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Balancing vectors and convex bodies

Y
WOIOIECH BANASZCZYK (Lédg)

Abstract, Let [7, V he two symmetric couvex bodies in R® and |UF], |V their n-
dimenstonal volumes, T 8 proved that there exisl vectors wy,...,un € U such that,
for vach cholce of signs £(,...,64 == %1, one has gyuy + ... + cpitn & vV where r =
(211‘02)""]/ 2472 a7/ ]V|)J/ . Hence it is deduced that if a mmetrizable locally convex space
in not unclear, then it condaing o null sequence (un) such that the series 3507 ) Entiy(yy I8
divergent for any choice of signs ey == k1 and any permutation 7 of indices.

Let 7 be a convex body in R®. The n-dimensional volume of U will be
denoted by |I7]. We say that U is symmetric if U = —U. The family of all
symmetric convex hodies in R™ will be denoted by Cy.

For each pair U, V & C,, we denote by (U, V) the smallest number »
satisfying the following condition: to cach system uy,...,u, € U there cor-
respond signs €, ..., &y = %1 such that eyuy + ... +un € 7V.

Remark 1. A standard argument based on Lemma 4 shows that to each
gystem uy, ..., Uy € U (with ¢ arbitrary) there correspond signs €1,...,84 =
41 such that g1y + ... + gatty € 28U, V) V. For details, see e.g. [17],
Lecture 1.

The quantitics A, V) for various pairs U, V were investigated in [4], [6],
I7] and [15]. Combinatorial motivations are presented exhaustively in [17];
soe alko [14]. Perhaps the most interesting open problem here is the following.
Let BY and B denote the unit balls for the Iz and I, norms on ™,
respectively; is it true that A%, BR ) is hounded as n -+ 0c? This is called
the Komlon conjecture; the best reference is [16]. For an application of the
auantities A(U, V) to rearrangement of series in infinite-dimensional spaces,
see [3], Remark 2 and 5], (10.18}. :

The aim of this paper is to prove the following result:

HH)T Muthematics Subject Classification: 46A35, 52420, B2A40.
Key words and phroses: balancing vectors, Steinitz constant.
Supported by Béds University Grant 506,/766.



94 W. Banaszczyk
THEOREM 1. For each pair U,V € Cy, one has

1/n
sV > erety ()

Remark 2. Let E be an n-dimensional normed space and By its unit
ball. Define B(E) = S(T(Bg), T{Bg)) where T': E — R" is a linear isomor-

phism. From the Milman quotient subspace theorem or from. the result of
Bourgain and Szarek [8], Theorem 2, it follows easily that S(E) > Kn'/? for

some numerical constant K. Theorem 1 implies that & = (2mwe?)~1/% will
do. If () is the Steinitz constant of B (see e.g. [11]) then o(H) > £4(1)
([14], Example 2, p. 250). Hence ¢(E) > (Sme?)~1/2nl/2, Lower hounds for
By} and @(17), 1 < p < oo, based on Hadamard matrices, were given by
Sevastyanov {14].

Let (w,) be a null sequence in a nuclear Fréchet space. It Tollows easily
from the results of {3] that one can find signs ¢, = =1 and a permutation =
of indices such that the series Y . Enlin(n) i convergent. In the second
part of the paper we show, using Theorem 1, that the following statement
is true:

THEOREM 2. If a metrizable locally convex space is not nuclear, then

it contains o null sequence (un)3%, such that the series Y oo, Enlhn(ny 9
dwergent for any choice of signs £, = £1 and any permutation © of indices.

We begin with some lemmas. By w,, we denote the n-dimensional volume
of the euclidean unit ball in R™.

LEMMA 1. Each symmetric convex body U i R™ is contained in some
n-dimensional parallelepiped P such that

(1) U| = V2mn e 227", |P|.

This result was essentially proved by Dvoretzky and Rogers [10], See
also Babenko [1], Kashin [12] and Ball [2]. A detailed analysis and a slight
improvement of (1) was given by Pelczyiiski and Szarek [13].

Let U be a symmetric convex body in R™. By UY we denote the polar
body, i.e.

={ucR": {(u,v)<1forallveU}.
Let Gram(wy,...,u,) denote the Gram determinant of vectors ULy ey iy
€ k™

LEMMA 2. Fach symmetric convex body U in R” containg some vectors
ULy oo, Un Such that

(2) Gram(uy,...,un) > (2re?) " "n"|U)?.
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Proof, By Lemma 1, there exists an n-dimensional parallelepiped P
in R* with U7 ¢ P and
(3) U9 2 Vamne /3y, 1P
We may wrile

P € R |(wu)| € Lfori= 1,0}

for SO Wy,e ., by G U Then
(4) Chrata(ing, . .. ) = 220 P72,

o (3), (1) aud the Santald nequality |U7] - 179 < w?
tions we oblain (2). m

s, after casy calcula-
A datiice R iy an additive subgroup of R™ generated by n linearly

independent vectors, The determinant of a lattice L, denoted by d(L), is
the nedimensional volume of the parallelepiped

{tlr“'l. bty 10 <1y, 0 S 1}
where w(, ..., %y, 18 any system of free generators of L. The covering radius
of I with respect to a given convex body U, denoted by u(L,U), is defined
Ly
(L, ) == inf{r > 0 L4 U =R"}.
I'JI-JMMA 3. Let 17 be o conwex body in R™, For each lattice L in R™, one
has d(L) < (U1 [p( L, 00"
l’hm is o standard fact; see e.g, inequality (8) in [9], Ch. XI, n® 3.
Let T be an n-dimensiona) parallelepiped in R™. By PY we denote the
set of all vertices of P. For each k = 0,1,..., let P* denote the set of all

polnts of lhc' form #quy b ... 4ty where vy,...,Us € POt 4. bt ]
and £y, ..., 1, = 0728, IL/2"c ., 2872k In other words, if
P {Brug+ oot latn s 0 2 85,00t S 1},
then
h 0 1 ok
P o {'ﬁlul ol bty et = '“2_;"?1 "é];": DO '2",:.' -

LuMMa 4, Let P be an ne-dimensional parallelepiped and U o conver
body in W, If 1 ¢ PY s U, then P C PY 42U,
Proof. Suppose that D' ¢ PY 4 U. Then, clearly, ph¥l o pk g o-kp
for each k == 0,1,2,... Hence, by induction, we get
PR *‘U 4o R 4 27+ U+ PP 20U + PO
for every k. Since P is contained in the closure of U, P¥, it follows that
Pcot+ P w



96 W. Banaszczyk

Proof of Theorem 1. By Lemma 2, we can find some uy,...,u, € U

satisfying (2). Let L be the lattice generated by uy,...,u,. Then
(5) d(L) = [Gram(us, ..., un)]"/*.

From (2), (5) and Lemma 3 we obtain

1/n
(6) ull U) > o= (Qwez)ml/‘znljz ({_g_:_) '

Let us write

Flnttn 0 < £, ..

P={tiug + ...

Due to {6), there exists some u € P\ (L + oV). Since P! C L, it follows that
u & P° + V. Thus, by Lemma 4, there exists some w &€ P*\ (P? + LoV).
We may write w = § 3 e Ui + 2zeru for some I,J € {1,...,n} with
InJy=4a.

Let us choose an arbitrary system of signs g; = &1 for ¢ € I. Then we
have w — 3 ¥,.7 €u; € PP, so that

%ZEW@' =W - (w— %Zsmg) & %QV.

el i€t

it <1},

This means that (U, V) > g. =

Let U, V be two symmetric convex bodies in an n-dimensional real vector
space IN. Their volume ratio will be denoted by |U|/|V]. In other words,
{1/\V| = |T(U)/|T(V)| where T : N — R™ is any linear isomorphism.

Let E, F be real normed spaces with unit balls B, Bp, respectively,
and let T : E — F be a bounded linear operator. For each & = 1,2,...,
define

|T(Bgs N N)\™
et = ({5250
where the supremum is taken over all linear subspaces N of B with dim N =
dim T'(N) = n. If dim T(N) < n, we define v, (T) = 0.
Let p be a seminorm on a real vector space F. Let us define

By ={ue E:plu) <1}.

The quotient space E/p~'(0) endowed with its canonical norm will be
denoted by E, and the canonical projection of E onto B, by 1Yp. Then
lp(u) = p(u) for u € E, which implies that ¢,(B,) = BF Let g < p
be another seminorm on E. The canonical operator from B, to E, will be
denoted by Tpy. We have the canonical commutative dlagram

icm
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id
FE — E
l Yp l e

L Ty
By & By
Define vy (p, ¢) = v (Thy) forn=1,2,.
LuMMA b, Let p 2 ¢ be fwo seminorms on o veclor space E. Suppose
that

(7) limsup n' 20, (p, ¢) = co.

o=t

(a) Lel s be an avbitrary positive number. Then we can find o finite
system, of vectors wy, ..., Uy € By such that

4
(8) q(zekw\,) >s  for any system eq,...,&y = £1.

(b) If " is o subspace of E with codim F' < oo, then

lim sup 'rbl/z'un(llm: CJ|F) = 00.

e 00

Proof. By (7), we can find an index n such that nt2uy,(p,q) >
(ame?)1/25. Consequently, there is some n-dimensional subspace N of Ep
such that dim Ty (N) = n and

L/
7'1,1'/20 pq(BL,p n N)i) ' > (27{82)1/25 .
|BEQ‘ N I}MI(N)I
Hence, by Theorem 1,
B(Tyq{Bg, NN),Bg, NTy(N)) > s.

This means that we can find some vectors v1,...,Un € Bg, NN such that

"
)] ” za,ﬂﬂ,u('nk)” s ¢ for cach system g1, ...,8, = &1.

For each & == 1,.

.., 1, dot uy chioose some uy € B3y with ¥, {wy) = vy Then,
by (9), wo lhiave :

1

q ( E Eg:'u,,r,,) =x

%q(i:swk) \' = ” iﬁa‘;‘lﬁ)q(tﬁg‘.)u
H ZELTMU’]J g ” = H Zek:{pq(’uk)” > g

, & = 1. This proves (8).

for each system gy,. ..
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The p.rOS)f.of (b) is the same as that of Lemma (6.8) in [5] (the assumption
that T, is injective is not essential). m

I;r oof of Theorem 2. Let E he a metrizable locally convex space. We
Eﬁn- rj;l a iiqufmce Po < p1 Sy < ... of continuouys seminorms on B osuch
at {Bp, }$2, is a basis of neighbourhoods of zero in E. Suppose that £ is
not nuclear. Then there is an index kp such that
e 1/2
limsup n'/ Un(Ph, Phy) = 00

n—0G

for all k > kg (sec [5], Lemma (6.5)). We may assume that kg = 0,

According to Lemma 5(a), we can find some vectors ui,...,ul ¢ B8
such that o "

mn1
1 \ )
po(z‘s;.«,uk) >1 for any system g1,...,8,, = ==1.
k=1

T — o 1
Let M1. = apar_l{uk}}:;l. A standard argument allows us to find a sulspace F
of E with codim Iy < oo such that ”

1
polu+v) > gmax(pg(u),pg(v)) (u € My, v e Fy).

By Lemma 5(b), we have

; 1/2
lim supn'/ Un(p2|F17p()[F1) =00,
L0
So, again by Lemma 5(a), we can find some u3,. .
i

2
po(Zskuk) > 2  for any system &1,...,6,, = £1.
k=1

Sud, € BN B, such that

Let My = Span({ul}”l U {g21ne i
. kS k= uy b2 ). The e T of E .
codim Fy < oo such that. tenkizd) re Is a subspace Fy of Fi with

1
polu+wv) > 3 max(po(u), po(v))  (u € My, v & ).

Then we i o i
cabenmn ;:. P;O?Ed by induction. In this way we construct a sequence of
i Spaces iy 2 D ... and, for each m, a finite sequence w!*,.., w" &
pm () Fra—y such that, writing e

m
M =span (J{u} 1y, (m=1,2,..)),

=1
we have
MNom
(10) pD(ZEku}c’"‘) >m  for any system &y,...,e,, == -1
gt ey ?
11 ~1~
( ) po(u + 'U) = 3 max(pg(u),pg(v)) (u € My, ve Fm) .

icm
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Let us arrange all the vectors wf® in a sequence (un)oey. It follows di-
rectly frow our construction that wu, -+ 0 as n —~ oo. Take an arbitrary
pennutation w of the positive integers and a sequence of signs (ey, )nwy- We
shall prove that the partial siwns of the series }:;‘f__l EnlUg(n) aT€ DOt bounded
with respect to po.

Take an arbitrary positive number s. Then choose an integer m > 9s. We
can find an index 7 sueh that the sequence (Up(n))h=) contains all vectors
Wy ..l Now, it s nol hard to see that we may write

T,

-
"~ '

E Eqthy () ™= 0k E Ei,’(bﬁ” +b

- et

for some @ ¢ My, 1, b ¢ K, and g&),. ..,s,’,bm = 1. Taking into account
that wi, ..ot € Mo 0 By 1, from (11) and (10) we obtain

T Th i - Tlap,
- 1 ,
’Pn( Entin(r )) = g (u + Y ekl b) 2 3P0 (fl + 3 E'k?-'fi-”)
[T Josez |, * k=1

. l e , , i
& ?;PU(AZEWE') - g™ > E. .
“T.‘;‘Jl
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