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Characterization of weak type by the
entropy distribution of r-nuclear operators

by

MARTIN DEFANT and MARIUS JUNGE (Kiel)

Abstract. The dual of 2 Banach space X is of weak type p if and only if the entropy
numbers of an r-nuclear operatar with values in a Banach space of weak type ¢ belong to
the Loventz sequence space oy with 1/6+ 1/p+1/g=1+1/r 0<r <1,1<p,q < 2).
It i enough to test this for ¥ = X*. This extends results of Carl, Kénig and Kithn.

Introduction. We show that the notion of weak type p spaces (1 < p
< 2) just characterizes the entropy distribution of {r,w)-nuclear operators.
Our main results are contained in the following theorem (for precise defini-
tions see below).

THREOREM. For 1 < p < 2 the following are eguiv_alent:

1) X is of weak type p. ‘
2 Forall0<r <1,0<st<00,1<g=2 with 1/s+ 1/p+1/q =
1+ 1/7 and all Banach spaces Y of weak type q,

M (X, Y) C L5 (X,Y),
3) There are 0 <r <1 and 0 < s, t < oo with 1/s+2/p=1+1/r and
I (X, X*) C L5 (X, X7)-

Results in this direction were shown by Konig [KON] and Carl [CA3].
Kithn [KUH] proved that statement 2) of the above theorem holds provided
that X* is of type p and ¥ of type g. He also remarked that the parameters
r, 8, f, p, ¢ are optimal.

The proof of our theorem divides into two cases, 1<p<2andp=2
The first uses the generalized Carl-Maurey inequality (see Theovem 1.1},
and then follows the proofs of Carl [CA3] and Kiihn [K'UH] (see Chapter 1),
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2 M. Defant and M. Junge

Since there is a gap in the generalized Carl-Maurey inequality for p = 2 we
look in Chapter 2 for an alternative approach by estimating the Kolmogorov
numbers in the right way by the Weyl numbers.

Preliminaries. In what follows ¢g always denotes a universal constant.
We use standard Banach space notations. In particular, the unit ball of a
Banach space X is denoted by Bx. For a closed subspace E of X we denote
by

tg B — X, 21— =z, the natural injection,
Qp: X — X/E, ¢ g+ E, the natural surjection.
The Toventz spaces £y, &7, Ly, 0 < r,w < oo, n € N, are defined in the

usual way. We also need the vector-valued generalizations L, (X).
Standard references on s-numbers and operator ideals are the mono-
graphs of Pietsch [PI1] and [PI2]. The ideals of all linear bounded and all
finite rank operators are denoted by £ and §, respectively.
For every Banach ideal (4, 2) the component A* (X, V) of the conjugate

ideal (4%, a*) is the class of all operators T' € £(X,Y) such that
a"(T) = sup{|tr TS| | S € F(Y, X), a(S) <1} < oo.
Next we recall the usual notation of some s-numbers of an operator
Tel(X,Y):
an(T) = 1nf{||T ~ S| | § € &(X,Y), rank(S) < n},
the nth approximation number,
(T} = inf{||Tep| | E C X, codimE < n}
the nth Gelfand number,
dn(T) :=inf{|QpT| | F C Y, dim F < n},
the nth Kolmogorov number,
zo(T) = sup{an(Tu) | u € £(fs, X), [|ul| < 1},
the nth Weyl number.

The nth entropy number, nth volume number and nth volume ratio number
are defined by

ant
en (1) = inf{s >0 \ )i, ¥ T(Bx)C | (e +eBy)},
k=1
(1) =
(T (Bg))\ "+
sup{(%ﬁ)g EcX T(B)CFcCY, dimE:dimF:n},

icm
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— vol{@rT(Bx)) 1/{pn)
vro (T) 1= sup { (W}

where p is 1 or 2 according as the scalar field K is R or C. Let us note that

the entropy numbexs are surjective and quasi-injective, i.e. for every metric
surjection @ and metric injection J we have

en(T) <en(TQ) and en{7) < 2e,(JT).

The relations between these different geometric nurabers are as follows
(see [DJ], MA2]): for all k,n € N,
v (T) < 2. 28/ "e (1),
vra(T) < 28/ ep (T

FcCV codimF = 'n,} ,

mlﬁﬂun(T) <ury(T%) < cova(T),
co
L orn(T) € va(T*) < covra(T).
¢y

Let det : K* — K be the unique determinant. Then the nth Grothen-
dieck nurnber is defined by

To(T) = sup{jdet (T2, y} NIY™ | (21)ims C B, (Wh)i—a C By}
The Grothendieck numbers were investigated by Geiss. Let us mention that
Pn(T)“_“‘Fn(T*): '
No(T) =sup{Tn(QrTig) | EC X, dimE =n, FCY, codim F = n}.
Carl [CA4] proved that for s € {¢,d},

(T aum)” < rumy.
k=1

In particular, if T € &(X,Y) and X or Y is a Hilbert space then
(1) an(T) < TH(T) .
If both are Hilbert spaces one has (see [GEL], [DJ])

m

@ (D) = 10 = ([T o) ™"

k=1
The following multiplication formula holds for s € {v,vr, I}
s (T5) < sn(T)8n(5)
whereas for s € {a,c, d, e, z},
5n+m—1(ST) < S'n(S)Sm(T) -
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For s € {a,¢,d,e,v,vr, I} and 0 < r,w < oo the operator ideal Ly is
the class of all operators T such that

Ei,w (T) = (s (T newlirmw < .
The multiplication formula yields immediately (see [P12])

£ . 023 with 1/r = 1/r1 + 1/ry and 1/w = 1/wy + 1/,

TLy o, Wwe C S:‘,'ﬂ}
For 2 <7 < co an operator T € £(X,Y) is said to be absolutely (r,2)-
summing (T' € IT5(X,Y)) if there is a constant ¢ > 0 such that for all
n € Nand (zy)p_; C X,

( ; rar)’ <o s (éuw*ng)

We set 7. »(T") := inf ¢, where the infimum is taken over all ¢ satisfying the
above inequality.
Let (gx)zen be a sequence of independent, normalized gaussian variables

on a measure space ({2, u). For n € N and any operator u ¢ L85, X)
define

1/2

, We

1 = 3 gestent (
k=1

where ey (& =1,...,n) are the unit vectors in £Z. An operator T & LX,Y)
Is said to be absolutely y-summing (T € £(X,Y)) if there is a constant ¢ > 0
such that for all n € N and u € £(¢%, X),

(Tu) < eljul.
We define {(T") := inf ¢, where the infimum is taken over all ¢ satisfying the
above inequality.

As is well-known [*(v} < I(v*) holds for all v € £{X, £3). But in general
the converse is not true. A Banach space is K-convez if there is a constant
¢ > 0 such that for all v € £*(X, £3),

{(v*) < el (v).

In this case we write K'(X) := infc, where the infimum is taken over all ¢
satisfying the above inequality. Let us mention that X is K-convex if and
only if X* is K-convex, and in this case K (X} = K (X*). Pisier [PS] proved
that for every n-dimensional Banach space E,

(3) K(B) < co(1+Inn).

To end the preliminaries, we recall estimates for entropy numbers, The
first is due to Sudakov, Pajor, and Tomezak-Jaegermann (see [PS]). For
u € (€3, X) we have

(4) lnax{gg,oo(u)agg,oo(u*)} s Col(’u..) .

x)’

icm
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The second estimate concerns the duality problem for entropy numbers
and is due to Bourgain, Pajor, Szarek and Tomezak-Jaegermann [BPST].
Let X or ¥ be a K-convex Banach space. Then for every 0 < p < co there
is a constant ¢ > 0, depending on the K-convexity constant and p, such that
for all compact operators T' € £(X,Y) and n € N,

( Z”: ek(T*)p) 1/p < c( i ek(T)p) /p .
k=1 =1

In particular (using Hardy's inequality), there are constants crap = 0 such
that

(5) Lea(T7) < ety (T)

1. Consequences of the Carl-Maurey inequality. We start with
the notion of type and weak type of operators. An operator T € £(X,Y) is
of (gaussian) type p, 1 <p <2 (T € T,(X,Y)), if there is a constant ¢ > 0
such that for all n € N and (z,)}., C X,

) - e 1/®
“;%T:MHLE(H < c(;”%” ) _

In this case {,(T) := inf ¢, where the infimum is taken over all ¢ satisfying
the above inequality. The translation into the langnage of operator ideals is
due to Tomezak-Jaegermann {see [TOJ]):

T € £(X,Y) is of type p if there is a constant ¢ > 0 such that for all
ve (Y, ),

mg2((vT)") < cl*(v),

By the use of the well-known inequality £7 ., < 7, o this reformulation leads
to Pisier’s definition of weak type p (see also [MAI]). An operator T €
S(X,Y) is of weak type p, 1 <p <2 (T € wE,(X,Y)), if there is a constant

¢ > U such that for all v € £*(Y, £3),
12 o(uT) S cl*(v), where 2< g < oo with 1/g+1/p=1.

.00

In this case wi,(T7) = inf ¢, where the infimum is taken over all ¢ satisfying
the above inequality.

It is obvious that every operator of type p is of weak type p. Conversely,
every operator of weak typepiscf typerforall1 <r <p.

This chapter relies on the Carl-Maurey inequality for weak type p oper-
ators (see [DJ]):

1.1, THEOREM. Let 1 < p < 2. For every operator T € £(X,|Y) we have
the following implications: ()= (i1)=-(ii) for p < 2, (I)=(iii) for p = 2 and
(ili)=>(1), provided Y is K-conver.

where 2 < g < oc with 1/g+1/p=1.
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(1) T is of weak fype p.
(ii) There is a constant ¢1(T) > 0 such that for all k,n e N, 1 <k < n,
and S ¢ L(# X)),

n(n L-i/p
eu(1) < ex()(HERIE) gy,

(iii) There is a constant c3(T) > 0 such that for alln € N and § ¢
L8, X),
en(T5) < ca(T)n P18 .
If T =1dx is the identity on a Banach space X the implication (iii)=(i)
holds without the assumption of K -convexity.

In the following we want to indicate some consequences of the Carl-
Maurey inequality which were originally formulated with the assumption
“type p” instead of “weak type p”. In this sense the following theorem is
due to Carl [CA3).

1.2. THEOREM. Let 1 < p < 2. For every operator T € £(X,Y) of weak
type p and for all S € £(¢, X), 0 € £,y and D, € £(¢,,41),

TSD, € £ ,(8,,Y)  with 1/s+ 1/p=1/r+1/q,
where 0 < r < 00,0 < 8,8 < 00, 1< g < oo such that 1/r+1/g > 1.

Since the duality problem for entropy numbers is solved for Lorentz
norms in K-convex spaces, we are able to extend a result of Kithn [KUH]
which describes the dual situation.

1.3. COROLLARY. Let 1 < p < 2. For every operator T & L(X,Y) whose
dual T™ is of weak type p, and for all R € &V, 4y.), o € brg, Do € 8000, £y)

D,RT € £5,(X,¢,) with 1/s+1/p+1/g=1+1/r,
where 1 <g¢< o0, 0<r<g<oo, and0 < 5,t < oo.

b

Proof. Let first 1 < g < co. For R € £(Y,£,) we define
§:=> e:®R'; & L, Y™,
€N
By Theorem 1.2,
T°8Ds € £ (b, X™)  if Lfs+1/p=1/r+1/q .
The K-convexity of £, together with (5) and S!*Y = R implies that
Loa(DeRTY < £2 (D, 5T < Cre gl (T*SD,) < 00
If g =1or g = o0 there exist 0 < 11, 3 < co and 1 < 4 < oo with
L/r=1/ri+1/ry, 1/ry>1/u and 1/ry+ Ljw>1/q.

Characterization of weak type 7

Since £y = £y 10h, oo (see [PI2]), for each o € £,.; we can find two sequences
1€ bpy, T € £y oo with o = 7. By a result of Carl [CA2] we have
Dy € £, o(lu,dy)  with /sy =1/r+1/u—1/q.
Henece by the first part applied to D, € £({s, £,),
DoRT = D,D.RT € £, ,0 £7  C L5,

51,0Q

with 1/.9 = 1/5‘1 -+ 1/32 =1+ 1/7"1 - ]./’LL - l/P+ ]./1”2 + 1/’1,6 - l/q =
1+1/r—1/p—1/q. =

A combination of Theorem 1.2 and Corollary 1.3 yields a result for (r, w)-
nuclear operators which was proved for “type p” by Kiihn [KUH]. Let 0 <
r < land 0 < w < co. An operator T' € £(X,Y]} is called (r,w)-nuclear
(T € M, (X, Y)) if there are R € £(X, £s), S € £(¢1,Y) and o € £, such
that

T=8D,R.

In this case Ny o (1) = inf | B|||o|l»» S|, where the infimum is taken over
all representations as above.

1.4. COROLLARY. Let 1 <p, g<2,0<r <1 and 0 <5, w < oo. [f X*
15 of weak type p and Y of weak type q then

N (X, V) C L5 (X,Y)  withl/s+1/p+1/g=1/r+1.
Proof. First we show that for 0 < r < 1,
(X, Y)c L5 (X,)Y) withl/s+1/p-+1/g=1/r+1.
For this let T = SD, R, R € £(X,8w), S € £(£1,Y),and 0 € £,, ¢ = 0.
We set 7 = o'/2 and consider D, € &{foo,£2), Dr € £(€s,£,), respectively.
Then we have
iofle = |i7]|5. and 1/2+1/(2r) >1, 2r < 2.
Hence by Theorem 1.2 and Corollary 1.3,
S§D. € £5 5. {6, Y) C £ (£2,Y) with1/sy+1/g=1/(2r)+1/2,
DR e L5, (X, 8s) C LS, (X fa) with1/so +1/p+1/2=1/(2r} +1.
By the multiplicativity of the entropy numbers we get
T=8D,R=8D.D,ReZl (X))
with /s =1/s1+1/sa=1+1/r—1/p—1/q.
Finally, the assertion follows from the real interpolation method, since for
0<r; <r<ry<1thereisal <@ < 1such that (see e.g. [PI2])
Loy = (bpy s ry)ope  with 1/r = (1 —8)/r1 +8/ry and
(L5100 Lop00pw C L5,y With 1/s =(1—8)/51+8/52. m

81,003
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2. A composition formula for different s-mumbers. Up to now we
do not know an analog to the Carl-Maurey inequality for p = 2 {in the weal
case). Nevertheless, by using a composition formula for s-numbers, most of
the results of the previous chapter can be carried over to this case. We start
with

2.1. PROPOSITION, Let 1 < p <2 and 0 < r, s < oo with 1/s+ 1/p =
1/r+ 1/2. Then for all operators T € L(X,Y) of weok type p and u €
L(ly, X) whose dual is in £ (X*, £5),

€2 0o (Te) < co{26) Y "wty(T)5 o (u™)

Proof Letn € N and H C £; with dimH = n. Then for £ =
ImTuey C Y we have dimF < n. By a lemma of Lewis (see [PS]), there
are w € £{f2. F) and v € &(Y, £%) such that

Idg = wuig and I(w)=1{"(v) < Vn.
Combining this with (2) and (4) we get
U (Tuerr) = vp(weTuey) < vy (w)v, (vTuey)
n 1/n
< de,(w) ( H CL}C('UTMLH))
k=1

< 46071—l/Qz(w)el/r«%l/p'nﬁ(l/-ﬁ-l/p’) sup kl/r+1/;n'mk((vT)*(uLH)*)
kel

< 8c06(2e)1/’"n"(1/’"+1/pwEg,,m(vT)Ef,oo(u*)

< 8coe(26)1/’"72,_(1/”1/1”)wtp(T)l*(v)E,’:"m(u*)

< 8cpe(2e)'/mn /B (TR ().
Now we can prove the following composition formula:

2.2. PrROPOSITION. Let 1 < p <2, 0<r < pand 0 < 5 < co with
1/5+1/p = 1/r+1/2. For every K -conver Banach space ¥ and any operator
T.E L(X,Y) of weak type p, and for all w € £(¢y, X) whose dual is in
Si,w(X*l 62):

8 (Tu) < K (Y PPty (TYE (")

where ¢ > 0 45 an absolule constant depending only on p and r.

Proof. We will use a result of Pajor and Tomczak-Jaegermann [PTJ]
which states that for all 0 < ¢ < 2 there is a constant ¢, = 0 such that for
callv e £(¥™, &),

Coo(v) S c K(Y )0 (0).

Characterization of weak type 9
Therefore the assertion follows by duality from Proposition 2.1 {see also
(P12]):
0 (Tu) < £ (Tw)") < e K (Y )P 07 (Tu)")
< coes K (V)8 o (Tu)
< E2e) e K (Y)Y o wt,(TVE (w7) . m

Remark. (i) If T is the identity operator on some Banach space X we
can formally drop the assumption of K-convexity.

(ii) Actually, we can in general prove the proposition without the as-
sumption. of K-convexity.

With the composition formula of Proposition 2.2 we can extend the re-
sults of the previous chapter:

2.3. COROLLARY. Let Y be a K -conwer Banach space and T € £(X,Y)
an operator of weak type 2. Then for all § € £(£,X), 0 € £ry ond D, €
E(g(pgl'):

TSD, € £5,(6,Y) with 1/s+1/2= i/r+1/q,
where 1 < g < oo, 0 < v < min{2,¢'} and 0 < 5,1 < co.

Proof. By interpolation (compare the proof of Corollary 1.4), it is suf-
ficient to prove that for § € £(f1,X), o € £y and D, € £(£g,{1),

TSDy € £5 (£, Y)  with 1/s+ 1/2=1/r+1/q.

For g = 2 the assertion follows from Proposition 2.2 since by [CA1],
[PI2],

£ (TSD,) < ot (TS Dy) € duc, K (V) *utaTVES o ((SD0)")
< dye K (¥ uta(T)] Sleclolloe
< A K (¥ bl 191

For ¢ # 2 we decompose ¢ € {, as 0 = Tp With 7 € £, u € £y, such
that v, < 2, 1/rg > max{0,1/2—1/¢} and 1/r = 1/r1+1/ra. By [CAZ2], for
L/gy = 1/ra + 1/g — 1/2 we have

Dy € 85, ool £3)-
Hence by the first step and the multiplicativity of the entropy numbers,
TSD, = TSD,D, € £,  0L%, o C 8o with1/s=1/r+1/g—1/2. =

Remark. It is clear that a corresponding dual formulation for operators
whose dual is of weak type 2 follows in the same way from Corollary 2.3 as
in the previous chapter Corollary 1.3 follows from Theorem 1.2.
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3. Characterization of weak type p. First we will show that the
conditions of Theorem 1.2 and Corollaries 1.3 and 2.3 are even necessary:

3.1. PROPOSITION. Let 1 < p < 2,0 < r < 00,0 < 5, < oo and
1<g<ocowithl/s4+1/p=1/r+1/qg and ¥ o K-convex Banach space.
Assume that for an operator T € £(X,Y) and for allo € £,,, D, € £{£,,£))
and S & £(6,X),

TSD, € €00 (8,Y)
Then T is of weak type p.

Proof We will prove the existence of a constant ¢ > 0 such that for all
neNand § e 247, X)),

en(TS) < ent/P71| 5]

Then the assertion follows from {iii)=>{i) of Theorem 1.1. By the closed
graph theorem the assumption yields a conmstant ¢ > 0 such that for all
Se Ly, X), 0 € tbpy and D, € £(£,,61),

oo (TS D) < cllS|lllol]rs -

Now let n € N, § € L{{},X) and define 0 = (o;)jen by o; := 1 for
j=1,....nand ¢; := 0 for j > n. Hence '

Jolln: < eranl/m.

On the other hand, it is known (see [CA2]) that for the formal identity
bn €] — €7 and m := [(n 4+ 1)/2] we have

Em ("n) < CD’”'Jl/q“l .

Denoting by P, : £1 — {7 the natural projection and I, : £ — £, the
natural injection, we can conclude:

en(TS) = e (TSP, Dyloty) < em (TSP, Dy)em(Tnty)
<mVege (TSP, Dy )eont/ e

< 21/300n"1/s+1/q"1c\]SPnHHcrl S 2l/ﬂc()ar,tcn1/p_1[\5|l. B

Remark. If T is the identity of some Banach space X we can cdrop the
assumption of K-convexity, since the condition

en(TS) <en™*!|S]  forallneN, § & L(F, X)

just characterizes weak type p spaces (see Theorem 1.1).

For the proof of our main theorem we will need the following

3.2. LEMMA. Let H, K be Hilbert spaces and T € £(H, K). Then for all
n &N,

(en(T))* < 144e3n (T"T) < 144(en(T7))2 .

Characterization of weak type 11

Proof. Note that a;(T*T) = (a;(T))* for i € N. Hence it follows from
[GKS] with 4 =1 or 2 according as K = R or C that

(en(T)? < (12 sup zmn/(uk)(ﬁa,,;(’f))l/k)g
k=I,..n i=1

k 1/k
=144 sup 272/(kk) (H ai(T*T))
k=1l.....n i=1

< 14deq, (T*T) < 14de, (T")en(T) < 144(en(T))* . =

We finish this chapter with the proof of our main theorem.

Proof (main theorem).

1)=»2). If 1 € p, ¢ < 2 this implication is Corollary 1.4. If either p = 2 or
g = 2 the proof of Corollary 1.4 still works, provided one uses Corollary 2.3
and its dual formulation instead of Theorem 1.2 and Corollary 1.3.

2)=>1). We will apply Proposition 3.1. Let 1 < ¢ <2, 5 € £y, X*) and
o € £, Then we set

Ri= Z Se; @e; € &(X,0) and
e
I:= z e; ®e; € £(£1,4), the formal identity .
ieM
Since T = ID,R € My, (X, £,) and £, is of type g our assumption yields
T el (X, 4) withl/s+1/p+1/g=1+ 1/r.
By the K-convexity of £, we deduce from (5) with 1/g+1/¢’ = 1 that
8D, =T" € £; (£, Y) with1l/s+ 1/p=1/¢ +1/r.
1)=3). We apply 1)=>2). for V = X* which is of weak type p.
3)=1). The proof consists of two steps:
Step I There is a constant ¢ 2 0 such that for all n € N and v €
L(t3, X)),
nP I (u) € emin{K(X), 1+ lon}*(w*)  with 1/p’ +1/p=1.
Step II: There is a canstant ¢ > 0 such that for oll v € £*(X*, &) and
ne N,
pMP () < cmin{K(X), 1 +lun}*(v) with 1/p'+1/p=1.
Before proving Step I or II let us indicate how the assertion follows from

Step II. If p = 1 there is nothing to show, since every Banach space is of
type 1, hence of weak type 1. If p > 1 choose 1 <7 < g < p. By Step 11
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there is a constant ¢p o > 0 such that for all v € £*(X*, &),

supn'/?a, (v) < ¢pgsup nV? (1 +Inn) la,(v) < ep ol (v) .
neEN nelN

Hence X* is of weak type g and therefore of type r > 1. But this means that
X and X™* are K-convex (see [PS]). Again by Step I it now follows that for
all v € £ (X*, £3),

Cor ot} S K (X" (v),
which proves that X* is of weak type p.
We will use (1) in order to pass from Step I to Step II. By the definition
of the Grothendieck numbers it is sufficient to prove that for all n € N,
Fc X* with dim F =n and v € L(F, £3),
n'% [o(v) < emin{K(X), 1+ Inn}* (v).
For this choose a finite family (zy)7"; C Bx such that for all f € F,

il < ) sup [z, /Y] < |71l

=l,...,m
This yields a canonical injection I' from F into £72:
IF—= 000, f = (e, Iy

By the extension property of £* we can find an operator V € £(47, £2) such
that

VIi=wv and *(V)<20"(v).
Defining

m
R: =X, (ap)io Zakmk ,
k=1

and
wi= QV* e £(43, X)),

one can easily check that w*up = v. The symmetry of the Grothendieck
numbers and Step T tmply

n? 1, (v) = n”plfn(w*m) <nMP' r(w) € emin{ K (X),1 + lnn}l*(w*)
< emin{K (X}, 1 +lnn}l*(V**) < 2emin{ K(X),1 + In n}*(x).

Finally, let us prove Step I. The closed graph theorem implies the exis-
tence of a constant ¢ > 0 such that for all T € M, (X, ¥),

22 o (T) < eNpy(T).

For 1 < p, ¢ < o and n € K we denocte by ty.o the formal identity from Ly
to 7. By _the deﬁ.nition of the Grothendieck numbers we can find a subspace
£ C X with codim F' < n and R € £(X/F,£%) with ||B|| < 1 such that

Tal) <21, (3, 2RQpu) -
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Now we define
T =R R e L(X/F{X[F)),
v =i o RQF € £(X,£3).
By (2), Lemma 3.2, (4) and (3) it follows that
(Tu(w)? € 4(Tn(vu))? = 4{va(vu))® < 256(e2q(vu))”
< 256 . 1ddeq, (u v ou) = 36864e4, (u* QrTQru)
< 36864, (u Q) (Ten(Qru)
< 73728, ((Qru)*)esn(QFTQr)en(Qru)
< con” YRUQpu)e(2n) T N, W (@ T QeI AU(Qru)
< coon” MK (X F) (6P N (18,1
< edeepyn™ VST min{ K (X), 1 + lnn}* (w™))?,

which proves Step 1. =
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Factorization of Montel operators
by

S. DIEROLF (Trier) and P. DOMANSKI (Poznad)

Abstract. Consider the following conditions. {a) Every regular LB-space is complete;
(b) if an operator T between complete LB-spaces maps bounded sets into relatively com-
pact sets, then T factorizes through a Montel LB-space; (¢) for every complete LB-space
E the space C(AN, E'} is bornological. We show that (a)=-(b)}=+(c). Moreover, we show
that if F is Montel, then (¢) holds. An example of an LB-space E with a strictly increasing
transfinite sequence of its Mackey derivaiives is given.

0. Introduction. In Banach space theory there is a famous result [11]
(see also [13] and [15, Theorem 6.3.4]) that every weakly compact operator
between Banach spaces factorizes through a reflexive Banach space. The
idea! of operators mapping bounded sets into relatively (weakly) compact
sets seems to be the proper analogue in the Fréchet setting of the ideal
of (weakly) compact operators in the Banach case. This leads to the fol-
lowing factorization problem: Does every Montel operator (i.e., an operator
mapping bounded sets into relatively compact sets) between Fréchet spaces
factorize through a Fréchet-Montel space? Surprisingly enough, it seems
that not much is known about it as well ag about the dual problem concern-
ing factorization of all Montel maps between (complete) LB-spaces through
a Montel LB-space.

The best result which could be derived {rom the known facts (see Corol-
lary 3.2 below) says that if E is a quasinormable Fréchet space, I is an
arbitrary Fréchet space and 7 : F — F is a Montel map, then T factorizes
through a Fréchet-Schwartz space.
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