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On continuity properties of functions
with conditions on the mean oscillation

by

HUGO AIMAR and LILIANA FORZANI (Santa Fe)

Abstract. In this paper we study distribution and continuity properties of functions
satisfying a vanishing mean oscillation property with a lag mapping on a space of homo-
geneous type.

Since the initial works by F. John and L. Nirenberg and J. Moser in
1961, the study of regularity of functions with properties on their mean og-
cillation over balls was developed by 8. Campanato, G. Meyers, S. Spanne
and A. P. Calderdén. Extensions from the euclidean setting to spaces of ho-
mogeneous type were considered by N. Burger, R. Macias and C. Segovia
and one of the authors.

In 1967, J. Moser in his paper on Harnack’s inequality for parabolic equa-
tions introduces a BMO type condition with a time lag. In 1985, E. Fabes
and N. Garofalo, applying an extension of Calderén’s method as stated by
U. Neri obtained a John-Nirenberg type lemma for this parabolic case. In
1988 one of us proved an extension of these results to the setting of spaces
of homogeneous type that can be applied to degenerate parabolic equations.
Related resulis come from the analysis of one-sided maximal functions and
weighty; in a recent paper F. Martin-Reyes and A. de la Torre prove a
John- Nirenberg type lemma for one-sided BMO functions.

T this paper we study distribution and continuity property of functions
sabisfying a vanishing wmean oscillation property with a lag mapping on a
space of hoegencous type,

1. Main results. Let X be a set. A symmetric function d : X x X —
Rt U {0} is a quasgi-distance on X if d{z,y) = 0 iff x = y and there exists a
constant K such that d(z, 2) < K[d(z,y)+ d(y, z)] for #,y, 2z € X. The ball
with center ¢ &€ X and radiug » > 0 is the set B(z,r) = {y € X : d(z,y)
< r}. We shall say that a positive measure p defined on a o-algebra contain-
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140 H. Aimar and L. Forzani

ing the balls satisfies the doubling condition if there is a positive constant A
such that

(1.1) 0 < u(B(z,2r)) < Au(B(z, 1)) < 00

for every z € X and every r > 0. If d is a quasi-distance on X and p satisfies
the doubling condition, then we say, following [MS], that (X, d L 14) 18 a space
of homogeneous type. Given a ball B on (X,d) we shall usually write z(3)
and r(B) for the center and the radius of B.

Given a space of homogeneous type (X,d, ) we say that a function
T:X xRt — X xR*, T(z,r) = (£0), £ = &(e,r), 0 = o(z,r), is a lag
mapping if there exist three constants K, » = 1,2, 3, such that
(1.2) d(z, &) < Ky,

(1.3) Koo <r < Kap,
for every z € X and r > 0. Given a d-ball B = B(z,r) we shall usually
write TB for B{(£, ¢)

Let ¢ : RT — R be an increasing function satisfying the A condition:
there exists C' > 0 such that ¢(2r) < C¢(r) for every positive r. We say that
a locally integrable function f : X — R is of ¢-bounded mean oscillation

with respect to the lag mapping T if there exists a real function C (z,7) on
X x R such that

(1.4) ma((f —Cs)*) < Dé(r),
(1.5) mra((Cp — f)7) < Dé(r),
where D is a constant, B = B(z,r), Cg = C(z,r) and mp(g) =

Let BMO(¢,T) be the class of such functions.
We start with some simple results concerning BMO(¢, T") functions.

(1.6) LemMMa. Let f € BMO(¢,T). Then for every ball B we have

@wn mp((f —mre(fNT) < 2D4(r),
(1.8) mrs((ms(f) — /)*) < 2De(r).

wims | g dp

Proof. Let us prove (1.7):
mp((f —mre(fNT) < mp((f — Op)") -+ (Cp — mre(f))™*
<mp((f = Cp)") +mrp((Cp — YY) < 2Dg(r). =

The following lemma provides the key for the study of the distribution
of functions in BMO{¢, T).

(1.9) LEMMA. There exist constents My and N depending only on K, A
and K., v =1,2,3, such that given a fized ball By = Blzo,7m0) in (X, d, 1),
given M > My and given f € BMO(4,T) such that mi,,ﬁn(f) = 0 with

icm

Mean oscillation conditions 141

By = B(zy, N7y), there ezists a constant Cy depending on M, K, A, K,,
v=1,2,3, D and C such that

(1.10) mrpe(f) < Cih,

Jor every x € By, every i € N and every v € [ro/M*, 7o/ M?) where
Ap = ;.W(J(/ﬁ(’"(l/]u )

Proof. Let z € By = B(zg,rp). For N > K(K; '+ K(1+ K;)) we have
Blzn, Nv) D TB{x,ry); in fact, if y € TB(%, rp) then
Ay, 20) < K[d(y, w(TB(, 1)) + K[d(a(TB(z,70)), 5) + (3, 50)]
< I’([T(TB(:E,TD)) + IS’[,Kﬂ‘Q + ‘J"o]] < K[I({l + K(Kl + 1)]?“() .
Taking now M > K[K;' + K1] we clearly have B(z,r) D TB(z,r/M) for
any ball B(z,r). Let € By, r € [ro/M*™L,ro/M?) and B = B(z,r), and
construct a finite sequence of balls satisfying
By = B(z,ro/M"™™ ) D TB,
By = Blz,ro/ M%) > TBy,
B; = B(.’L‘,To) HTB;_1
and
ED = B(mo,N'I"Q) > TB;.
Pick f € BMO(¢,T") such that ngo(f) = 0. Then from Lemma (1.6) we
get

(g (f) ~mre, (H] + i[mTBJ- ()
T

MorB, (f)]

mpp(f) =

—MTB (f)]

+ e, (f) =

i
_—
—
—
. [
e
—

5
tw

B,

A

(
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+§ w(By) 1 [ (= ()i
j=1 H(TB;) p(Bi1) , it

31

p(Bo) 1 e
+ B u(ﬁo)gf(f 5, (M) du
SC2{1_

f=
i—1

= Cl{ Z¢(qu?j-1) + 45(7"0)} =Ci .
§=0

(1.11) Lemma (Covering Lemma). Let (X,d, u) be a space of homoge-
neous type. Let B = {By = B(2a,7a) ' & € I'} be a given family of balls in
X such that J,cp Bo 18 bounded. Then there exists o sequence of disjoint
balls {B;} C B such that for every o € I there exists i satisfying ro < 27y
and Bo C B(zi, 5Kr,).

For a proof of this lemma see [CW].

The following differentiation theorem will be useful in the proof of the
main result.

1
B(r(By 1)) + B(No)}
o]

(1.12) THEOREM. Let (X, d, 1) be a space of homogencous iype and lei
T be a lag mapping on X. The mozimal operafor

VU S ,
M'rf(fl:) - ‘ililg ,U;(TB(%, T))TBE{;T)!H d‘/—"

is of weak type (1,1), i.e.
p{{z € X Mz f(z) > A}) <

If u is a regular measure, then for f € L' (u),

flz) = ll—»mo /,:.(TB(“"’T'))TB({T)JCCM

17 -

> Q

almost everywhere.

Let f € BMO(¢, T) and By = B(=g, 7o) be such that Moz (F) = 0. Let
t >0 and j € N. Consider the set ’

(¥ = {z € By : there exists 7 &€ (0, ro/M) such that mppe. () > th;}

and, given z € (7,

RJ(:L') ={re (D,TQ/M) : mTB(E,,,)(f) > t)\j} .
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(1.13) LeMMA. R (z) C (0,ro/ Mt provided that t > Cy.
Prool Let ro/M >r 2ry/M Tl and 1 < h < 7 such that
ro/ MAITY g /MY < p <rg /MM < v /M.
From Lemina (1.9) we have
My (f) € Crhn < thy <t
s0 that » & R/ (x). w

(1.14) LrMMA. Let n be o given positive integer. Fork = 1,...,n there
is u function v* defined on QF such that, for t > C) and z € 2,

(1.15) r¥(z) € R*(x),

(1.16) 0 < rf(z) < ro/ M1,

(117) MrB(aaka)) (f) > the 2 Mrp@ per ) ()
(1.18) r*He) 2t (z).

Proofl. Given z € 2" pick r*(z) € R"(z) in such a way that Mr™(z) &
R™(z). Inequality (1.16) follows from Lemma (1.13). Inequalities (1.17) with
k = n follow from the definition of R*(x). Assume that r* is defined. Let us
define r*~1, Let x € %1 I z € Q%1 — 2% define r*~! in the same way
as we defined r . If, otherwise, z € 2% , then pick 7¥~*(z) € R*!(z) in
such a way that r#71(z) > r¥(z) and Mr®(z) € R*(z). =

Given k= 1,...,n, set
BF = {TB(z,r*(z)) : = € 2F}.
(1.19) LuMmA. There emsts M > My and for each kb = 1,...,n and

£ 0 there exists o sequence {zf : i € N} of points in 2% such that the

following properties hold:

(1.20) TBd v @) N TBEs, r*=)) =0, i#7;

(1.21)  For cvery © & % there exists i € N such that g(z,7*(z)) <
Salak, r¥(2F)) ond

T B, @) © BE@E, (), 5K olwl, v (2)))) 5

k"]
(1.22) oFc | B(£(ak, v (2h)), Po(al, r*(zf))
i=1 -
where I? depends only on the constants K, K,,v=123
(1,23) k) < ro/MFTY, for all ki
(1.24} Map (e ooy (F) > 26 2 My sy mrees) ()
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(1.25)  Given j € N, there exists i € N such that
TB(m;?“,rk“(m?H)) C B(z¥, Mr* ()
C B(&(ef, r*(al)), Solat,r*(«])))
where S depends only on K ond the K, '’s;
(1.26) Givenie N, sel
J; = {j € N: TB(e"!, r#(zft)) @ Blaf, Mr*(ef)) but
TB(z, o o™ — ) & B(:cg,ﬂfr (xf)) for €=1,...,4—1}.
Then J;NJ, =0 ifi# h and N=J,J;.

Proof. Applying the covering Lemma (1.11) to the family B* we obtain
a sequence {z% : i € N} satisfying (1.20) to (1.24). In order to prove (1.25)
observe that given j € N the point 257" belongs to 25+ which is contained
in QF, therefore Bz} k1 rk(m?“)) € B%, and thus from (1.21) there exists
i € N such that o(x! = (@St < 20(2f, ¥ (af)) and

TBabH, (b)) ¢ B(E(ab, (o), 5K alel ().

For thisi € N the first inclugion in (1.25) folloWs readily with an appropriate
choice of M . The second inclusion is a consequence of the properties of lag
mappings. Finally, (1.26) follows from (1.25). w

The following lemma provides an estimate for the size of the distribution
function of 1.

(L.27) LEMMA. Let (X, d, u) be a space of homogeneous type with p regu-
lar. Let T be a log mapping on (X, d). Let ¢ be an increasing function satisfy-
ing the Ag condition. Let f € BMO(g, T, By = B{zg, ), By = B(zg, Nry)
and mTEO(f) = (. Then there exist constants t and C such that

—

C
pl{z € By: FH{z) >t D) < ,u,(Bg)
with Ay, = S0Cs dlra/M*) andn € N.
Proof. Applying the first inequality in (1.24) for k& + 1, (1.26), the

second inequality in (1.24), (1.20), the fact that f € BMO(#,T), (1.23) and
the second inclusion of (1.25) we get

tAkt1 Z #(TB(@"?-I-I’ ch+1($§+1))) < 2 I Fdu

jeN ] .
Nl JEN TB(w;ﬂ+1’,rk+1(m?-i 1))

Mean oscillation conditions 145

Z 5: f lf- T”"I‘B{mi“",Mrk(;ni.“))(f)]-I_ dp

il ;iGJi ’i’.B( Gt ML( hsiL))

+ tAg Z ;.'/(TB(;L';?'H, phtt (ai"’J)))
jeH

> [ U =mrpes et DI du

a1 H(Kl‘,?’ .M‘I'N ({‘!i:: ))

b b Ay z (BT R (@)

1
it

IA

Jel
< Clylrg/ M) Y p(Blak, Mrt ()
1€
T+t Y p(T B )
JEM
< Chyplrg/MY) S (T Blak, r*(@}))
iGH
A g Z ]4‘;(TB(.‘I:§+1, phet-t (aﬂj“'l INE
Jel

Set Ty, = 3, p(T Bk, 1*(z}))). Then
(A = Me) Tt € Caglro/MF) T,
and so0
181 L Oy
Taking t > 20y we get Ly < %Ek and, by iteration,

.l - FJL
Fu & '2'7;”“”’“‘2~f < ”j’{,‘ﬂ(]gﬂ)

From (1.22}) we have
. . G,
£ Z,u. (B}, (@), Po(a], v (2)))) £ Usdim < 5,:#'(30)-

In order to hmsh the proof of the lemma we only need to ghow that for
almost every x & 2% we have f(r z) < thn I e g 2" , then for every
7 € (0,70/M) we have mpg(e,r)(f) £ thn and from Lenmm (1.12) we get
the desired result. w

Given a measurable function g : X — RTU{0} the distribution function
of g is given by n(\) = p({z € X : gle) > Ah), A2 0. The function 7 is
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decreasing and continuous to the right. The function

¥(s) = sup{A: n(}) > s}
is the nonincreasing rearrangement of g in the sense that ¢ and g are equidis-

tributed even when g is defined in an abstract measure space and ¢ is defined
on R U {0}.

(1.28) THEOREM. Let (X,d,p) be a space of homogeneous type with p
reqular. Let T' be a lag mapping on (X, d). Let ¢ be an wncreasing function
satisfying the A condition. Let f € BMO{#,T). Let pg be the nonincreas-
ing rearrangement of [f — m =(f)]T on B = B(z,r) with B = B(a,Nr).
Then, there exist constants «, § and vy such that

r
(129)  wal<e [
(r/MY[r /v (BN®

Proof Let B = Blz,r) be a given ball in (X,d,p). Since f €
BMO(¢, T if and only if f — const € BMO(qb t) with the same bounds,
we can assume that m,5(f) = 0 with B = B(x, Nr) and so we can apply
Lemma (1.27). Given 0 < s < 1, take n € N such that 1/2™ < s < 1/2""1.

Since p({z € B : f¥ > tA.}) < (0/2”);.6(8), for the rearrangement of
fr=[f- mTE(f)]+ on B we have

$5(sCu(B)) < A, <0'2¢(M)

from which the theorem follows. m

(1.30) THEOREM. Let (X,d, u), T, ¢ and f be as in Theorem (1.28). As-
sume that T is one-to-one and onto X x RT. Let Wy be the nonincreasing

rearrangement of [mT#lg(f) — f]t on B. Then ¥p satisfies an estimate
like (1.29):

(b—(@—df for0 <1 < yu(B).

f (&)

E dg,

(r/M)s

(1.31) mo<s [ e
(r/MY[r fyp{ BN 7

Proof First observe that the inverse T“j" of T ig also a lag mapping
and that —f € BMO(¢, 7™1). In fact, taking Cp = ~Cyp-1p, from (1.4) and
(L.5) we get :

mp((~f — C8)") = mpr-1p)((Cr-15 — £)7). < Do(r),
mp-1p((Cr — (=) = me-1a((f = Cr-15)") < Do(r),

so that Theorem (1.28) can be applied to —f and 7. The function [~ f —
My 5(—=F)IT coincides with [m,._,5(f) — 17 and thus its distribution
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function on B = B(x,r), ¥u(7), satisfies
’
Yp(r) <o f

{r/M} |7 [yu(BY”

GY

g .

CGiven a ball B = B{x,r) we are using the notation B for B(z, Nr). Let
us write B’ for B(a, r/N). Given a lag mapping 7' on (X, d) such that 77!
exigts, for & € X we define

S*(x) = {y & X : there exists a hall B with z € Band y € (T?BY'},

S () = {y € X : there exists a ball B with z € Band y € (T-2BY}.
Notice that y € S*(z) if and only if z € S~ (y) . Let, then, § be the set of
points (z,7) € X x X such that y € S*{x) (or z € §7(y)). For (z,y) € §
define Az, y) =inf{r > 0:r=r(B) withz € Bandy & (T?B)'}.

(1.32) CorovLary. Let (X,d,u), T, ¢ and f be as in Theorem (1.30).
Assume that ]01 ($(£)/€) dé < co. Then

Alzyy)
@) p@-rrso [ Sa waes
0

In the special case ¢(&) = &7, 0 < B, we have [f(z) — f(¥)]T <
(z,y) € 8. If, moreover, § = X x X, then |f(x) — fly)| £ CA
every o and every y in X.

Proof. Let (z,y) € 5. Let B be a ball such that c € B and y € (T2BY.
Then

cA
(e,

[f(x) - f(y)1+ < [f(:li) - Tn‘gﬂﬁ(f)] + [mT—-l(Tﬂg)(f) - f(y)1+

r(B)

Taking the infimum over the family of balls B a,uch that z ¢ B and y €
(T?R) we get the desired result. m
If in some subset 4 of § we have a bound of the form
Alr,y) € Cd(z,y), (2,9) €A,
then the result in Corollary (1.82) applies to provide Hilder type estimates

d(w,'y)
(134) o) - s <0 | Bae, @) ea,
0

(135)  [f(z) - F)]T < Cdlz,p)°, (m,y) € A, when ¢(€) =
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(1.36) \flz) - ) < Cd(z,y)P, eyeX,

when ¢(£) = £ and A =X x X.

Remark. It is clear from Holder’s inequality that if instead of (1.4) and
(1.5) we have

mp(((f - Ca)*)P)? < Dg(r)
and
ma(((Cp — TP < De(r),

p > 1, we have the same results. It is also true that we can get similar results
when 0 < p < 1 or even when instead of g(t) = (t1)F we take some function
satisfying h(t} = 0 if £ < 0, k(t) increasing for ¢ > 0, bt + 8) < h(t) + h{s)
and e~¢"*) integrable on (0,00) for every € > 0 (see [A2] for the BMO
case).

2. Examples and applications

(2.1) When T : X x RT — X x R is the identity we get the “elliptic”
results contained in [A2]. See also [M3].

(2.2) When ¢ = 1 we get the “elliptic and parabolic” versions of the
John-Nirenberg theorem {Al].

(2.83) X = R, d the usual distance in R and p the Lebesgue meuasure.
(X,d, u) is a space of homogeneous type. Let T : RxR*U{0} — RxR*U{0}
be given by T(z,7) = (z+2r,7), so that, for B = B(x,r), TB = B(x+2r,7).

T T -k 2r
{ i 8 i J
T—T z+T 2+ Br

S N Y

It is clear that, given x € R, we have S*(z) = {y:y > 2}, § (x) = {y:
y<z}and §= {(z,y) :y > z}. On the other hand, for (z,y) € 5§ we have
Az, y) = (y —2)/2 < d(=z,y). Then the results of Section 1 can be applied.
If ¢ = 1, we have a John-Nirenberg type lemma which was also proved
by F. Martin-Reyes and A. de la Torre. Let ¢ De any function satisfying
the Ap condition. Then the family of increasing functions is contained in
BMO(s, T). In fact, for I = (a,b) and Cr = f(b) we have

mr((f —Cn)*) = mys((Cr - /7)) =0.
When #(s) = s#, 8 > 0, we have

[F(z) - F)]T < Cd(a,p)?  forw <y,
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in other words,
[f(z) — F))T < Cly - 2)°,

which is a one-sided Holder type condition for f.

y>a,

(2.4) The spuces BMO associated with parabolic diferential equations. Let
(X, d, ) be a space of homogeneous type, let B be the class of all d-balls on
(X, d) and let 1 be a function from B to RT U{0}. A function v : XxR—R
belongs to BMOP(p) if and only if there is a constant C' and, for every
B e B, a function V(t) = Vi (t) of class C'(R) such that

Y 1 ; .
]L(B)(_JE. 4 ) Bf l(z, ) = V(6] du(z) < Ce(r).

Given a ball B € B and a real number ¢, put #1 =1 - %h(B)/z,o(r)lfg,
b = 4 Sh(B)/e(r)V2, ts =t~ §h(B)/p(r)/%, R* = B x (t1,12) and
R~ = B x (t3,t1). We have the following.

LuMMA. Let v € BMOP(). Then there exists C such that for every bail
B & B there is a U € R satlisfying

e S VIO dudh < Colr)
nt

““"“—‘1—-——-* — ) F172
(1 % A)(RT) {ﬁf mdud)\gogo() ]

Proof Let g € X, r > 0 and ty € R be given. Write By = B(zo, 7).

Since h(BU)—'%: < Ciplt), for t € (t1,ta) we have

V- V= V() -

For s > 3Cp(r)/* define
Bo(#) = {x € By:v(z,t)—~ Vi >s}.
W e By(t) we have v(z, )~V >+ Vi~V 26— Cip(r}/? > 0, so that,
from the definition of BMOP (i) it follows that
W Ba(t Ciplr d A _
A < s~ B (7= )
Tntegrating froms #; to iy we get

1 B 1
s (B (1)) dt < 2h{Bo) —=—7777
‘U,(.lf(]) {!ﬂ Ju( E ( )) ?{ ()) 8- Ogo(,r)l/z

We can now compute [[ . {{v— Vi) 172 dp d by using the distribution
function:
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}05_1/2(,u x A{(z,t) € RY : (v — V)T > s})

0 < ds
< Cp(r) "/ (ux N(R* + Cu(Boh(Be) [ ey gy
3Cp(r)'/*

< O x N(E ()
The second inequality follows in the same way. =

For X = R", d the euclidean distance, x the Lebesgue measure, h(B) =
r(B)? and @ = 1, we have the result of J. Moser [M2], i.e. a John-Nirenberg
type lemma which allows one to prove Az type conditions for small powers
of e7*.

For X = R™, d the euclidean distance, du(z) = w(x)dz with w € A0/
and h(B) = r(B)?|B|/u(B) we are in the setting of degenerate parabolic
equations first considered in [CS].
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