limp—oe Fy, = F in Ly norm then
VF < limsup VF, .

n—o0

As a corollary we obtain

THEOREM 6. If for every G € BV the limit
1 n—-1
lim =" PRG = QrG evists in L,
F==0

n—o0 N,

then VQrG < ¢||G|)y, where the constant ¢ does not depend on G.

Proof. This follows immediately from Lemma 3, Property 1 and the
continuity of the operator Q7 in Li. =

Remark 2. The assumption of Theorem 6 is related to the condition
assuring weak sequential compactness in Li-space, and to the Kakutani-
Yosida ergodic theorem. It is satisfied, for instance, if:

(i) the transformations f, T;, i = 1,...,q, are piecewise 2 Lasota—
Yorke type maps (Theorem 1 of [2]),

(ii) there exists an equivalent T-invariant measure {Hopf's theorem 18]).

For the rest of this paper we will assume that the assumptions of Theo-

rem 6 are satisfied. We denote by pug a T-a.c.i.m. such that dug/d(im x p)
=@G.

LeMMA 4. If F' € Lo(ug) satisfies Pr(FG) = aFG for some o € C,
|| = 1, then FG € BV.

Proof Let PrH = EG_lPT(HG'), Then ﬁTF = F. By Lemma. 3,
3A~1
a
and by definition Gﬁ}’"ﬂ = 6" PR(HQ@). Therefore, it is enough to show that

VGPrH <3\ "' VHG +

(HG|l,, for HG € BV

n—1

o1 Sk o
(&) nl-l-},lr}o - g PrH  exists in Ly for every H ¢ Ly (e .

The operator Pr has the following properties:
G 1PrH|o < |Hlloo for H € Loo(ua),
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(i) [ 1PrH|dpc < [ |H|dpe for H € Ly (ug).

Hence f’;p is a linear I;-L,-contraction and by the Dunford-Schwartz the-
orem we obtain {3). w

COROQLLARY 4. If G € D is a function such that PrG@ = G, A is
T-invariant sei and F' is bounded function such that F(T) = oF for some
a€C, |al =1, then V, G < o0, Vy 146G < 00 and V,FG < 00 a.e

Here V, Il < co a.e. means that for a.e. y there exists a set A, < [0,1],
m(Ay) = 0, such that Vig 4, H(-y) < cc.

6. Ergodic properties. Let D = {(z,9) : G(z,y) > 0} for @ € D with
PrG = . Then TD¢ == D¢ with respect to m x p. Fixing a density G we
write 4 = p and D = Dg. Moreover, let 4 denote the partition {71,..., I}

LEMMaA 3. Let A be a T-invariant set such that u(A) > 0. Then there
exists o set B € B, p(B) > 0, such that

U Iyx{y} cAND
yeDB

for some nonempty open intervals I,.
Proof Let
B={y:VG< Do}ﬂ{'y:YlAG<oo}ﬂ{y:p((AﬂD)y)>0}.
y ¢

Here (AN D), = {x: (=,y) € AN D}. By Corollary 4, p(B) > 0. Let y € B.
From the definition of B it is easy to see that (AN D), contains a nonempty
interval. m

LemMa 6. Let A be a T-tnvarient set.

(1) If the partition 3 is markovian then AN D = JI_; I; x B;.
(ii) If inf|f'] > 2 then AND D I; x E for some i and E € B, p(E) > 0.

Proof The property inf|f| > 2 implies that for every nonempty in-
terval I, either I D I; or m(f(L; n 1)) 2> {A/2)m(I) for some 4. On the
other hand, by the markovian property, for every nonempty interval I such
that I < I, for some 4, there exists j such that f(I) O I; or f(I) C I
and m(f (1)) > Am(I}). Hence for every interval I there exists & sequence
i1y ..ip and T C I such that fi, o...o0 fi, (I) = I for some i. Let B be the
set given by Lemma 5. Then there exist i, B1 C B with p{B3) > 0, and a

SeqUence iy, ..., 1, such that fi, o...c fi, (Iy) = I; for every y € By and for
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some interval fy C I,. By invariance of A we get

AﬂD:Tk(AﬂD)D U(fiko ,.Of.,;](l’:;j)XﬂkO...OT,;l(y))
yEB)
—"—‘IXT O...OT‘ (Bl)ﬂI'XEl.

The nonsingularity of {T;}{_, implies (ii). Let the partition # be markovian
and

g
= U I; x B;, where
i=1
Since T4; C A; C A, the assumption that p(A — 4;) > 0 implies the
existence of a set Az such that (A — A;)ND = A3ND and 714y = As. By
the first part of the proof we get I; x E; C Aa N D for some j and E; € B,
p(E;) > 0, which contradicts the definition of 4;. w

B ={y:p((AN D)y 1) = 0}.

COROLLARY 5. (i) If the partition 8 is markovian, then

q
D= JLxE.
=1
(ii) If inf[f'] > 2, then D 2 I; x E for some i and E € B, p(E) > 0.

From now on let v denote an f-a.c.im. (for the existence see [14]) and
assume that I} C suppr x Y. Moreover, let

Zy = {(i1,...

yis) t Iy Csuppy, fi, o...0 fi,I; D I; and
m{l;~ fi 0. .0 fy ) >0for 1 <k < s},
THEOREM 7. Let f be ergodic. If the partition 3 is markovian and there
exists (41,...,1s) € Z; for some i such that
vBeB, T,o..oT3,BCB = p(B)ec{0,1},
then T' is ergodic.

Proof. Let A be a T-invariant set of positive measure. By Lemma 6
we obtain AN D = | Ji_; I; x E;. First we show that if I; C suppv then
p(E;) > 0. Let jg be such that p(Em) > 0. Then for every I C supp ¥ there

exists a sequence ji,...,J; and the set 7 C Lig with f5, 0000 f;, (1 I) = 1.
Therefore

W@x@ﬂ:&xﬂﬂ.wﬂﬁhch@.

The above implies that p(E;) > p(Ty, o...o Ty, Ej,) > 0. From the assump-
tions of our theorem and by p(E;) > 0 we get p(E )=1and consequently
AND D I; x Y. The ergodicity of f implies AN D > U, T xY) =
U; F7(I;) x Y = suppw x Y, which finishes our proof. m
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COROLLARY 6. If f is ergodic, inf |f'| > 2 and for every i there exists
(¢1,.--1 8¢} € Z; such that
¥Be B, T;, 0.

then I is ergodic.

..OT{IBCB = p(B)E{Oal}:

Now we proceed to consider the problem of weak mixing of 7'

LEMMA 7. If f is mizing and T is not weakly mizing, then there exists
a set A which is T x T-invariant, 0 < (u x p)(A) < 1, and

(i) of the partition (3 is markovian then
q
ANDx D= | I x I; x By,
Lj=1
(ii) of inf |f{ > 2 then ANDx D D I, x I; x B for some i, where
BeBxB and(pxp)B)>0.

Proof By Lemma 6 we may assume that 7" is ergodic. Hence, if it is
not weakly mixing then there exists a measurable nonconstant function F'
such that |F| = 1 and F(T) = oF for some o € C, |a = 1. Therefore

F(m’y) = COSI,O(:C, y) +_’£S'111(,0($U,y) )

where p(z,y} = arg F{z,y) (—7 < ¢(z,y) < 7).

By Corollary 4 we have V, FG < co and V, G < oo for a.e. y, which im-
plies that for a.e. y there exists a set 4,, m(4,) 0, such that
el 1pxn(y) |10,1] — Ay is continuous. For §,v € [—x,7), we define

Asy ={(z,9,2,0) 1 v < arg(F (=, 1) F(2,0)) < 6}

We can find 4 < & such that (4% p)(Asy) < 1 and (px p){(Asy NLx L x Ex
E) > 0 where I; X B is the set given by Corollary 5. The set Ay is T x T-
invariant. Let B be the set of pairs (yo, w) € E x E for which there exists a
pair (zg, 20) € I; % I; such that (zo,yo, 20, ¥o) € Asy and moreover () =
@@, o) | [0,1] = Ay, is continnous at zg and ¥(2) = p(z,vp) | [0,1] — Ay, is
continuous at z. Then (p x p)(B) > 0.
Let (yo,vy) € B. Then v < @(zo) — ¥(z) + 2km < 4, for some k €
{~~1 0,1%}. Since p(z) — ¥(z) is continnous at (mg,zo) there exist intervals
I, and J,, such that Iy X Jy, € I x I; and v < @(z) —(2) + 2kw < § for
ae (i, 2) € Ty, x Ju,. We get

U &xJx{mv}cdsnDxD.
{vv)eD
The same reasoning as in the proof of Lemma 6 applies to the case of marko-
vian partition ((i)).
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For the second case it is sufficient to show that for every I, J, there
exist sequences 41,...,%5, j1,---.4s such that

m{fi, 0...0fi, (TN fi,0...0 f;,(Ju)) > 0.

Let I, J be two intervals such that JUJ C suppe. By Theorem 1 of [4] there
exists a positive integer k() such that f*)(I) = suppv. Let 4y,..., iz be
a sequence such that m(f;, ,, o... f5;(J)) > 0. Then we can find another
sequence ji,...,Jjr(r) such that

m(f'iku) 0---°fz‘1(J)m_fjk(;) o...ofjl(f)) > 0.

The rest of the proof runs in the same manner as the proof of Lemma 6. w

Let B = {{1,7) : f(&;) D I;} and let g =~ m x p. The property (R) of the
family {T;}7_, and the measure p may be formulated in the following form:

There exists a pair (i,5) € B for which {A: T; T A = T, T 1A for
every I, m such that (s,m), (m,s), (,s), (s,I) € B} = {8, YV} with respect
to p, for s =1, 3.

THEOREM 8. If f 1s mizing and the partition § is markouvian, then the
property (R) implies weak mizing of T.

THEOREM 9. If f is mizing, inf|f'| > 2 and if for every i there ewist
(41, 1ts)y (J1y -y ds) € Z; such that
VBeBxB, (T, xTy)o...c(Ti,xT;,)BC B = {(pxp)(B)e{0,1},

then T is weakly miring.

Remark 3. If T satisfies the assumptions of Theorem 8 or 9, and the
transformations T; are piecewise monotonic, continuous and 1-1 p-ae., 4 =
v x Py for some measure p; ~ p and T; does not preserve the measure #,; for
some 1, then T is exact.

Remark 4. If T satisfies the assumptions of Theorem 8 or 9 and the
transformations f, T; are piecewise C? Lasota-Yorke type maps, then T is
exact.

In our considerations we may admit the situation when the family {77}
is infinite and f is a Lasota-Yorke map with countably many intervals of
monotonicity. More precisely, we assume that {e71(4)};<a0 = {li}icoo and

o0
> (sup1/I{|+ V1/|fi]) < oc.

=1

It is not difficult to see that the results of this paper remain true in the
above case.

icm
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