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Calderén couples of rearrangement invariant spaces
by

N. J. KALTON (Columbia, Mo.)

Abstract. We examine conditions under which a pair of rearrangement invariant
function spaces on [0,1] or [0,c0) form a Calderén couple. A very general criterion is
developed to determine whether such a pair is a Calderdn couple, with numerous appli-
cations. We give, for example, a complete classification of those spaces X which form a
Caldersn couple with Leo. We specialize our results to Orlicz spaces and are able to give
necessary and sufficient conditions on an Orlics function F' so that the pair (Lp: Loc)
forms a Calderdn pair.

1. Introduction. Suppose (X,Y) is a compatible pair of Banach spaces
{see [4] or [5]). We denote by K(t, f) = K (¢, f; X,Y") the Peetre K-functional
on X +7,ie

K, f) = inf{|lz]|x +tllyly 2 +y = f}.

Then (X,Y) is called a Calderdn couple (or a Calderdn-Mityagin couple) if
whenever f,g satisfy

K(t,f) < K(t,9)
for all ¢ then there is a bounded operator T : X +Y — X +Y such that
[T, | Ty < coand Tg = f. We will say that (X, Y') is a uniform Calderén
couple (with constant C) if we can further insist that max(||T']x, 1THy) <
. Calderén couples are particularly important in interpolation theory be-
cause it is possible to give a complete description of all interpolation spaces
for such a couple. Indeed, for such a couple, it is easy to show that a space
Z is an interpolation space if and only if it is K-monotore, i.e. iffeZ
and g € X + Y with K(t,g) < K(¢,f) imply g € Z. It follows from the
K-divisibility theorem of Brudnyi and Kruglyak [7] that if Z is a normed
K-monotone space then [|f|z on Z is equivalent to a norm WKL, Flie
where @ is an appropriate lattice norm on functions on (0, 00). Thus, for
Calderén couples, one has a complete description of all interpolation spaces.
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We also remark at this peint that there are apparently no known examples
of Calderén couples which are not uniform.

There has been a considerable amount of subsequent effort devoted to
classifying Calderén couples of rearrangement-invariant spaces on [0, 1] or
[0,00). It is a classical result of Calderén and Mityagin ([9], [32]) that the
pair (L, L) is a uniform Calderdn couple with constant 1. It is now known
that any pair (Ly, L;) is a Calderén couple (and, indeed, weighted versions
of these theorems are valid); we refer the reader to Lorentz and Shimogaki
[27], Sparr [36], Arazy and Cwikel [1], Sedaev and Semenov [35] and Cwikel
[13], [15]. Subsequent work has shown that under certain hypotheses pairs
of Lorentz spaces or Marcinkiewicz spaces are Calderdn couples; see Cwikel
[14], Merucci [30], [31] and Cwikel-Nilsson [16], [17]. For further positive
results on Calderdn couples see [18] (for weighted Banach lattices), and [21]
and [38] (for Hardy spaces).

On the negative side, Ovchinnikov [34] showed that on [0, cc) the pair
(L1+Loa, L1NLg ) is not a Calderén couple; indeed, Maligranda and Ovchin-
nikov show that if p # 2 then L, N L, and L, + L, (1/p+1/qg = 1) are
interpolation spaces not obtainable by the K-method [29)].

The general problem we consider in this article is that of providing neces-
sary and sufficient conditions on a pair (X,Y) of r.i. spaces (always assumed
to have the so-called Fatou property) on either [0,1] or [0, 00) so that (X, V)
is a Calderdn couple. Although we cannot provide a complete answer to this
problem, we can resolve it in certain cases and this enables us to settle
some open questions in the area (see e.g. Maligranda [28], Problems 1-3,
or Brudnyi-Kruglyak [8], p. 685, [g], [i]). For example, we give a complete
classification of all r.i. spaces X so that (X, L.,) is a Calderdén couple and
hence give examples of r.i. spaces (even Orlicz spaces) X so that (X, L) is
not a Calderén couple. Qur methods give fairly precise information in the
problem of classifying pairs of Orlicz spaces which form Calderén couples.
It should alse be mentioned that our results apply equally to symmetric
seguence spaces.

We now describe our results in more detail. Let X be an r.i. space ou
[0,1] or [0,00} or & symmetric sequence space. Let e, = Xjgn an1) forn €l
where J = Z_ = —Nor J = Z or J = NU {0}. We associate with X a Kéthe
sequence space Ex on J by defining

[€lme = | 3 €mten

nel

X’

We then say that X is stretchable if the sequence space Ex has the right-
shift property (RSP), ie. there is a constant ¢ so that if (T, yn )X s
any pair of finite normalized sequences in Ex so that suppz; < suppy; <

SUpPp z2 < ... < SUpPP Yy then for any ay,..., ay we have
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Thus Ex has (RSP) if the right-shift operator is uniformly bounded on
the closed linear span of every block basic sequence with respect to the
canonical basis. We similarly say that X is compressible if Ex has the cor-
responding left-shift property (LSP}. Finally, we say that X is elastic if it
is both stretchable and compressible. It is easy to see that L,-spaces and
more generally Lorentz spaces with finite Boyd indices are elastic because
Ex in this case is a weighted £,-space (in fact, this property characterizes
Lorentz spaces when the Boyd indices are finite}. On the other hand, it is
not difficult to give examples of r.i. spaces which are neither compressible
nor stretchable. Curiously, however, we have no example of a space which is
either stretchabls or compressible and not elastic.

The significance of these ideas is illustrated by Theorem 5.4. The pair
(X, Loo) is a Calderén couple if and only if X is stretchable. Dually, if we
assume that X has nontrivial concavity then (X,L:) is a Calderdn couple
if and only if X is compressible (Theorem 5.5). More generally, if (X,Y)1is
any pair of r.i. spaces such that either the Boyd indices satisfy py > gx or
there exists p so that X is p-concave and YV is p-convex and has nontrivial
concavity then (X,Y) is a Calderdn couple if and only if X is stretchable
and Y is compressible.

In Section 6 we study these concepts for Orlicz spaces. We show that for
an Orlicz space to be compressible it is necessary and sufficient that it is
stretchable; thus we need only consider elastic Orlicz spaces. We show for
example that Lz(0,1] (where F satisfies the As-condition) is elastic if a:nd
only if there is a constant C and a bounded monotone increasing function
w(t) so that for any 0 <z < 1land any 1 <5 < t < 0o we have

F(tx) < C’F(SI)

F(t)y = F(s)
This condition implies that the Boyd indices (or Orlicz—Matuszewskg ‘in—
dices) pr and gm of L coincide. In fact, it implies the stronger COIlfﬂ.lthIl
that F must be equivalent to a function which is regularly varying in the
sense of Karamata (see [6]). We give examples to show that F' can i?e regu-
larly varying with L inelastic and that Lp can be elastic without coinciding
with a Lorentz space (cf. [26], [33])- .

Brudny! (cf. [8]) has conjectured that if a pair of {distinct) Orlicz spaces
(Lr[0,1], Igl0,1]) is a Calderén couple then pp = ¢r and pa = ¢G- ‘We show
by example that this is false. However, we also show that either pr = po
and gr = g¢ or both Lg and Lg are elastic, in which case pr = gr and

Pe = 4g-

Ex

+w(t) - w(s).
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Let us now introduce some notation and conventions. Let {2 be a Polish
space and let 4 be a o-finite Borel measure on 2. Let Lo(u) denote the space
of all real-valued Borel functions on 2 (where functions differing on a set
of measure zero are identified), equipped with the topology of convergence
in p-measure on sets of finite measure. By a Kéthe function space on 2
we shall mean a Banach space X which is a subspace of Ly containing the
characteristic function x 5 whenever u(B) < oo and such that the norm || || x
satisfies the following conditions:

(a) |I/llx < lgllx whenever |f| < |g] ace.,

(b) Bx = {f : [|[fllx < 1} is closed in L.

Condition (b) is usually called the Fatou property; note here that we include
the Fatou property in our definition and so it is an implicit assumption
throughout the paper. It is sometimes convenient to extend the definition of
(£l by setting || f||lx = oc if f & X. We will also write Ppf = e = fxg
when B is a Borel subset of £2. We let supp f = {w: f(w) 5 0}.

If X is a Kothe function space then we say that X is p-convezr (1 <p
< oo) if there is a constant M so that for any fi,..., fo € X we have

” (g Ifklp)l/pﬂx < M(kZ:l ||fk||1}]()1/p,

and p-concave if there exists M so that

( kg Iels)” < Mu(é )"

Similarly, we say that X has an upper p-estimate if there is a constant M
so that if fi,..., f,. are disjoint in X then

H éfkl'x < M(’é Jlfklif?c)l/p,

and X has a lower p-estimate if there exists M so that if fiyoo, fn are
disjoint then

n o l/p n
(X Irds) ™" < 2| S g
k=1 k=1 X
See Lindenstrauss—Tzafriri [25] for a fuller discussion.

We will sometimes use (f,g) for Jo fgdu. With this notion of pairing
we will also use X™* for the Kéthe dual of X (which will coincide with the
full dual if X is separable). '

If (X,Y") are two Kdthe function spaces on (2, p) then the pair (X, Y) is
necessarily Gagliarde complete (cf. [4]). We denote by A(X, Y') the space of
admissible operators, i.e. operators T: X +Y -+ X + ¥ such that 1THx =
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sup{[|Tfllx : |flx <1} < o0 and [Ty = sup{|Tfily : |fliy <1} < co.
We norm A(X,Y) by [ Tll¢x vy = max(|Tllx, [Tily)- _ .

In the special case when 2 = J is a subset of Z and is counting
measure we write w(J) = Lo(u) and a Kdthe function space X is called a
Kéthe sequence space modelled on J. An operator T on X is then called a
matrig if it takes the form

Tx(n) = Z anks(k)
kel
for some (@ny )n,rey. We remark here that the assumption that T is & matrix
! * * * :
forces the existence of an adjoint operator T* : X* — X" even in the
nonseparable situation, when X* is not the full dual of X'. '

If 2 = [0,1] or [0,00) (with u Lebesgue measure) or if ‘Q‘z N (with g
counting measure) then for f € Lo(u) we define the decreasing rearrange-
ment f* of f by

“(ty= sup inf |f(s)]
FO= et
i t invariant space (or a
for 0 < £ < oo. We say that X is a rearmngeme:z
symmetric sequence space if 2 = N} if [|filx = I |x for all f € Lo. If we
define

remy=7 [ Fieds
0

then it is well-known that if f,g € Lo with f** < g** then ifllx < lgllx-

If X is an r.i. space on [0,1) or [0,00) then the dilation opfzra.tors D, on.
X are defined by D, f(t) = f(t/a} (where we regard f as va.mshmg ouiémde
[0,1] in the former case). We can then define the Boyd indices px and ¢x
o i loga — lim loga -

PX = M Tog T Dalx b g 1 Dallx |

In the case when X is a symmetric sequence space we define px and gx in
the same way but we define D, by the nonlinear formula

Daf(n’) = f*(n/a’)

re f* is well-defined on [0,00).
WheFin{Llly, let us mention two special classes of T.i. spaces. If Itg p';eo;f
we will say that an r.i. space X on {2= {0, 1] or [0, .OO) is ééorenoz sp} < of
order p if there is a positive increasing Welgllt ﬁl].lCth‘n w : : — (a; ;(:) -
that SUP; gue p w(28)/w(t) < co and |fllx is equivalent to the qu

' dt\
1 lum = ( !4" PPl ?) |
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We can then write X = Ly . If we take w(t) = t*/9 we obtain the standard
Lorentz spaces L{g, p). It is easy to compute that the Lorentz space X =
Ly has Boyd indices px,gx where

t) —1 13
L e lEW(at) “logu(t)
px CL—POOt}a'tE.Q Iogau

t) —1 t
L = lim inf log w(at) — log w( )

Ox  B—ootatEf? loga

If we impose the additional restriction that gx < oo then it can easily be
seen that we may suppose that w satisfies infy g w(2t)/w(t) > 1.

We will also be interested in Orlicz function spaces and sequence spaces.
By an Orlicz function we shall mean a continuous strictly increasing convex
function F' : [0,00) — [0,00) such that F(0) = 0. F is said to satisfy the
Ay-condition if there is a constant 4 such that #(2z) < AF{z) forall z > 0.

The Orlicz function space Lp(f2, 1) is defined by

1Fles=inf {a>0: [ Faife)dt<1}
b

so that Lg = {f HfHLF < OO}

In this case the Boyd indices pr = pr,. and gr = qr,. are closely related
to the Orlicz—Matuszewska indices of F' (see Lindenstrauss-Tzafriri [25],
p. 139). More precisely, let «®(F) (resp. a(F)) be the supremum of all p
so that for some C' we have F(st) < CsPF(f) forall0 < s < Tandall# > 1
(resp. t < 1). Similarly, let 8°°(F} (resp. 8% F)) be the infimum of all ¢ so
that for some C' we have sPF(t) < CF(st)forall0 < s < landallt > 1
(resp. t < 1). Then if 2 = [0,1] we have pr = o™ (F) and gp = 8% (F). If
£2 = [0,00) then pp = min(*™(F},a’(F)) and gz = max({F%(F), B°(F)).
If we assume the As-condition (and we always will) then g5 < oo.

2. The shift properties. Let J be one of the three sets Z, Z. = {n ¢
Z:n >0} or Z. = Z\ Z,. Let w(J) denote the space of all sequences
modelled on J. If # = {z(k)}rey is a sequence (modelled on J) we write
suppz = {k : z(k)  0}. If A, B are subsets of J we write A < Bifa < b
for every a € A, b € B. If T is any interval of Z and (2, ¥n)ner is a pair
of sequences in w(J) we say (z,,yn) is interlaced if each x,,y, has finite
support and suppx,, < suppy, (n € I) and suppyn < supp o, whenever
n,n+1el.

Let E be a Kdthe sequence space modelled on J. We will say that E has
the right-shift property (RSP) if there is a constant ¢ such that whenever
{Zn, Yn)ner is an interlaced pair with |jy, ||z < ||zn|lg =1 (n € I) then for
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avery finitely nonzero sequence of scalars (o }ner we have
|3 o], 50| S
nel nel

Conversely, we will say that E has the left-shift property (LSP} if there
is a constant C’ so that for every interlaced pair (T, Yn)ner With ||z,|z <
llynlie = 1, and every finitely nonzero (i )ner we have

|5 e, < ) Sanse
nel nel

PROPOSITION 2.1. E has (LSP) if and only if E* has (RSP).

Proof We will only prove one direction. Let us assume E* has (RSP)
with constant C. Let (Zn,¥n)ner, be an interlaced pair with ly,lls <
%nlls = 1. We may assume each zy, yn is positive (i.e. zn(k), yn(k) = 0 for
every k). Suppose (v, )ner 15 a finitely nonzero sequence of nonnegative reals.
Let f = 3 ctnyn. Then there exists positive g € E* with suppyg C supp f
and so that {f, g} = ||fll g while ||g]lz+ = 1. We can write

9= Zﬁnvn

where each v, is positive, |[upfig+ = 1 and supp v, C SUPD Yn-
Next pick positive u, with supp t, C supp Zn, {Zn, un) = 1 and |ju,| &=
= 1. We conclude from the fact that E* has (RSP) that

” Z Ontin <.
nel

E

< .
E E

E*

Thus

[ S auan], = S antalyn ta) < T eate

nel nel

((Soe). () <0 L

Thus the proposition is proved. m

PROPOSITION 2.2, Suppose E is a Kothe sequence spoce modelled on Z.
Define B = E(Zy) and E_ = E(Z_). Then E has (RSP) (resp. (LSP)) if
and only if both Ey. and E_ have (RSP) (resp. (LSP)).

Proof One direction is obvious. For the other, suppose both E. and
E_ have (RSP) with constant C, say. Suppose (%, Yn)ner is an i.nterlficed
pair of sequences with ||ynllz < {|znllz = 1 and that {cr )ner is finitely
nonzero. Then there exists m € I so that supp(zy +yn) C Z- for n <m
and supp(zn + Yn) C Zy for n > m. Now

] o

[ el <loni| 5
nel B n<m

B

"
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<(2C + 1)“ Zanwn o

nel

Thus F has (RSP) with constant at most 2C + 1. =

To simplify our discussion we introduce the idea of an order-reversal,
Let E = E(J) be a Kothe sequence space. We let J = {—(n+ 1) : n € J}
and if z € w(l) we set Z(n) = z(~(n+ 1)) for n € J. Let E(I) be defined
by [[z[z = [|Ziz; then E is the order-reversai of E. Clearly (LSP) (resp.
(RSP)) for F is equivalent to (RSP) (resp. (LSP)) for E.

Next observe that if (wn e satisfy w, > 0 for all n then the weighted
sequence space E{w) = {z : xw € F} normed by ||z g = |l2w] g satisfles
(LSP) (resp. (RSP)) if and only if E satisfies (LSP) (resp. (RSP)).

PrROPOSITION 2.3. Let E = E(J) be a symmetric sequence space. Suppose
E has either (LSP) or (RSP). Then E = {,{]) for some 1 <p < oo.

Proof. For convenience of notation we consider only the case J = Z,
and (LSP) and leave the reader to make the minor adjustments necessary for
the other cages. Let {ty, Jnen be any normalized positive block basic sequence
in E(J). Select a, € suppun. Then (u2n,eq,,,, )nen is an interlaced pair.

Thus
” Z Xy Cn, 5 < C;'|| Z Cplign
neN neN

Similarly (€as,,_;,%an)newn is an interlaced pair and so

‘ Zanu2n1 < CH Z Qe
E

nel neN

Thus (us,) is C2-equivalent to (e,) and similarly 50 is (Yan-1)nen. It then
follows that the basis (or basic sequence) (e,,) is perfectly homogeneous and
by a theorem of Zippin [39] (see Lindenstrauss-Tzafriri [24]) this implies
that it is equivalent to the £;-basis for some p or the cp-basis; in the latter
case we deduce that E = {(]). The result then follows. =

ProrogiTION 2.4, Let E = E(Z.) be a Kdéthe sequence space with
(LSP) or (RSP). If E contains a symmetric basic sequence then there
exisis L < p < oo and an increasing sequence (ag)p>o with ag = 0 so that
E = £y(Elag, ag+1)). In particular, when E is separable, we have p < oo and
any symmetric basic sequence in E is equivalent to the canonical £y-basis.

.

B

Remark, Of course there is a similar result if J = Z_, However, in the
two-ended setting J = Z we recall that E has (RSP) (resp. (LSP)) if and
only if both E(Zy) and E(Z.) have (RSP) (resp. (LSP)). In particular,
£(Z.) @ £.(Zy) has (LSP) and (RSP} even if r # p,
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Proof of Proposition 2.4. We can suppose that (u,) is a nor-
malized symmetric block basic sequence. By an interlacing argument as in
Proposition 2.3 it will follow that a subsequence (eq, ) of the unit vectors
is symmetric. Since the restriction of ¥ to this subsequence has (LSP) or
(RSP) it follows that it is equivalent to the £,-basis for some 1 < p < 00 or
to the co-basis by Proposition 2.3. For convenience we suppose the former
case and fix p. Let I, = lag, apy1). Then, for suitable C, by an interlacing
argument any normalized sequence (vi} supported on Iy is C-equivalent
to the £,-basis; similarly, any normalized sequence supported on Iogiy i8
C-equivalent to the £5-basis and the first part of the result follows. For the
last part, if E is separable then obvicusly p < oo and a simple blocking
argument gives the result. m

Remark. It is possible that E contains no symmetric basic sequence.
Indeed, Tsirelson space 7' [37] and its convexifications provide examples
of such spaces with (RSP) and (LSP) (see [10] and [12]). It is not diffi-
cult to use Krivine’s theorem [22] to show that if E = E(Z4) has (L.SP)
(or (RSP)) then there is a subsequence (e,,) of the unit vector basis so
that for some C,p we have for all k and every k vectors zy, sz, ..., Zx With
suppz; < supp s < ... < suppzy and supp{zy + ...+ i) C {@n}tn>1,

o (leat) < il =X leaz)”
n=1 nss

ne=l
with appropriate modifications when p = co. Thus any space F having ei-
ther (LSP) or (RSP) and no symmetric basic sequence has a “Tsirelson-like”
subspace.

PROBLEM. Does there exist a Kothe sequence space with (LSP) and not
(RSP)?

Let us remark.that this is probably nontrivial. Indeed, the corresponding
question for simple shifts has been considered [3] and Bellenot has only
recently given an example [2].

LEMMA 2.5. Let E be o Kéthe sequence space on J with (RSP); then
there 35 o constant C 50 that whenever (Zn,Yn)ner is an inferloced pair of
sequences with |yalle < l|lzn]le = 1 and (@})ner is a sequence in B* with
suppa’, C supp @, and 2}, (%) = |Zn|lgs = 1 then the operator T defined
by Tz = 3, o {@, o5 )Yn is bounded on B with 1Te < C.

Proof. For any 2 € E with finite support, Tz has finite support and we
can define g¥ € E* and a finitely nonzero sequence (@n)ner so that jigall =1
(n € I), supp gl C Supp¥n, || 2. engnlle- = 1 and
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(T2,3" oags) = |72
nel
Thus

T2z = 3 enchi@) = (3,3 ona)

nel nel

*
Z Qnly, Z Cn Gy,
ngl ngl

where C is the (LSP) constant of E* (which actually is the (RSP) constant
of B by Proposition 2.1 and its proof). The result follows. m

< llzle B

< Clale
E*

< |
¥k

LEMMA 2.6. Under the hypotheses of Lemma 2.5, there is o constant
Cy so that if (Ju)ner 15 o sequence of intervals in [ with J, < Jo
whenever n,m + 1 € I, (n)ner, (Yn)ner are two normalized sequences with
SUPD Zp, SUPP Yn C Jn ond (z}) is any sequence with suppz’ C suppz,
and 2%(z,) = 1 = ||} ||z« then the operator

Tz = Z(m, Ty Ynt1

nel
(where ynq1 =0 if n+1 &€ I) is bounded on F with | Tz < Cy.

Proof. The sequence pairs (Lan, Yoni1)2n,2n+1e8, (B2n—1, Yon Jan—1,20e7
are interlaced and the lemma follows from 2.5 with Cy = 2C by simply
adding. =

Remark. If F is separable and has both (LSP) and (RSP} then Lemma
2.6 quickly shows that every normalized block basic sequence in F spans a
complemented subspace; this property is, of course, enjoyed by Tsirelson
space [12] (see also Casazza-Lin [11] for an earlier similar example). If this
property holds for a symmetric sequence space then it is isomorphic to -
for some 1 < p < oo (see Lindenstrauss—Tzafriri [23]).

3. The shift properties for pairs. We next consider a pair of Kéthe
sequence spaces (E, F) modelled on J. We will say that (F, F) has (RSP)
if there is a constant € so that whenever {20, ¥ntner s an interlaced pair
with [|yn]le < ||@ellz = 1 and 2,,y, = 0 then there is a positive matrix
T with ]|Tﬂ( 5.F) < C and Tz, = yn. We will say that the pair (B, F) has
(LSP) if (F, £) has (RSP). If (E, F) has both (LSP) and (RSP) then we
say that it has the shift property (SP).

We first note that if (E, F') has (RSP) then E has (RSP). Conversely, it
follows from Lemma 2.5 that if E has (RSP) then (E, E) has (RSP).

In this section, we show that, under certain hypotheses, one can deduce
(RSP) for the couple (B, F) from the property (RSP) for £ alone. We will
need some definitions. We define the shift operators 7, for n € Z on w(J)
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by m(x)(k) = 2{k — n), where we interpret z(j) = 0 when j ¢ J. We define
kg (B) = lmpoeo || 70l 1E "™ (which can be oo in the case when 71 is unbounded
on E) and k_(E) = limp e ”T_.,L“}E/n. We will also let o(n) = g(n; E, F) =
leallz/llenllr. We will say that (F,F) is exponentially separated if there
exist B > 0 and Cp so that if m,m + n € I then p(m + n) > Cy '2°% o(m).

LeMMA 3.1. If i (E)xy(F) < 1 then (E, F) is exponentially separated.

Proof. Here we have p{m+n)/g{m) > (|7—n | gl/ma|#)"*. The hypoth-
esis then implies that for some 8 > 0 we have ||[r_pllel|m|r € ¢2~"¥ for
some C > 0. The result then follows. m

LEMMA 3.2. Suppose (E, F) is ezponentially separated. Then there is a
constant Cy 50 that if suppz C [a,b] then

Crlo(a)lzlle < lzle < Cra®)lizllr-
Proof. Suppose z = ¥, z(k)es. Then
lzlle <3 lz(E)lede < Y lz(k)ie(k) esli
< 0o > o(®)27 P a (k) lexilr

< oo 277) max o3 e < Cot®lale
k=0

for a suitable constant C. The other inequality is similar. w

LEMMA 3.3. Let E,F be a pair of Kithe sequence spaces satisfyz’ng
k. (E)ey (F) < 1. Suppose E has (RSP). Then (E,F) has (RSP). Simi-
larly, if F has (LSP) then (B, F) has (LSP).

Proof. We first note that it is only necessary to prove the first statement
since (F, E) will satisfy the same hypothesis k. (F)es(E) < 1 and F will
have (RSP) if F has (LSP).

We refer back to Lemma 2.5; it is clear that there exists Cl so that if
{Zn, ¥ Iner is a positive interlaced pair with [[ynlz < |#n|ip = 1 then if we
pick z* > 0 with supp }, C suppz, and (Tn,2h) = ||lzhllge = 1forn €1
then ||[T|lg € Gp where

Te = Z(m,m*n)y.,l.
nEA
Obviously T is a positive matrix. We now compute T 7. Suppose k €
suppyn where n € I. Then, since suppa;, C (—o0, k) and yn(k)er < ¥n.

T2 (k)] = la5 (@) |y (k) < |2(—com | 2lleellz" -
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Now
200y < Y |20 eslle < llexllz Y l2(h)lIms-xlle.
<k i<k
We have
(Tl < 3 Ime-gett)llrs—sle
i<k
and hence, since Tz (k) vanishes for all coordinates not of this form,

o0
Tz <3 |lryllslrial.
J=1
The hypothesis K _{F)x, (F) < 1 implies that there exist M and 0 < § < 1
so that |[7_;|| &|m ]l < M& for j > 0. Hence

oo
| Tallr < M6||z]p
=1
so that |||z < Ci for some constant € depending only on E, F. a

Although Lemma 3.3 is enough for most of our purposes, there are some

possible modifications. First we give a simple argument in the cagse F' = £,
which will be useful later.

LeMMA 3.4. Suppose E 45 a Kéthe sequence space with (RSP) and that
F = £.(I). Suppose (E,F) is exponentiolly separated. Then (B, F) has
(RSP).

Proof. We may assume that for some Cg,8 > 0 we have {lem|r <
Co27P™|lemtn | p- In this case we proceed as in Lemma 3.3 but note that

|Tz)| 7 == sup | Tz (k)| .
ked
Kk € supp ya,
Tz(R)] = [{z, 27) lya (k) < 2 (oo | 2llenl]5"
<> lzilleslzllel st < Co Y fas278%9 < ¢y a5
: <k i<k '
for a suitable Cy.

Another version of Lemma 3.3, which actually generalizes Lemma 3.4,1s
given by

LemMMA 3.5. Suppose (B, F) is ezponentially separated, E has {RSP) and
that either (a) there exists 1 < p < oo so that E has a lower p-estimate and
F' has an upper p-estimate or (b) E is r-concave for some r < oo and there

exists 1 < g < oo so that E has an upper g-estimate and F has a lower
g-estimate. Then (E,F) has (RSP).
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Proof. For (a) we note that the case p = oo is essentially covered in
Lemma 3.4. Suppose p < co. By Lemma 3.2 there is a constant Cy so that
if supp & < suppy then ||z|zlylir < Cillz||r|lyl|z. There is also a constant
C» so that if uy, ..., U, are disjoint vectors in E or F,

(é lus %) "< Czn iluj

IS u], <oa(tsie)”.
j=1 j=1

We suppose (Zn,¥n)nes is a positive interlaced pair with ||ynilz < [fznllz
= 1. Define T as in Lemma 3.3, and set J = supp «}. Now if z € F,|

imele = | 3 st < (3 e Bt 12)

>\ 1/P
<G (S lenlly) - < G2Cileli
ke A

E )

and (a) follows. ~

We turn to the proof of (b). Let 1 < p < oo be conjugate to g. Then E”
has (RSP) by Proposition 2.1. Also, (E‘*, F *) is exponentially separated, and
E* has a lower p-estimate while F* has an upper p-estimate; thus by (a) the
couple (E*, F*) has (RSP). It follows that (F*, E*) has (LSP). We further
can assume, by renorming, that F has an upper p-estimate with constant
1 and an r-concavity constant 1 (apply Lindenstrauss-Tzafriri (25, p. 88,
Lemma 1.L.11, to E*). Let C1 be the associated (LSP) constant for this
couple. We first prove a claim:

CLaM. There ezist constants Cy and § < 1 depending only on (E,F)
with the following property. Suppose {Tn, Yn }ner 8 a positive interlaced pair
of sequences with ||znfiz = |yallz = 1. Then there is a subset DD of I and
a positive matriz eperator S with ||S||(z,ry < C2 so that Sz, = Ppy, ond
lm — Poynllz < 8, whenever n € I.

Choose &% = 0 with suppzj, C suppzx and lztle = llzklle = (zx, 25)
= 1. Similarly, choose y;, > 0 with suppy} C supp yx and lville = lluwlle =
{ys, ¥y, We begin by using the (LSP) property of (F*,*E*) to* produce a
positive matrix V on B with |Vli(zrm < Ci and V*yp = @} whenever
ke l. Thus (Vag,v;) = 1.

Fix 7 > 0 small enough so that %'r - %Cf’rp =~ > 0. Let D} be the set

of j € suppys so that 2Vay(j) = yi(f). Let D = | Jyer Dr. Cleatly there
is a positive matrix § with ||| (z,r) < 204 = O3 and Szp = Ppys. Now
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observe that (Vay — PpVag,yp) < % so that

. 1
(TPpVar +yr — Poyr, yiy 2 1+ 3T~ | Poyells

Thus
1
L 57~ | Poyalls < (OFP - 1)M7 < 14 ~GF7.
P
Upon reorganization this yields
1 1
1Poyllz 2 57— 2—301’7"1’ =7.
This in turn implies

Ik = Poyelle S (1 -y =6 < 1.
This establishes the claim.

To complete the proof from the claim is quite easy by an inductive ar-
gument. We may clearly construct a disjoint sequence of subsets (Dyp)nzy of
I and a sequence of positive matrix operators (Sy),»; with 1Sl = ;) <
2C16"* and so that S,zx = Pp,yy and [|yx — i?’:l Pp,yil s < 6m

The operator T = 3.7 | S, is a positive matrix and Tuz) = Yy further
ITlzm < 2C1(1-6)"". u

ProOroSITION 3.6. Suppose (E,F) is a pair of Kéthe sequence spaces.
Suppose either

(a) (B, F) is exponentially separated, F is r-concave for some r < oe,

and there exists 1 < p < 0o so that E has o lower p-estimate and F' has an
upper p-estimate, or

(b) k_(EF)ky (F) < 1.
Then (E, F) has (SP) if and only if E has (RSP) and F' has (LSP).

Proof. (a) We use Lemma 3.5 to show that (E, F) has (RSP) and (F. E
has (RSP) and the result follows. ( ) o

(b) This is immediate from Lemma 3.3. m

4. Caldc.arén couples of sequence spaces. We now turn to calculating
the K-functional for an exponentially separated pair.

LeMMA 4.1, Suppose (E, F) is esponentially separated. Then there is o
constant Cy so that if pla) <t < gla+ 1)

7

Kt 2) < ||2(—co,a)llm + t|2(acc) |l < CLE (L, ).
In particular,

[2(~c0,a1ll 2 + £(a) |2 (0,000 | 7 < C2K (0(a), 7).
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Similarly, if t < ple) for all a (in the case J = Z.) then
tlz]r < CoK(2, x)

while if £ > p(a) for oll a (when J = Z_) then
lzlis < CoK(t,z).

Proof. If suppz C (—o0,a] then it follows from Lemma 3.2 that
C1K(p(a),z) > |z|lg. Similarly, if suppz C [a,00) then C1K (o(a),z) =
o(a)||z|| p. Combining these statements gives the results. w

THEOREM 4.2. Suppose (E,F) is exponentially separated and forms a
Calderdn pair. Then E satisfies (RSP) and F satisfies (LSP).

Proof. First we remark that it suffices to prove the result for E. Once
this is established we can apply an order-reversal argument to get the result
for F. Indeed, (F, E) is also exponentially separated and a Calderén pair;
thus P has (RSP) and F has (LSP).

We will suppose that o(m) € Cp27"Po(m+n) for m,m+n € J and that
C; and 5 are the constants given in Lemmas 3.2 and 4.1.

We now introduce a notion which helps in the argument. An admissible
pair is a pair (z,I) where I is a finite interval in J and 2 is a positive
vector with suppz C I, max(suppz) < max [, and ||z||g = 1. An admissible
family is a finite collection F = (zk,Ii)j=; of admissible pairs so that
{I3) are pairwise disjoint. We define supp F = |J . If F is an admissible
family then we define I'(F) to be the least constant M so that if (yx)i_;
satisfy |yr|z < 1, suppyr C Ii and suppzr < suppyx, then there exists
T € A(E,F) with |T||g,r) £ M and Tz = yx for 1 < k < n. Notice
that since max(suppxz) < max Iy there is “room” for some yj satisfying
our hypotheses. Tt is not difficult to show that such a I'(F) is well-defined
since we can restrict the problem for each such family to a finite-dimensional
space.

We next make the remark that if T' is such an optimal choice of operator
then T can be replaced without altering its norm by 3 ,p_; Pr, T Pr,. Thus it
can be assumed that Tx = 0 for any z whose support is disjoint from | ] Lg-
Now suppose F and § are two admissible families with disjoint supports so
that their union F UG is alsc admissible. Then using the above remark it is
clear that we can simply add optimal operators to obtain

(1) D(FUG) < I(Fy+I(G).

Next suppose F is a single admissible pair (&, I). Suppose y is supported
on I and satisfies ||yl < 1, and suppz < suppy. Then we can choose
z* € E* with |jz*| g~ = 1, suppz* C suppz and {z,z*) = 1. Consider the
operator S defined by S¢€ = (£,z*)y. Of course [|S||g < 1. Now suppose the
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maximum. of supp # is @. Then

IS¢l < [yl #llé(-o0,01] 5 < CEIIE]L 7

where () is the constant of Lemma 3.2. Hence I'(F) < C#. It then follows
by the addition principle (1) that if |F| = n then I'(F) < nCj.

Now we seek to prove that I'(F) is bounded over all admissible fam-
ilies. Let us suppose on the contrary that it is not. We then can con-
struct inductively a sequence of admissible families (7,) for n € N and
an increasing sequence of integers (mn) so that supp F, C [—mp, my,] and
I(Frt1) = nin+ 1) + C§(2my, + 2n + 1).

Now refine J,, by deleting all pairs (%, ]) so that I intersects [—m, —n,
My + n]. This removes at most 2m, -+ 1 pairs and creates a new admissible
family F), so that I'(F)) > n{n + 1). The families F, are now disjoint. If
we write the members of 77, in increasing order of support as (zy, J) ,‘:’21
then we can define 7, , for 0 < r < n to be the family of all (z, I;) where
k = rmod (n-+1). At least one of F,, ,. satisfies I'(F,, ) > n by (1). Call this
family G,. We note that if (%,1) and (y, J) are two consecutive members of
Gn then I +mn < J (since n nontrivial intervals in F, lie between I and J).
Furthermore, there is a gap of at least n between any interval represented
in Gy, and any interval represented in Gy for some k < n.

Finally, let us consider the union of all G, for n > 1. This may be
written as a sequence of admissible pairs {xy, Ix)rea where 4 is one of the
sets Z,%-, Ly and I < Ipeq for all k,k +1 € A Write I, = [og, by).
Then by < axy1 whenever k, k + 1 € A. Furthermore, the gaps between the
intervals tend to infinity as |k| — oco. Precisely, if o) = (agq1 — by) then
limg| oo 0k = 00. Now let dy = max{supp zj) so that ey < dp < bg. Let
Jr = (d}c,bk] for k ¢ A.

‘We now claim:

CLAM. There exists a finite subset Ag of A and o constant M se thot
if Ay = A\ Ao, and if (Yr)rea, s any sequence satisfying ||lypllz = 1
and suppyy C Jk, then there exzists T € A(E,F) with [T)l(z,m < M and
(Tze —yillp < 3

Let us first assume the claim is established. We consider the space
YV = Loo(E(Jr))nea, and the map S : A(E,F) — Y defined by S(T) =
(Pr.Thzy)rea,- Clearly ||S|| < 1 and it follows from the claim that if
¥ = (Urlkea, € ¥ there exists T € A(E,F) with [Tz r < M|y| and
IS -y || € %|l¥]- By a well-known argument from the Open Mapping
Theorem this is enough to show that S is onto and indeed if ||yi| < 1 then
there exists T with [[T||(g,p) < 2M and S(T") = y.

Now suppose G,, = {(mk,Ik)}Reg where B, C Aj. Then if (yg)res,
satisfy ||yxilz < 1, and suppzr < suppyx C Ji it follows that there is
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an operator T' € A(E, F) with ||T||(g,m < 2M and PpTzr = yp- If we
set Ty = ZkEB P; TP, then HTUH(E < 2M and Tpzp = yr. Thus

T'(Gr) < 2M. Now since Ag is finite we conclude that I'(G,) < 2M for all
but finitely many n. This contradicts the original construction of G,. The
contradiction shows that there is a constant My so that I'(F) < My for all
admissible families F. In patticular, if we have a finite set of finitely sup-
ported vectors zy,%2,...,Tn,Y1,--.,Yn S0 that suppuy <suppy < ... <
SUPP T, < SUppYn and {|zillg = 1 for all k and |jyzllz < 1 then there is
an operator T : E — E with |[T||g € 2Mp and T'zy, = yi. Hence for any
a@1,. .., 0, we would have

|3 een] < 216] S e
k=1 k=1

and this means that F has (RSP).

Thus it only remains to prove the claim. We start by defining a sequence
(Ak)uea such that gy — Ax = %ﬁak. We next make some initial observa-
tions. Let us suppose that suppuy C Iy for k € A and [[u|lg =1 for all k.
We claim that there exists a constant C3 independent of the choice of (ug)
so that if kK € A then

g DA IREES
i<k

and

(3) | gk?‘fujUF < Ca2 Jug|r

In fact, (2) follows easily from the fact that if j < k then

by _,\k——ﬁZazsf\w— (k— )8

i=j
For (3) we note that if j > &,
sl < Crofas)™ < CLCa2 (=" g(bs) ™
< CPCo27 Pl || p < CF 002_2“’ M k|7

so that

9% s 7 € CFCH2™ $PU=R 2 lfagy |

from which (3) will follow.

In particular, let us define z = Yokea 2%z, The above calculations
show that z ¢ E + F. Since (E, F) is a Calderén couple there is a constant
Mj = Mo(2) so that if w € E + F and K(t,u) < K(t,2) for all { then there
exists T € A(E, F) with [|T||(z,r < Mo and Tz = u.
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Now suppose (yx lxea I8 any sequence with |y l|z = 1 and suppye C J.
We set v = 3 2%y, € E + F. We turn to comparing K (¢,v) with K(¢, z).
Let us note first that for every k € A we have

lysllr < Cro(de) ™ < CFxi||r -

If ¢ satisfies ¢ < p(ag) for all k then we must have 4 = Z, and we make
the estimate

K(t,) < tllvllr < Cat2™lyollm < CaCFE2°% o]l
so that by Lemma 3.3,
K(t,v) < CaCoCK (t,2) .

Similarly, if t > p(bs) for all £ € A then we can have 4 = Z_ and we
make a similar estimate

K(t,v) < ||lv]lg < C32* < Call2fa_ byl < C2C3K (2, 2).

In the other cases we first consider the case when p(n) <t < p(n+1) for
some 7 in an interval [ay, dy). Then K (¢, z;) > tCT o(ds) ! by Lemma 3.2,

Hence

K (t,v{as,00)) < Catlvpay anpaille = Cat2%% ||yl p < C3C112™* p(dy) ™

< CaCI2 K (t,23,) < CaCiK (4, 2) .
If k is the initial element of A we are done. Otherwise,
K(t, v(—00,a)) € Ca2™ < Osliz(—oe a5 < C3K(t, 2).

Combining in this case we have K(t,v) < CK{t,z) for some constant C
depending only on €}, Cy and Cs.

For the final case, we can suppose there exists n not in any interval
[ak, di) .and such that g(n) < ¢ < p(n + 1); it may also be assumed that
there exists k € A with k41 € A and dy < n < ap41. Then by Lemma 3.3,

12(~semillz + tl2n.00) | P < CaK(t,2).

Now

[—co,,1ll 8 < C32* < Callz(-coml|m -
Also
oo |2 < Ca2" |y pallp < C2C| 200y | -

Thus combining all the cases there exists C'y independent of (yp) so that
K(t,v) £ C4K(t,z). Hence there is an operator T' € A(E, F) with Tz = v
and HTH(E,F) < 04]\/[0.

. Now for fixed k € A assume first that k is not the initial element of A.
en

”z(—co,ak)”E < 032’\’“‘1 < 032_%,69'10—12}\;“ ]
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Thus we have
IT(2(—co,a)) 2 < CaCaMp2 3502238,
If & is not the final element,
200 |7 < Ca2¥4 |l lim
< 0102+ plagq) 7 < CpCLC 22+ =A%k p(B )™t
Thus if f = T(2(,,00)) (de,bx] then
1flle < Cre(be)lflim
< C1CaMoo(bs) |25y oo | < CoC2C3C4Mo2™ 8F7x 23
It follows that if k& is not an initial or final element of A,
lys, — Pr, Tor|ls < CsMo2™ 257

where Cj is a constant depending only on E and F and 7 = min{ox_1, 0%}
Now if we set § = 3 ;-4 £, TP, then ISz m < CoMy. Further, if we
let A; be the set of k& € A so that k is not an initial or final element and
CyM22738™ < 1/2 then Ap = A\ A, is finite and ||Szi — x| < 1/2 for
k € A;. Thus the claim is established and the proof is complete. »

LeMMA 4.3. Suppose (E, F) satisfies (RSP). Then there is a constant C
so that if 0 <2,y € E+F and |y(—co,a)ll & € 1% —cc.a)llp for alla € T then
there exists a positive T € A(E, F) with |T|gr £ C and Tz =y.

Proof. By applying the argument of Lemma 2.6 we deduce from (RSP)
the existence of a constant C so that if A is an interval in Z, (Jx)kea
is a collection of finite intervals in J with Jr < Jio: whenever k k- 1
€ A and (i)vea, (Yr)uea are positive and satisfy suppak,suppys C J
and Jyseille € lzelle for bk + 1 € A then there is a positive matrix
operator T with |7l g7y < Co and Txy, = y41 whenever bk +1 ¢ A

Let us prove the lemma when x, y have digjoint supparts. We first define
a function o : Z — Z U {00} by setting o(k) = —oo if k < I, o(k) = oo if
k> J and otherwise o(k) is the greatest j € Z U {—oo} so that l|z(_o x1ll&
> 44,

Let Iy = {k € J : o(k) > o(k — 1)}. We then let I be the subset of Ig of
all k so that if n € Iy with n < k then [|T(—ccmllE € 3]|2(—oom &

We can now index I as (ap)nea where A is an interval in Z which can
be assumed to have O as its initial element if J is bounded below,

We now define B to be Z_ when infyez o(k) > —oco, and empty other-
wise. We only need to introduce B in the case limy ;o0 |[[#(~co,aill5 > 0
If B is nonempty then I is bounded below and there exists a greatest A 80
that ||z ooz = 4" for every k (in this case J cannot be bounded below).
We must have ||Z(..coxllE < 421 whenever k < ag. It follows that we may
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pick a_1 so that ||z(_; .01llE = 4°(@0)~1 and then inductively a—, so that
2o onille = £

In this way we define {an)neaun. We now'let @y = 334, _; 4, a0d yn =
Y(an_1,an] If » € AU B is not the initial element of AUB;ifn = 0is
the initial element we let o = Z(_co,ag) 804 Y0 = Y(~o0,a0]- If n is the
final element of AU B we set ¥nt1 = Ya,00- We may now verify that
Y oneaup n < . We also claim that 30, 4,5 Yntr =4 If AUB = Z this is
clear. If AUB = (~o0,n] for some n it follows from our definition of 1. If
AU B is bounded below (by 0) then B is empty and hence o{ag — 1) = —c0.
Thus yp = 0 and we obtain our claim easily.

We first prove that if n,n +1 € A then o(apqr — 1) € o(a,) + 1. If
not, there exists a first k; so that o(ki) > ¢{a,) + 1 and a first ky so
that o(kz) > olan) + 2 and an < ki < ky € apt1 — 1. Then kq, by are
in Ig \ 1. Thus |Z(—co,a,lllE > 3/|Z(<c0,ki)llE- The equality ki = ks would
entail |T(_copllz > 4702 and thus [2(.coa,illz > 4otan) 41 which
contradicts the definition of a(a,). Thus k1 < ko and we conclude also
that [[2(-copsl2 > $18(—coka)le 50 that [2(oou,ille > zll2(-com|E:
which implies the absurd conclusion o (k) < o(an) + 1. Thus, as claimed,
olanss — 1) < olan) + 1.

The same argument shows that if A is bounded above then if k > an, we
must have o(k) < o(a,) + 1.

Now if n,n + 1 € A we can argue that since z, y have digjoint supports,
Yn+1 is supported on (an, dpt1) and thus [gerillz < 2 (cc0,anp—1]|E <
47(en)+2  Similarly, let n be the last element of A. Then for all & > an,
19 -co k| B < |2(—coillE < 47IHE < 4700042 Thus ||y, q4]p < 47012,

On the other hand, if » is not the initial element of A,

l2nllz > o anlllz = 2 ananills > 5 476
If n = ( is the initial element, we either have, if B = 0, zy = Z{ - o0,ag] SO
that |lzo|| = 4°(%9), or if B % 0 then |jz1|| = 47(°0)=% Tn all such cases, if
n € A we have ||[yn1lle < 43|z 2.

Next suppose n,n + 1 € B. Then [|yntillz € [%(wo0,0mp1)
while ||z,|| > 41, Thus |[yns1lle < 43 2.2

Finally, consider the casen = -1 & B and n+ 1= 0 € A. Then since ey
is in the support of & we have ||yni1llz < ||#(—0o,00-1) [ B < 43T, However,
1Za] & > 427 50 that [ynri1]lz < 4%||2n 2.

Combining all cases, we conclude that there is a positive operator T" with
|7l 5,ry < 4°Ch so that Tz, = yn41. Now it is clear that Yoncauptn <
while 3, caup¥nti = ¥ Thus if § = Y neaun Pouppynss T Psuppz, then
1S||¢z,py < 64Ch and Sz = y. Thus the lemma is established in the case
when z and y have disjoint supports.

B < 4)\-1- 1
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For the general case welet I = {n € J : yn > 2z,}. Let J = J\I. Then set
w=gzs and v = y;. For any k € J we have [|27n(-cop]llz < 5 1¥%(-s0nllE <
z(=cosliE. Thus u_coellz 2 §l#(—co,ellm- Hence there is a positive
operator S in A(E, F) with Su = v and ||§]|(gr < 128C,. On the other
hand, y;y < 2z and so there is a multiplication operator V € (E, F) with
IVlig,F <2 and Va = y;. Finally, the operator T' = 5P + V' establishes
the lemma. w

LEMMA 4.4. Suppose (E, F) is exponentially separated and satisfies (SP).
Then there exists o constant C so that if 0 < 2,y € E+ F and K(t,y) <
K(t,x) for allt > O then there exists o positive matriz T € A(E, F) with
“TH(E,F) < CandTer = Y-

Proof It follows from Lemma 4.1 that there is a constant Ca so that
for all a € J we have, whenever K(t,y) < K(t,z) for all £ > 0,

max (¢ so.a | 2: 2(@) 1 ¥ja,00) L 7) < 2C2 max(||2(—co,a)l| 2, 2(a) |2 (a,00) || #) -

Thus for every a either

(4) ly(—so,allz < 202][T(coail &
or
(5) 192,00 lF € 2Ca|210,00) || 7 -

Let J;, be the set of a so that (4) holds and let Jp = I\ Ji. Since (E, F) has
(RSP) we can apply Lemma 4.3 to deduce the existence of a positive matrix
Ty with | T1|(z.r) < C3 where Cy depends only on (E,F) and Tz = yJ,.
Similarly, since {E,F) has (LSP) we can find a positive matrix T with
1!T‘2H(E,F) < 03 so that Tz = YJs- Then (Tl + TQ)(.T,) =17. u

THEOREM 4.5. Let (E, F) be a pair of Kothe sequence spaces. Suppose
gither

(a) K (E)ry(F) < 1, or

(b) (B, F) is exponentially separoted, I s r-concave for some r < 00
and there ezists p with 1 < p < 0o so that E has a lower p-estimate and F
has an upper p-estimale.

Then (E, F) is o (uniform) Calderdn couple if and only if E has (RSP)
and F' has (LSP).

Proof. Thisis an immediate deduction from Proposition 3.6, Theorem
4.2 and L.emma 4.4. =

Remark Note that in fact Lemma 4.4 implies that under these circum-
stances if K(f,y) < K(t,z) for all t and z,y 2 0 then there is a positive
operator T with |T|(z,r) < oc and Tx =y.
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The following theorem is similar to results of Cwikel and Nilsson [18].

THEOREM 4.6. Let F, F' be symmetric sequence spaces on Z. and suppose
(B, F(w)) is a Colderdn pair for o weight sequence w = (w,). Then either
Flw) = F (i.e. 0 < infw, < supw, < ) or B = £, F ={, for some
1< p,q< o0

Proof If {w,) is unbounded we can pass to a subsequence satisfying
Wy, = 2Wq, ;. Then the pair (&, Flw,,)) is 2 Calderdn pair and we can
apply Theorem 4.2 to deduce that F has (RSP) and E has (LSP). An
application of Proposition 2.3 gives the result. If (w, ') is unbounded we
can argue similarly. w

5. Calderén couples of r.i. spaces. Let 2 denote one of the sets
[0,00), {0, 1} and N. Let J be the set Z, Z_, or Z, respectively. If X is an r.i.
space on {2 (or a symmetric sequence space if 2 = N) we will associate with
X a Kéthe sequence space Ex on J. To do this let e,, n € J, be defined by
€n = Xignpn+1y- We then define for = € w(l),

el = | > atkles | .

kel

(Here we use e, with a dual meaning as both the canonical basis element
of w(]) and as an element of X().) We observe that Ex regarded as a
subspace of X is l-complemented by the natural averaging operator. Notice
also that Ex« = E%(2") is a weighted version of F%. We also note that on
Ex we can compute ||7,||g, < ||Dan||x where D, is the natural dilation
operator. Furthermore, it is easy to see that for f € X we have Dgn f* <
Tnt1 P f* where P is the natural averaging projection of X onto Ex; thus
HDgn”X < ||Tn+].HEx- Thus I€+(Ex) = ZI/PX and K,_(Ex) = 2_1‘qu where
px and ¢x are the Boyd indices of X.

We now show how to build examples of r.i. spaces from sequence spaces,
To keep the notation straight we prove our results for the case of function
spaces {2 = [0,1] or 2 = [0,00). However, simple modifications give the
analogous results for sequence spaces.

PROPOSITION 5.1. Let B be a Kithe sequence space on J. Then:

(1) If 1(E) < 2 there is an r.i. space X = X(2) so that ||f||x i
equivalent to || 35, o, f*(2")eqn]| 5.

(2) Ifr (E) <1< ki (FE) <2, and X is an r.i. space so that 1 fllx ds
equivalent to || 32, f*(2")en| g then Ex = E (up to equivalence of norm.).

Proof. (1) We define X to be the set of measurable functions on {2 such
that
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1lx = 3 7o 2Men|, < o0
n&f
We show that the functional ||fl|x is equivalent to a norm by computing

/¥ |5 where f**(t) = 1 [ #*(s) ds. Then
f**(gn) <27 Z 2kf*(2k:) .

k<n
Thus

x = Z_jH'r( " en) | .
177l < 3207 (e,
Thus since x4 {F) < 2 there is a constant C1 so that [[f**[|x < Cillf]lx-
Since f — [|f**||x is plainly an r.i norm and the set {f : |f™*||x <1} is
closed in measure it is clear that X is an r.i. space,

(2) Let || || x denote the quasinorm induced by E. We remark that it
follows from (1) that there exists a constant (3 so that for f € X we have
£ ||x < Collf||x. Now, considering the Ex-quasinorm induced on w(J) it
is clear that if z is a nonincreasing sequence then ||z|jz, = |iz| =. In general,
we note that if f € Ex then for some O3 = 3 . l7—; i, since £ (BE) <1,

ilr}gﬁc lr—iflllz < Cs|| file

so that

_ Ifliex < Culiflle -
For the converse direction we observe that if f € X it is trivial that
1 D2 flix < lImilizllfllx- Then

1l < a7l = e sl < | > De .

<Y D 7 x < CsllFlIx £ Calsl flix -

iz0
Thus Ex is (up to equivalence of norm) identical with E. =

Remark. It follows from the above proposition that there is a natural
one-one correspondence between r.i. spaces X with Boyd indices satisfying
1< px < gx < oo and sequence spaces £ on J with k. (F) < 1 £ 6 (E) <
9 determined by E = Ex. Under this correspondence, ifl<p <.c>o an ri.
space X with gx < oo is a Lorentz space (of order p) if and only if Ex is a
weighted £,-space. For if

o0 l/P
fllx = ( S (f*(t)w(t))?%)
0
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where w is an increasing function satisfying 1 < infw(2)/w(t) <
supw(2t)/w(t) < oo then the above proposition shows that Ex = £y (wn),
where w, = w(2"). Conversely, if Ex is an f,-space then Ex = Ly(wn,
where the assumption that gx < co enables us {o assume inf weaq/wn > 1.
If we define w(f) = w, whenever 2! <t < 2" then it is easy to see that
X is a Lorentz space.

We now prove the elementary

PROPOSITION 5.2. Let (X,Y) be a pair of r.i. spaces on £2. Then (X,Y)
is @ Colderdn couple if and only if (Ex, Ey) is a Calderdn couple.

Proof. By using the averaging projection it is clear that if (X,V)isa
Calderén couple then so is (Fx, Ey). In fact, it is trivial to see that for f €
Ex + By we have K(t, f;X,Y) = K(¢, f; Ex, By). Thus if K({, g; Fx, Ey)
< K(i,f; Ex, Ey) for all t there exists T € A(X,Y) so that Tf =g. If P s
the averaging projection then PT € A(Ex, Ey) and PTf = g.

Conversely, suppose ( Ex, By ) is a Calderén couple. Suppose f, g € XY
and K(t,g; X,Y) < K(t, £; X,Y) for all ¢ > 0. We then observe that if
G =30 (@ e, and F = 3 ;1 f*(2%)e, then g* < G < Dog”™ and
fr<F <Dy f* and

K(t,G; X,Y) < K(t, Dag™ X,Y) < 2K(4, f; X,Y) < 2K(t, F; X, V).

Since F,G are in Ex + Ey we can deduce the existence of T € A(Ex, Ey)
with TF = . Now since F < Daf* and g* < G it is clear that there exists
Se AX,Y)with Sf=g. n

Remark. It now follows that every pair of Lorentz spaces whose Boyd
indices are finite is a Calderdn couple, since every pair of weighted #,-spaces
is a Calderén couple (cf. [36], [13]); this result is due to Cwike] [14] and
Merucci {30] for certain special cases.

We introduce the following definitions. We say X is stretchable if Ex
has (RSP), and we say that X is compressible il Ex has (LSP). If X is both
stretchable and compressible, we say that it is elastic. It is immediate from
Proposition 2.1 that X is stretchable if and only if X* is compressible and
vice versa; thus elasticity is a self-dual property. We remark that we have
ne example of a stretchable (or compressible) space which is not already

elastic. In fact, we shall see that for Orlicz spaces these concepts do indeed
coincide.

THEOREM 5.3. Let (X,Y) be a pair of r.i. spaces on (1 whose Boyd

indices satisfy pv > gx. Then (X,Y) is a Calderdn couple if and only if X
15 stretchable and Y is compressible.
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Proof. Since n_(Ex) = 2°Y9% and si(Ey) = 2V/P¥ we have
k_(Ex)k(By) < 1 and so the theorem is immediate from Thecrem 4.5
and Proposition 5.2. =

If one space is L we can do rather better.

THEOREM 5.4. Let X be an r.i. space on 2 = {0,1} or 2 = {0,00). Then
(X,Leo) is a (umiform) Calderén couple if and only if X is stretchable.
Similarly, if X is a symmetric sequence space then (foo, X) is @ (uniform)
Calderdn couple if and only if X is stretchable.

Before proving Theorem 5.4 we state a result which has a very similar
proof. We remark that Theorem 5.5 only improves on Theorem 5.3 under
the assumption that py = p = gx since the case py < gx is already covered.

THEOREM 5.5. Suppose (X,Y) is a couple of r.i. spaces on {2 so that for
some 1l < p < oo X is p-concave and Y is p-convez and suppose also that Y
is r-concave for some r < co. Then (X,Y) is a (uniform) Calderdn couple
if and only if X is stretchable and Y is compressible.

Proof of Theorems 5.4 and 5.5. Theorem 5.4 corresponds to
the case p = oo, and ¥ = L. We can and do assume that the p-convexity
constant of ¥ and the p-concavity constant of X are both equal te one. Under
this hypothesis it is easy to see that, when p < oo, 2-k/P|le || x is increasing
and 27*/P||e,||y is decreasing. Thus for p < o0, g(k) = llexllx/llexlly is an
increasing function and o(k -+ 1) < 2¢(k) whenever k, k+1 ¢ J. Then for
kelwelet I = {neJ:2k <p(n) <2°}.

Before continuing let us make a remark which we use several times in the
proof. Assuming p < o suppose f, g are two finitely supported functions in
Ex which satisfy ||, = |lgll, and

t t
[rr@yrds< [ (ge)Pds
0 0

for every ¢ > 0. Then we have the inequalities £y < llglly and [|fllx <
llgllx- In fact, it follows from a well-known lemma of Hardy, Littlewood and
Pélya, [19], [25], p. 124, that [f7|7 is in the convex hull of the set of all
rearrangements of |g*|?; this can be proved by partitioning the supports of
f*,g* into finitely many sets of equal measure. The assertion is then a direct
consequence of the definitions of p-convexity and p-concavity.

We make some initial remarks which will be needed in both directions of
the proof. Bach set [ is an interval (possibly infinite) or is empty. The set
of k 5o that I, is nonempty is an interval A. Let E(I ) be the linear span
of (en : n € I;) when k € A. We state the following lemmia.
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LEMMA 5.6. If f,g € E(I}) then, under the hypotheses of Theorem 5.5,

IFlxliglle < 20fHelglix, (v llglle < 20 fllsllglx
where || ||, denotes the usual Ly-norm, so that | 3. anelp = (3 2% ar|?) /7.
Under the hypotheses of Theorem 5.4, we have
1 Flxllgllon < 4l Flloollg] x -

Proof. In fact, suppose f,g € [e, : @ < n < b] where a,b & Iy, and that
neither is zero. We may observe that for all ¢ > ¢ we have
t t ¢
27 [ (ex(s)?ds > fll7 [ (F*(s))Pds > 27" [ (ef(s))? ds
0 0 0
with similar inequalities for g. It thus follows from the remarks above that

27 eally = £l M 1F Il = 277 el -

Similarly,

27 leallx < (A5 Il x < 2757 ey 1x -
There are similar inequalities for g. Since 2% < ola) < p(b) < 2k+1
275y |x < 2TVl < 210y < 2270

Combining these we see that
1£15 1 1x < 2llgll; lollx

|.x -

and

L4
LI Ml < 2097 gl
whence the claimed inequalities follow. For the last part, we observe that

[ leolleallx < M1£1x < NFlloollea + - -+ esllx < 20 Flloollesllx
and proceed similarly. w

We draw immediately the conclusion that if 4 is finite (so that o i
bounded) then both X and ¥ coincide with L,(4s) and there is nothing to
prove. In other cases at most one [ is infinite. We write /), = lag, be] if
I is finite and Iy, = [ag,00) or I = (~oc,by| if Iy is infinite. Let Ay be
the set of k so that k ~ L,k+ 1 € A We define a set J by taking one
point dy from each [ for & € A. We introduce the sequence spaces Fy
and Fy modelled on A by setting ||l¢|[r, = || 500427 %/Pe(k)eq, |x and

lzliry = 1 2 pea 27"/ Pa(k)eq, ||y In the case p = oo we define
| 2ok z(Beq, | x.

LeMMA 5.7. Under the hypotheses of Theorem 5.5, suppose Ev(J) has
(LSP). Then there is a comstant Cy so that if f € Ey then ||f|y is Cy-
equivelent to ||([| £z, l)]py- :

|2llex =
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Proof. It suffices to prove such an equivalence if f &€ Ey satisfies
fr. = 0 for k € Ag, since there are at most two values of k ¢ Ap and
Lemma 5.6 shows that the ¥-norm on each such E(I},} is equivalent to the
Lyp-norm. Next obser\;e that for such { ifg= ke, 2= %41/ || f1 lipedr i
then for all ¢t > 0, fj(g*(s})Pds < [i(F*(s))? ds. Thus we have immedi-
ately by the p-convexity and rearrangement-invariance of ¥, ||glly < || filv.
Similarly, if b = Ypea, 27 P frdlpeac, then [[Blly > [|f]lv. Next let
i = Y kAo 27%%/?| f1. || peq,. We complete the proof by showing that for
some C, |klly < C||Flly and ||f]ly < Cllgjly. Once this is done it will be
clear that || f|iy is actually equivalent to || f|ly as claimed.

The proofs of these statements are essentially the same, so we concentrate
on the first. Note that

Q%dk—-lfp“edk_l Iy < 2"(k“1)”dk*1/plledk_l |B%

< o b=U-de/B||gy || % < 21/ ||ey, [ly

and so if C is the (LSP) constant of Ey(J) we have ||hjly < ZCHJT”Y-
Similarly, | flly < 2C|lglly- =

In a very similar way, exploiting the p-concavity of X one has

LEMMA 5.8. Suppose Ex (J) has (RSP). Then there is a constant (which
we also name Cy) so that if f € Ex then |f|lx is Co-equivalent to

HUFN LS

Sketch of proof. First consider the case of Theorem 5.5. We assume
f € Ex is finitely supported. Proceed as in Lemma 5.7, defining g, &, f as
before. In this case we have l|gl|x = | flx = ||k]lx. The remainder of the
argument mirrors that of Lemma 5.7.

Let us also sketch the argument when p = oo (i.e. for Theorem 5.4).
Analogously to Lemma 5.7 we note that [|glx = |flx = |hllx where
9= Y nea, 11 lobdn, and =3 peu Il 1. lso€ds- The remainder of the
argument is the same. m

Now let us turn to the proofs of Theorems 5.4 and 5.5, Suppose first that
the couple (X,Y) is a Calderén couple. Then the couple (Ex (), Ey(J))
must also be a Calderén couple since there is a commeon averaging projection
from (X,Y) onto (Ex, Ey). Now it is clear that (Ex(J), By (J)) is expo-
nentially separated (when J is indexed as a sequence). We can thus apply
Theorem 4.2 to deduce that By (J) has (LSP) and Ex(J) has (LSP). We
conclude this direction of the proof by showing that if Ey(J) {and hence
Fy) has (LSP) then Ey has (LSP) and so Y is compressible. A very similar
argument shows that X is stretchable.
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To prove this we suppose that {f;, g;} ez is an interiaced pair of positive
sequences in By with || f5]|y < |lg;]ly = 1. For given j let I(j) be the largest
k so that Py, f; # 0. (Note here that if such a largest & does not exist then
§ is the maximal element of B and g; = 0; hence this case can be ignored.)
We then split f; = f; -+ f}' where f' = Pr, ., f;. Similarly we let g; == g} + g
where g} = P, .g;. Let By ={j : | £y > 1/2}, and let By = B\ B

For j € By we set vy = (|| Pp, f]|lp)rea € Fy; for j € By we set vy =
1Py fi'llp)ne 4. For all j & B we set wj = (|| Pr,g5ip) and w] = (|| Py, g7 |Ip).

Let (a;);ep be positive and finitely nonzero. First observe that for j
in By we mustﬂhawe suppv; < supp(w; + wf). Further, |v;|m, > (2Cy)1

while |lw; + 1!l m, < Co. Thus, since Fy has (LSP) applying Lemma 2.6

we get the existence of a constant Oy depending only on (B, F) so that
” Z Q!j(’i.f);; ‘l‘?ﬂ?) |F S Gl” Z ij’UjH .
§€Bo ¥ j€Bo v

Notice also that (w]-+w}) ;e g, have disjoint supports so that we can conclude

that
|53l <0 5 vt
J€By JEHp

Py
Similarly,
” Z ajﬂUjHF = COH Z ajfj”}f’
F€By v i€By

Combining we have
s 2
|5 s, <6t 5 s,
JE€Bo JjeBo

We now obtain a similar estimate on By. In fact, if we set By = {j e
By wy # 0} then we can argue as above to show that

i
| 3 s, s 0] 3 ami
j€Bs ¥ i€By oy
and hence obtain an estimate
I %
” > o] - 0001“ > ok
Ji€By jeB

Finally, we observe that for j € By, ||Pyngsle < 4| Pynf;
) ) g 4|| Pye; Iy
Lemma 5.6. Thus for any k, W JHP ” l(j)fj “p Y

[P 3 g = (3t prggie)
jeB

W)=k

<a( 3 tasPhEn )" = 4By oy .

)=k JEB

’Y'
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Thus

| 3wt < act] X et
JEB JEB,
Combining these estimates gives

5ol <c|Sausl,

for a suitable constant C. This completes the proof that Y is compressible
and, as explained above, a similar argument shows that X is stretchable.

We now consider the other direction in Theorems 5.4 and 5.5. We suppose
X is stretchable and Y is compressible. It follows that Ex has (RSP) and Ev
has (LLSP) and we can apply both Lemmas 5.7 and 5.8. We can immediately
deduce

LeMMA 5.9. There exists C so that if 0< f,0 € Ex + Ey and || fr.llp =
llgrlip for all k € A then there exists 0 <T € A(Ex, Ey) with |T|(£x,2v)
<CandTf=y.

Now suppose f,g = 0in Ex+Ey and that K{t,g) < K(t, f) for allt > 0.
We define /' = 3opeq 29[ f1lpea, 2nd o' = Sogea2 **Plar, lpea,.
Then Lemma 5.9 yields the conclusion that K(¢,g") < CK(t,g) < K(t, f) <
C?K(t, ). Now (Ex(J), Ey(J)) is exponentially separated.

Now for Theorem 5.5 we quote Theorem 4.5 to conclude that (Ex(J),
Ey(J)) is a Calderén couple and hence there exists § € A(Ex(J), Ev(J))
with [|S||(zx 5y, By (1)) < Ca, where Cy depends only on (¥, F), and S§f =
g'. It follows easily from Lemma 5.9 that (Ex, Ey) and hence (X,Y) is a
uniform Calderdn couple.

In the case of Theorem 5.4 we note that it suffices to consider the case
when f and g are decreasing functions; then f" and ¢’ are also decreasing.
Then K(t,¢') < C?K(t, f') for all ¢ implies that

”Q!X[Q,QHX < 021|le{0,¢]“)(-

We further note that (Ex(J),2x(J)) has (RSP) by Lemma 3.4 and then
apply Lemma 4.3 to obtain a positive § € A(Ex{J),fs(J)) with
1S 2y () 20y < Co and S = g'. This leads to the desired conclusion. =

v

COROLLARY 5.10. Let X be an r.i. space on [0,1] or [0,00). Suppose X
is r-concave for some r < oo. In order that both (L1, X) and (Lee, X) -be
Calderdn couples it is necessary and sufficient that X be elastic.

EXAMPLES. We begin with the obvious remark that the spaces L for
1 < p <€ oo are elastic and so our results include the classical results cited
in the introduction. On the space [0, co) one can basically separate behavior
at co from behavior at 0 so that spaces of the form Ly + Lg and Lp N
L, are also elastic. Note, however, that we cannot apply Theorems 5.3 or
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5.5 unless we have appropriate assumptions on either the Boyd indices or
convexity/concavity assumptions; thus pairs of such spaces are not always
Calderén couples.

Let us now specialize to [0,1]. In certain special cases we can easily see
that an ri. space is elastic. For example, suppose X is the Lorentz space
on [0, 1], for which gx < cc. Then it is immediately clear that X is elastic
since Fy is a weighted £p-space. Rather more obscure elastic spaces can be
built using a weighted Tsirelson space for Ex.

On the other hand, it is possible to give easy examples where Ex fails
(RSP) or (LSP). Indeed, if one takes any symmetric sequence space & on J
which is not an £,-space and considers E{w™) where 1 < w < 2 then there s
an r.i. space X for which Ex = E(w™). By Proposition 2.3, Ex fails (R8P}
and (LSP). In this case we note that since r4 (EBx) = w and k_(Ex) = w™!,
we have px = gx = (logy w) ™%, If, say, B = £p(Z_) for some Orlicz function
F satisfying the As-condition then X is an “Orlicz-Lorentz space” given by

1
171 ~ Df P S

where p = px = gx. Note that for such a space the pair (L, X) fails to be
a Calderén couple. This answers a well-known question (cf. [8], [28]).

In the next section we will investigate Orlicz spaces in more detail. We
will also give examples of QOrlicz spaces Lp for which {Le, Lp) 18 not a
Calderén couple.

We will conclude this section by considering a situation suggested by the
example of Ovchinnikov [34] (cf. [29}).

THEOREM 5.11. Suppose 1 < p < oo and that X is an r.i. space on
[0,00) whose Boyd indices satisfy either gx < p orp < px < gx < oo.
Then (X N Lp, X + L) is a Colderdn couple if and only if X is o Lorentz
space of order p.

Proof. If X is a Lorentz space of order p, then both X +L,, and XN L,
are also Lorentz spaces of order p, and so form a Calderén couple. Conversely,
suppose (X M Ly, X -+ Ly) is a Calderén couple; then so is (Exnr,, Ex4r,):
Let us consider the case gx < p; the other case is similar. Then Ey =
EXan -—Ex(Z )@EL (Z+)and Ei= EX-I-L;J ELTJ(Z-")EDEx(Z+).NOte
that for all n we have ||eﬁﬂ;m‘5p 2 |lenllx+1,; further, if we rearrange the
sequence (en)nez S0 that [lenlixnr,/llenllx+z, increases, it is not difficult
to see that (Ep, Eq) is exponentially separated. Thus Fy has (RSP) and B,
has (LSP) for this ordering. It also follows easily from our assumptions on
the Boyd indices that there exists & so that the gap in the new ordering for
Ey hetween two consecutive elements of Z, is at most k. Indeed, the ratio
lenllxnz, /llenllx s, behaves like 2="/?| e, || x for n < 0 and like 272 |en i3
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for n > 0 and we have an estimate for k > 0, C712%7 < |lenqrllx/ilenllx <
C2% for suitable C and r with gx < r < p. Thus Ep must be a weighted
£,-space by the argument of Proposition 2.3. Hence Ex(Z_) is a weighted
¢,-space. Similarly, Ex(Z, ) is a weighted £,-space and so X is a Lorentz
space of order p. w

6. Orlicz spaces. Let F be an Orlicz function, i.e. a strictly increasing
convex function F : [0, 0a) — [0, co) satisfying F'(0) = 0. We will also assume
that F satisfies the Ap-condition with constant A, i.e. F(2z) < AF(z) for
every z > 0. We will use the notation Fy(x) = F(tz)/F(z).

We recall first that F is said to be regularly varying of oo (resp. at 0),
in the sense of Karamata, if the limit lim;_, o, Fi(z) (resp. lims g Fi(z))
exists for all  (in fact, it suffices that the limit exists when z < 1). In
this case there exists p, 1 € p < oo, so that lims o Fi(z) = #? (resp.
lim;_q Fy(z) = «P); F is then said to be regularly varying with order p. See
[6] for details.

LEMMA 6.1. The following conditions are equivalent:

(1) F is eguivalent to an Orlicz function G which is regularly varying
with order p at oo (resp. 0).

(2) There exists a constant C' so that if To < 1 there ezists O < 1o < 00
s0 that ift > tg {resp. t <tg) and zp Lz <1,

C~ 2P < Fyz) < CzP.
(3) There ezists a constant C so that if x < 1, limsup, ., Fi(z) <
Climinfy_, o Fy(x) {resp. limsup,_,o Fi(z) < C’hmmft_,oﬂ(m))

Proof. The implication {1)=(3) is immediate and (3)=>(2) is a sim-
ple compactness argument. We indicate the details of (2)=(1). Let f(x) =
log F'(e®) for z € R. The function f(z) — z is then increasing. Then it is
easy to translate (2) as:

(2)" There exists ¢ so that if yo = 0 there exists zg so that 0 <y < yo
then
[f(z) - fle—y)—pyl <,

whenever ¢ > Zp.

Now we can pick a function u = u(z) for € R so that u(z) = 0 for
¢ < 0, u is differentiable, increasing, w'(z) < 1, limg—oo u{z) = 00, and
flz)—flz—y) —pyl Sclor 0 <y < ulz). Now define g{z) = f(=z) if

u(z) = 0 and

—1 J U@t pe-as

i-?
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if uw > 0. It is easy to show that f — g is bounded. Further, if v > 0,
!

9() =~ {gle) — flo—w) — )+ L) - Flo =) —pu) +p-

Since
!
wl(z) _
ulz} ~
it is easy to see that limg'(z) = p and so if Go(z) = exp(g(logz)) then Gy
is regularly varying and equivalent to F.
It remains to construct a convex (& with the same properties. First note
that since f(z) — z is increasing we have if u > 0,

IS

@€

ole) - fw) <+ [ (-1 s)ds <

DU

p~1
2

W,

Hence
!

11— p—1

9'(e) 2 p+ ——(f(@) - f(@ - u) —pu) — =
>p-(p-D1-v)-(p-1u 1.

It now follows that Go(x)/x is increasing. The proof is completed by setting

G(z) = [, (Go(z)/x)de and it is then easy to verify that G has the desired

properties. m

If 7 is an Orlicz function, 0 < z < 1, and € > 1 we can define er"’(m, )
(resp. ¥ (z,C)) to be the supremum (possibly co) of all N so that there
exist a; < ag < ... <ay with ag/ay_1 > 2for k< N —1and a; > 1 (resp.
an < 1) so that for all k either F,, (z) > CxP or 2P > CF,, (). It is easy
to show the following:

PROPOSITION 6.2. F' is equivalent to a regularly varying funciion of order
p at oo (resp. at 0) if and only if for some C and all 0 < 2 < 1 we hove
¥re(z,C) < oo (resp. ¥ (z,C) < o).

‘We omit the proof which is immediate. However, we can now state the
result of Montgomery-Smith [33] which characterizes Orlicz spaces which
are Lorentz spaces (see Lorentz [26]).

THEOREM 6.3. In order that Lp{0,1] coincides with a Lorentz space of
order p it is necessary and sufficient that there exist Cy, C1 and v > 0 s0
that for every © with 0 < z < 1 we have ¥y(z, Cp) < Craz™".

This is a somewhat disguised restatement of Montgomery-Smith’s result.
However, we will not pause in our exposition to derive this result as a proof
is Implicit in our approach to elastic Orlicz spaces. Further, we state the
result in order to motivate the following definition.
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For C > 1 and 0 < ¢ <1 let us define $2°(z, C) (resp. % (x,C)) to be
the supremum of all n so that there exist a1 < by < ag <by < ... < a, < by,
with a3 2 1 {resp. b, < 1) so that Fy (z) > CF,, (), for L < k < n. For
C >1and 0 <z <1 let us define $°(x,C) (resp. $%(z,C)) to be the
supremum of all » so that there exist a1 < by < ag <by < ... € an < by
with a; = 1 (resp. by, < 1) so that F, (z) > CF,(z), for 1 < k < n.
We say that F is elastic ot oo (resp. at 0) if there exist Cp,C1 > 1 and
7 > 0 so that for 0 < & < 1 we have #3°(z, Cp) + &2(z, Cp) < C1z™" (resp.
GD&(x,Cg) + &% (z,Cq) £ Ciz7"). From now on, we will consider only the
case at co although similar results can always be proved at 0.

LEMMA 6.4. F is elastic at oo if and only if there exist constants Cp, Cy
>1andr >0 so that if 0 <z < 1, $°(z,Cp) < Crz™" (resp. ¥ (z, Co)
< ClCC_T).

Proof Assume &3°(z,Cp) < Ciz™". Suppose 1 < a1 < by < ... <
@n < byp with Fo (z) > eCoFy, (z) for 1 £ k < n. Consider an inter-
val [bg,ap-1] where 1 < &k < n — 1. Let v = »; be the integer part of
(log Co)~*{log Fo,, (%) — log Fy, (2)). Then we can find by = ¢ < 1 <
... < ¢, € agpyq so that log Fy, (2) — log Fe, _, (z) == log Cy. It follows that

n—1

> v < 84(2,C0)
k=1
and hence that
-1
Y (log Fuy,, (2) ~log Fy, (2)) < (log CoX(P+ (2, Co) +n — 1)
k=1
and thus

log Fy, (z) — log Fu, {z) < (log Cp)(Crz™" — 1) — 7.
Now
log Fy (2) — log Fy, (z) = log Fy, () > —Csllogz| — Cs
for suitable Co, Cy by the Ay-condition. Hence
n < (log Cp)(Crz™" — 1) + Cellog 2] + U3
and so
&% (z,eCy) < Caz™™"
for a suitable Cy. The other case is similar. =
PROPOSITION 6.5. The following conditions on F are equivalent:

(1) F is elastic at oo,
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(2) There exist constants Cp,C1 > 1 s0 that if 1 < a1 < by £... < ay
<b, and 0 < z < 1 then:

i3

3 (Fo () = CoFu, (@) < Cr-
k=1

(3) There exist constants Cp,Cy > 1 so that if 1 a1 < by £ ... =
<b, and 0 < z < 1 then

n

> (Fuy(x) — CoFo(2)) £ C1.

k=1
(4) There ezists a bounded monotone increasing function w : [1,00) — R
and a constant Cp so that if 1 < s <t and 0 <z <1 then
Fy(z) < CFs(z) + wit) —w(s).

(5) There exists a bounded monotone increasing function w : [1,00) — R
and a constant Cpy sothat if 1 <s<tand 0 Sz <1 then

Fylz) < CFz) +w(t) —w(s).

Proof. (1)={2). We assume that for suitable constants Cy, U3 > 1 and

r > 0, we have
m{m Ch) < Chz™.

We will assume that C» > A from which it follows easily that Fy,(2)/F,(z) >
s implies b > 2a. First suppose m is an integer with m > r. We will estimate
$L(z,CF). Suppose 1 <oy <by < ... < ap < by and Fy (@) > O Fy, ().
Let 5 be the smallest integer greater than llog, z| + 1. Then a, > 27! and
Ors > m”lb(k_l)s for 2 <k <[n/s]. Let £ = zi/m

Now, for each 1 < k < [n/s] there exists oy, with 0 < o <m — 1 so that
Feonp, (£) = CoFgorg,, () and the intervals [£7%azy, £7%ba] are disjoint in
[1,00). Hence we have an estimate

PT(§,C2) = [n/s]
and this means that
n/s] < Cyé™".
Thus
n< Cs(s+ 1):1:“"'”"‘ < Cq + Csllog :c|m""/"”
for suitable constants Cy, C5. This leads to an estimate
P (x,03") < Cga™*

where 0 <a <1.

Now suppose Cp = ACT. Suppose 1 < a3 < by < ... < g, < b, and
that 0 <oy < 1for 1 <k < n. For j € Nlet I; be the set of & such that
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279 < a4y < 2-279. Then

Z(Fbk(:’;k ~ CoFy, (z1)) Z(AF(, (2~ -'"

kel; kel;
<Ad5°°(2 3 02 )mabuk(Q N

COFak(ZMj))

< g A2
Thus

n (==}

3 (Fi (2) = CoFay(x)) < CpA Y2707
k=1 j=1

This establishes (2).

(2)=>(4). We define w(t), for 1 < ¢ < 00, to be the supremum of
Sor  (Fy, (z2) — CoFay(zy)) over all nand all 1 <oy <bp £ ... San <
b, <tandall 0<azp <1forl <k <n. Clearly w(t) is increasing and
bounded above by C;. Condition (4) is immediate from the definition.

(4)=(1). Suppose 0 <z <l and that 1 S a1 <by < ... = @ < b, are
such that Py, (z) > 2CoF,, (z). Then we have

Co Z Fy (2

< > (wlbe) -
where Cy = limg_, 00 w(:c) -

k....
w(1). Now Fy(z) = Cax” for all ¢, for a suitable
(3, by the As-condition. Thus
@f(m,QCU) < 01(0002)_1rﬁr .

w(e)) < Cy

The implication now follows from Lemma 6.4.
The remaining implications are similar. »

LEMMA 6.6. If F is elastic at oo then F is equivalent to an Orlicz func-
tion which is reqularly varying ot oo.

Proof. It follows immediately from (4) above that

limsup Fi(z) < Cqy lim, 111f Fy(x)

t—o0

for 0 <z <1, Apply Lemma 6.1. m
We now come to our main theorem on elastic Orlicz functions.

THEOREM 6.7. Let F be an Orlicz function satisfying the Aq-condition.
Then the following are equivalent:

(1) F is elostic at co.
2) Lp[0,1] is strefchable.
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(3) Lr[0,1] is compressible.
(4) Lp[0,1] 1s elastic.

Proof. We will only show {1)=+(2) and (2)=>(1). The other implications
will then be clear. We will write £ = Ep for Ex where X = Lp[0,1]. Then
Ep is the modular sequence space of Z_ defined by ||z|| g, == 1 if and only if
Y onez. F(z(n))2™ = 1. Let us define A, for n € Z.. by F(A,) = 27". Then
{An)nez_ is strictly decreasing and Ap_1 < 2A, for n < 0.

(1)=(2). We must show that E has (RSP). It suflices to show the ex-
istence of a constant C so that if a7 < by < &1 < ag < by < g <

.S 0y < by < &y €0 and suppap C [ak,b), suppyr < [br, cr) and
Jyelie < |lzxllz = 1 then
.

[ o], <05
k=1 k=1

To do this let us suppose n, ay, b, ¢, xx are fixed and let I" be the least
constant C for which this inequality holds. We show a uniform bound on I
We can suppose the existence of constants C, C; and an increasing function
w:[1,00) = R with limg—ec w(z) = w(l) + C) so that if 1 < s < ¢,

Fio(z) < CGoFy(z) + w(t) — w(s)

for 0 < z < 1.
Define z} = Eiu(a‘)li%f\bk zp(fle; and ¥y, = 35, ()21 y;g(j)ej Then

!3

DPFQu() - w27 Y ¥ <1
J<hi
Thus ||zx — 2]z < 1/2 and similarly [lyx — ¥4z < 1/2 We let «}/(j) =
min(2[z3,(7)}, Aa,) and gy (5) = min(2ly (s )\J\bk) Then ”ykllﬂ <2
Now for any ou,...,a, such that [|35_ ¢ set 2 =

fzo:kﬁl Ogc@;gk and v = 30 oy, We also let w = Z,&__.,‘ (b, Chy, Then
T [1Xe

Z ZJF (|owy, (5) ZZJF (Jaryi (DD

J€[brcr}

< Co2Fllanih) Y. 2 Flyi())
¥ (§)#0
+ 30 PR - wi)
vy (1520
< COAQbkF(‘akl)‘bh) + A(w(Abk) - w()‘ch))'
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On summing, we get
ZQJF () < Codd > 2 F(|lu(h)|) + ACy .
b
Now, in the other direction, for fixed k,

2" F{larihn,) < CoP(Joelel (D) F(zh (1)) 7! +wlha,) ~ w(hs,)

whenever z}(7) #0.
Thus

P F(|oekl A ) D 2 F () € Co ¥ F(lanaf (7))
4 j

o+ z 2 F(z (7)) (w(ha,) — w(he,)) -

Now we observe that 1/2 < {z}]|g <1 so that 1/2 < ||z}/||z < 2. Hence
2Ly 2/ P(z(5}) < A. Thus we have

2% F(log| ) < QC’OAZQ Fllowzi (D) + 28(w(he,) — w(hs,))

Summing as before,

YA E(u()) € 2C0a Y P F(ju(i)) + 2014
J i
We thus have an estimate
N2 F(2(G)) < Co Y P F(Iu(f)]) + Cs
J J .
for constants 'y, Cs depending only on F. This in turn implies an estimate
lzllz < Cyllv]| s for some constant Ciy.
Now we conclude by noting that

T 1]
H zakkaE < |lzle + H Zlﬂk(yk - yk)HE
k=1 1=

< Cyllvllg +I”1n§1x ly; — y}ilr«;“ kzlaekcck”}z < Ci+ 5

Thus I' < €y + I'/2 and so I' < 2C, and E has (RSP).

(2)={1). Suppose E has (RSP). This implies that for some Cf, if
ap < b < ag < ... < ap < by are negative integers, and 0 < zp with
o 2% F(XAg,xxk) < 1, then EQ"’*F (M, zr) S Co. We also note from the

Ag-condition that we can suppose C' F;(z) = 2" for some Cy and r and all
t>0,0<z< L
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For any constant C > 2CpA% and 0 < z < 1 suppose now that 1 < ¢ <
d1 € < ... < dpe1 < < dy and F (z) > CFy (z). Then we must
have dj, > 2%cp. Now choose b, 11 € Z_ to be the largest integer so that
Abn_pp1 > €k and let ay_gy1 be the smallest integer so that A, _.,, < di.
It is clear that ay < by < az < ... < @p < by. Farther, Ay, ., < 2¢4 and
Aay i1 2 /2. Tt follows that for every & with 1 £ & < n we have

P F (A, 2) = CATR2F (), 2) .

Now suppose n > 127", Then we can select a subset J of {1,..
that 1/2 < 37, ;2% F(Ag, 2) < 1. Then we can conclude that

cA?

.M} 80

< ZzbkF{)\b,ﬂH}) < Cy.
ked
Since C > 2CHA® we reach a contradiction and conclude that n < Ciz™".
Thus
&> (z,C) < Crz™"
and I is elastic by Lemma 6.4. m

Of course there are corresponding results for sequence spaces and Qrlics
spaces on [0, 00). We will omit the proofs.

‘THEOREM 6.8. Suppose F' is an Orlicz function satisfying the Aq-condi-
tion. Then:

(1) In order that Ly be elastic (resp. compressible, resp. stretchable) it is
necessary and sufficient that F be elastic af 0.

(2) In order that Lp[0,00) be elastic (resp. compressible, resp. stretch-
able) it is necessary and sufficient that F be elastic ot both 0 and oo,

Remark. It is perhaps worth pointing out that the theorem of Mont-
gomery-Smith (Theorem 6.3) cited above can be proved in much. the same
manner a8 Thecrem 6.7; the problem in this case is to show that F iy a
weighted £,-space. In fact, our proof of Theorem 6.7 is derived from the
arguments used by Montgomery-Smith [33].

Returning to the case of [0,1] we note the following simple deduction.

PROPOSITION 6.9. If the Orlicz space L r[0,1] is elastic then its Boyd
indices pr = pr, and gp = g1, coincide,

Proof. In fact, we can suppose F is regularly varying by Lemma 6.6
and so the conclusion is immediate. m

Remark. The analogous result holds for sequence spaces, but not for
Lp[0, co) where one must consider behavior at both 0 and co. Thus L,NL,
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is elagtic for any p,¢. Let us also mention at this point that Proposition 6.9
allows us very easlly to give examples of Orlicz function spaces Lg[0,1] so
that (Lo, Lp) 18 not a Calderdn couple by simply ensuring that pr # gp.

Examrres. We now give two examples to separate the concepts im-
plicit in our discussion above. We first construct a regularly varying Orlicz
funetion which is not elastic. To do this first suppose (£,) is a positive
sequence, bounded by one and tending monotonically to zero. We define
dlw) = 2 il w < 1 and then ¢{z) = 2+ (1), if 2*' < & < 2". Define
fla) = [, o(2)dt and F(x) = exp(f(loge)). Then F(z)/x is increasing and
hence Iy () = [ (F(t)/t) dt is an Orlicz function equivalent to F'. Further,
F and F| are regularly varyiug of order 2. It remains to show that Fy or
equivalently F' is not elastic at oo, Suppose € > 1 and that 0 <o < 1. If
on= > log ! then

Fe*z) B
F(e?")

F(GQHH z)
'F(EZ'ml'!. )

log log 2 (En + &1 log z7h.

If we assume that &, goes to zero slowly enough, say &, ~ (loglog n)~t, this
will exceed log C, O(exp(z~")) times for some r > 0 and so £y cannot be
clastic,

Our second construction is of an elagtic Orlicz space which is not a
Lorentz space. Tt 15 of course clear that, conversely, every Lorentz space is
elastic. We note first that if F(z) = exp(f(log z)) where f is convex then F
is elastic at oo, by applying Proposition 6.5(4) (the same conclusion holds
when f is concave). We thus consider a function ¢(t) = 2 +1(t) where (¢}
is hounded by one and decreases monotonically to 0. Let f(z) = f{f @) dt
as above. As usual, it may be necessary to convexify F by constructing Fi;
however, this is equivalent to F. Now we show that for L £[0,1] to be a
Lorentz space it is necessary that ¢ tends to zero at a certain rate. In fact,
it W (w, Cy) € Cre™ it follows that (203 1) < log O/ logz~! and
hence that () = O((loglogu) ™). Thus if we choose ¢ converging to zero
slowly enough then Lp[0,1] is an elastic non-Lorentz space.

We now turn to the general problem of determining when a pair of Orlica
spaces Lp[0, 1] and Lg[0, 1] forms & Calderdn conple. Of course if the Boyd
indices satisfy gp < pe this can only happen if both F and & are elastic at
o in which case pp = qp and pg = g¢. Brudny? [8] has conjectured that if
Ly and Le ave distinet then if (L, Lg) forms a Calderén couple then we
wust have pp = gp and py = go. The next theorem shows that if either
pi % qp or pa # go then F and G must in some sense be similar functions.
However, following the theorem we will give a counterexample to Brudnyi's
conjecture,
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THEOREM 6.10. Suppose F' and G are Orlicz functions satisfying the
Ag-condition and such that (Lg[0,1}, Lg[0,1]) forms a Calderdn pair. Then
either F and G are both elastic or pp = pg and gr = gg-

Proof. Let us assume that gr > gg. The other case is similar. It will
be convenient to pick gg, g1 so that gg < gp < gr < ¢1 and to suppose (by
passing to equivalent functions) that F(z)/z? and G(z)/x? are decreasing,

Let F be the closure of the set of functions {F; : ¢ > 1} In C0,1].
This set is relatively compact. For each M > 1 let Fpr be the closure of
the set of functions {F; : ¢ > 1, F(1)/G(t) > M} and let Fo, = [py Fur-
Similarly, if & < 1 we let F, be the closure of the set of functions {F} :
t > 1, F(t)/G(t) < a} and set Fy = [, Fa.

Now suppose ¢ > 1 and A; is a measurable subset of [0,1] such that
(A = F(t)™". Then |x, [, =" while ||x, |l1o = s7" where G(s) =
E(t). If F{t) > G(t) we conclude that s > ¢ and further from the As-
condition for G we have [[x 4 [lze 2 (F(t)/G({t))lx I, where ¢ is a
function satisfying limy, .. &(u) = co.

Suppose Fo. is nonempty and Hy, Hy € Foo. Then we can find a sequence
{tn)}nz1 such that ¢; > 2, £, > 28,y and F(t,)/G(t,) — oo,

”XAMHLG HXA!,W] [

”XAM

for n = 1 and such that Fy,, — H; while Fy, , — Hj. Since A, <270
we can suppose these sets are disjoint. If we restrict to the sub-o-algebra A
of the Borel sets generated by (Ay,) then (Lp(A), La(A)) forms a Calderdn
couple. Regarded as a couple of sequence spaces it is exponentially separated
and hence the Orlicz modular space £, has (LSP) by Theorem 4.2. By
passing to a subsequence of the unit vectors it follows that both the Orlicz
sequence spaces {g, and £y, have (ISP) and further that the space obtained
by interlacing their bases has (LSP). Hence from Proposition 2.4, H; (i) and
Hj(z) are both equivalent to some (common) 2. We thus conclucde that
there exista pp so that any H € F, is equivalent to z?v.

By similar reasoning, if 7y is nonempty there exists p; so that every
H € Fy is equivalent to zP!.

Now suppose go < ry < 73 < gp. We pick an integer m large encugh
so that (m — 2)ry + 2q1 < mre. Then for any ¢ < 1 the function Fole) =
max{z" " F(t) : {e < ¢ < ¢} is equivalent to F and therefore Fy(z)/x"?
cannot be decreasing everywhere. Thus for any z; there exists x > g such
that for some ¢ > 0 we have Fy(u)/u™ < Fy(e)/z™ if 2 — 6 < uw < 2. It
follows that Fy(z) = F(z) and hence F(z) > a™™" F(¢) if £™x <t < =

Next define Fi{y) = max{y™t "1 F(t) : €y < t < y}. Notice that
Fi{y) <8771 F(€y). We will argue that Fi{z)/2™ cannot be decreasing on

R N
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(em=lyp, gx). If it is then Fy(£x) < F1(£™ ') and hence
Fz) < 1 F(fw) < Py (Ex)
< 6-—-(1'11,—-2)7'1—(11Fl(gm““lg_:) < 5”("71—2)’”1—2G1F(§mm)5

and thus (m — 2)r; -+ 21 > mry, contrary to assumption.

We now argue as above and conclude similarly that there exists u with
gm-lp <y < £ such that Fu) = w1 F(f) for fu <t < u.

Now notice that

F(u)/Gu) € u™ WP~ " F(z)/G(x)
and 50
Flu)/G(u) €77 F(z)/G(z).

It follows that given any & < I any #p we can pick # > wxp so that
Flz) > ot " F(t) for éz <t < z and either F(z)/G(x) > £ (ra—d)/2
or F(#)/G(z) < ¢loomrad/? Thus we can find a sequence t, — oo such
that £, (z) = @™ for n™' < z < 1 and either F(t,)/G(t,) — oo or
F(t,)/G(tn) — 0.

Consider the former case. Then there exists H € Foo with H{z) = 2™.
Hence po = r1. In the latter case p; = ry. Since ry < gp is arbitrary we
conclude that either py = ¢p or py = gr.

onsider the case py = gp; in particular, F(£)/G(1) is unbounded for
t = 1. We will argue that F(¢)/G(¢) tends to infinity. For any § < 1 consider
the function A{z) = min{F(¢)/G(t) : {x <t < z}. If h does not converge
to oo then given any M and zg there exist ¢ > zo and § > 0 so that
h{z) = M and h{z) < h(u) for £ — § < v < z and this implies that
F()/G(4) < F(z)/G(x) for x < t < x. Thus we can construct {, — 00 0
that F(i,)/G(t,) — co and F (2) < Gy, (2) < 2% for n™! < @ < 1. Thus
Feo contains a function H with H{z) < z%, This contradicts the fact that
go < pr. Thus F(t)/G{t) — oo and it follows easily that since Foo = F we
have pp = gp. We can invoke Theorem 5.3 to conclude that both F and &
mwusl be elastic,

The ease p == qp is similar. [n this case G()/F (1) is unbounded and we
use the same argument as above to show that G{t)/F(t) — oo.

We owit the case pp < per; the reasoning is much the same. w

Tk AMPLE. Tt remains to construct an example of a Calderén couple
(Lp[0,1), Ly [0,1]) with F and G nonequivalent and pr = pg < ¢r = 90.
Such an example Is a counterexample to the previously mentioned conjecture
of Brudny¥ [8]. Our construction depends on the following lemma:

LuMMA 6.11. Let (Yy,Y1) be a Calderdn couple and let X be a Banach
space. Then the pair (X ® Yo, X ® Y1) also forms a Calderdn couple.
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Proof. We suppose the direct sums are £;-sums. Suppose that
{(zo,70), (z1,v1) € X ® (Yp + Y1) satisfies

K(ti (wﬂvyo):Xaa%aX@Yl) S K(tv (-'171:?}1)=X CDthX(D Yl) '
Then we observe that
lzollx < feallx + K (L y1, Yo, Y1) .

Thus there is an operator S : X & (Y5 + Y1) — X with |[Sh]| € 1 and
S(z1,1) = xo. On the other hand,

K(tuyO)thywl) < mln(l,t)“ﬁl'],” e I{(t'}y]: Yi]tywl) .

Now (Y, Y1) is Gagliarde complete {{13], Lemma 3) so by K-divisibility ([4],
(7], [15]) we can write yo = u + v where

K(t,u, Yo, ¥1) < ymin(1,t) |z
and

K(t: v, Y01 Yl) S ’YK(ta Y, YD7 Yl)
and ~ is an absolute constant. The former inequality implies that
max(||u]y,, lullv.} € vllz1]|x and hence that there exists §1: X — YoNY,
with [|S1]l € « and Siz1 = wu. The latter inequality yields the existence
of S : Yo+ Yy — Yo+ Y, with S € A(Yy, Y1) and Syyr = v. Let
S(z,y) = (Soz, 51z + Say). Then S is bounded on each X @ Y; and maps
{z1,91) to (0, yo). w

We now construct the example. We suppose ¢ > p > 1; we set r =
%(p +¢,a=p—1and § = ¢g— r. We next define a; = 1 and then
inductively (bn)n>1, (en)np1: (dn)nzr and (@, )n>o by letting b, = 2%a.,
Cn = 4bp, dn = ¢ + 2n and ayq1 = Ady,.

We then can construct an unbounded nonnegative Lipschitz function
¢ : R — R so that supp¢ C U, [an,b.] and [¢'(z)] < az™" ae (or
equivalently |é(z) — d(y)} < |loga —Togy! for z,y > 1). We then also define
a nonnegative Lipschitz function ¢ : R — R with supp < U, [en, dn]
by defining ¥(z) = B(z — c,) for ¢, € & < ¢ +n and Bx) = B(d, — )
for ep +n < = < dy,. Finally, we put F(2) = 27 exp(h(log 2)) and ((a) =
x” exp(t(log z) + p(log ).

Now observe that F' and G hoth satisfy the As-condition and both
F(z)/z and G(z)/x are increasing functions so that F and (f are equiv-
alent to convex Orlicz functions, We prefer to work directly with F and .

We consider the pair (Ep, Eg). For n < 0 let A, be the unique solution of

F(An) = 27" and let v, be the unique solution of G(»,) = 27", We split

Z- into two disjoint sets Jy, Ji by setting Jg = {n : log A, € U [ck/z 2di]}
and J] Z._ \Jo
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We claim that on w(Jy) the norms || ||z, and | |, are equivalent. In fact,
since F' < (' we need only bound 3 ., 2"G(¢) subject to
Yoner h 2"F(€,) == 1. To do this observe that if n € Jy and 0 < £, < A, then

F(&,) = (&) unless log &, < log Ay/2. Thus

Y GE) S LE Y VAR ESEE PP

e I(J ne I(; ne \](J

and this establishes the required estimate since A, increases geometrically.

On w(Jy) we claim both || [|» and | f|¢ are equivalent to weighted £,.-
norms and hence form a Calderdn couple by the result of Sparr [36]. Let us do
this  for the case of ||, which we claim is equivalent to
(Sones, [En/va] )7 16 suffices to (a) bound Yones, 2"G(€n) subject to
Poner Gnt | = L and (b) couversely, bound ) ., &wo" subject to

zne.h 2" ( (En) = 1.
For (a) note that if 0 < £, < 1, then

log vy,
log €,

£

e

log G(&y) = log G(vn) — rlog | < alog

as long as log &, > log 11, /2. Hence

G(€,) L2727 ™7 + G(y/Tn)

for n e Jy. Thus

z ‘Z“Cf fﬂ - < 2" -+ Z 2” 'UTL < 2&_'_ Z V_l/g

neJy ngJ, HEJy

and this gives the required estlmate (b) is similar. The argument that || || »
is equivalent to (3, ¢ [€.[7A;")Y" is slightly simpler and we omit it.

This completes the constructlon of the example. It is clear from Lemma
6.11 that (Er, Eq) and hence (Lp[0,1], Le[0,1]) is a Calderén couple with
proz= by == poand gp = ¢ = ¢ but that F and ¢ aré nonequivalent.

Wa reiark in closing that it is possible to find Orlicz funetion spaces
Lp[0,1] so that il (Lp, Lg) forms a Calderén pair then Lp = L. (We
assume the Ag-condition for both F' and G.) We sketch the details. The
argumerit of Theorem 6.10 can be used to establish that if ¥ and & are not
equivalout at o then there exists p with 1 € p < oo so that &% is equivalent,
for 0 < @ < 1, to a function of the form lim Fy, (#) where &, — oo. Now,
there are many examples of functions F which fail this property; for example
one can take the minimal Orlicz function:

4]

Pla) = 2® exp @Zu ~—cos(27r(logt)/2“)))

n==l)
(see [20).
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