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Integrability theorems for trigonometric series
by

BRUCE AUBERTIN and JOHN J.F. FOURNIER (Vancouver, B.C.)

Abstract. We show that, if the coeficients (a» ) in a series ap/2 + Y one 1 n COS(RE)
tend to 0 as n — oo and satisty the regularity condition that

20 oo 1271 24 1/2

Z{z{ > !an—a-n+1l] } < o0,

m=0 ~j=1" n=jam

then the cosine series represents an integrable function on the interval [—=,n]. We also
show that, if the coeflicients (bn) in a series 3,y bnsin(nt) tend to 0 and satisfy the
corresponding regularity condition, then the sine series represents an integrable function
on [—m, 7] if and only i 3752 |ba|/n < co. These conclusions were previously known
to hold under stronger restrictions on the sizes of the differences Aan = an — dny1 and
Abp = bp — bpt1. We were led to the mixed-norm conditions that we use here by our
recent discovery that the same combination of conditions implies the integrability of Walsh
series with coeflicients {en) tending to 0.

We also show here that this condition on the differences implies that the cosine series
converges in L'-norm if and only if a, logn —~ 0 as n — oo. The corresponding statement
also holds for sine series for which 3757, |bnl/n < oo. If either type of series is assumed
a priori to represent an integrable function, then weaker regularity conditions suffice for
the validity of this criterion for norm convergence.

1. Introduction. We outline one proof of the integrability results in
this section, and comment further on that proof in Section 2. We present
another proof of the integrability results in Sections 5 and 6. We also state
two theorems about Li-norm convergence in Section 1, and show in Section
3 how these statements follow from the integrability results. We begin this
section by recalling some earlier work on these questions, and we say more
in Sections 4 and 5 about how our results compare with other work.

About eighty years ago, W. H. Young [36] related integrability of series
to properties of differences of coefficients by showing that if the coefficients
in a cosine series tend to 0 and form a convex sequence, then the series
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46E40, 46E30, 46E35.
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converges to a nonnegative integrable function on the interval (0,«], and
the cosine series is the Fourier series of that function.

About ten years later, Kolmogorov [20] showed that the integrahility
conclusion still holds for cosine series with coefficients that tend to 0 and
satisfy the condition that

234"1 A aJJ—ZZM\ a;] < o0

k=0 j=k

Such sequences (an) are called gquasiconver. Convex sequences that tend to
0 are quasiconvex, because their differences Aa, and Aa, = Ag,, - PAY: R
are nonnegative, and the series Y - = Aay and }:;" . A%a; converge to a.,
and Aay respectively. Hence > o ZJ p A%a; = ay for such sequences.
Another way to state the condition of quasiconvexity is that there is a con-
vex sequence (c,) that tends to 0 so that |A%a,| = A2e, for all n. Kol
mogorov also showed that such cosine series converge in L'-norm if and
only if &, logn — 0 as n — oa. Accounts of this work can be found in hooks
[4, 37].

After an interval of about fifteen years, S. Sidon [27] showed that in-
tegrability of cosine series follows from a seemingly complicated condition
that is weaker than quasiconvexity. About thirty-five years after that, S. A.
Telyakovskil [35] gave a new proof of Siden’s theorem, and pointed out that
Sidon’s condition is equivalent to the requirement that ¢, — 0 as n — oo
and that there be a nonincreasing sequence (A,,) with the properties that
YomenAn < 00 and |Aa,| < A, for all n. Another way to state this condi-
tion is that the sizes of the first differences Aa,, are majorized by the first
differences of a convex sequence that tends to 0,

As we will explain in Section 4, this restriction on the size of the differ-
ences is equivalent to the requirement that

(1.1) Y72 max  |Agg|<o0.

am~—1 <ngam

In the late 1970's, G. A, Fomin [13] introduced the weaker condition that

s 1 1/p
(1.2) ng(‘?mnl 3 Aa,nlp) < oo

m=1 2m-—1<nsgm

for finite positive values of p, and showed that if (ay) tends to 0 and satisfles
condition (1.2) for some p > 1, then the cosine series is integrable. People
have also considered integrability of sine series, and shown [35], [13] that the
corresponding restrictions on the coeflicients (b,,) imply integrability if and
only if 327 |ba|/n < co.

Several other proofs of Fomin’s theorem have been found [29], [6], [14],
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[21], and it has been rediscovered at least once [7]. Except as noted below,
the condition that we use here is strictly weaker than all conditions on the
sizes of individual differences that have been previously shown to imply
integrability.

The present paper mainly reports on work that we did in the summer
of 1991. Six months later, we learned that N. Tanovié-Miller and various
co-authors [24, 8, 9] had, in papers that had not yet appeared in mid-1991,
also proved integrability theorems with the same kinds of conditions on the
sizes of differences. In view of this, we have slightly modified the presentation
of our results to stress the parts that differ from theirs.

We use some notation and some very basic ideas from the theory [15]
of amalgams of L? and #¢ spaces. This theory is usually presented on non-
compact nondiscrete groups like the real line R but the notions also make
sense on the discrete group Z of all integers and on the unit circle T. Given
a positive integer M cover Z with translates of the set {0,...,M — 1} by
multiples of M. Given a function d on Z and given indices p and ¢ in the
interval [0,00], let ||d||5.q,¢ denote the quantity obtained by first comput-
ing the #P-norms of the restriction of d to each set in the cover and then
computing the £%-norm of the resulting sequence. For instance,

UrLM—1 241/2
Hd”l.,Z,M:{; [ Z 1d(n)@} i

We use ||d||} 5 5 to denote the quantity obtained by proceeding as above
but omitting the two middle intervals [—M, 0) and [0, ). Thus

-2 o (j+1)M-1
lafyzne ={ > +Z [ J S |d(n)\f}”2.
J=—o0 n=jM

We will follow [6] in mostly Worklng with the complex form
o0
Z c(n)e™
n=-—0o00
of trigonometric series. We use function notation for the coefficients to save
on subscripts. We will say that a series with coefficients (c(n)) represents
an integrable function, or simply that the series is integrable if there is a
function F in L'{—m, 7) so that
& 7 —int dt
¢(n) = F(n) = JW’ F(t)e™™ —
for all integers n. By the Riema.nh~—Lebesgue lemma, a necessary condition
for integrability is that c(n) — 0 as n — =oo, but it is well known [37, §5.1]
that this is not sufficient.
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We combine the assertions made in the abstract as follows. Call a se-
quence (c{n)) regular if it tends to 0 at =cc and its differences Ac(n) =
e(n) — e(n + 1) satisfy the condition that

(1.3) Z || Ac|l},z,2m < 0.

m=0

Call the sequence sufficiently symmetric if

(1.4) iM«n

THEOREM 1. If the coefficients in o trigonometric series form o regular
sequence, then the series represents an integrable function if and only if the
coefficient sequence s sufficiently symmetric.

Before outlining a proof, we comment on the conditions appearing above.
Let ||¢|| o denote the sum of the series appearing on the left in condition (1.3)
and ||¢||x denote the sum on the left in (1.4). Then the sum of the two func-
tionals ||| 4 and ||| > is a norm on the space of regular sufficiently symmetric
sequences. This space of sequences is complete with respect to this norm.
It follows from the closed-graph theorem that the mapping thai sends each
coefficient sequence to the corresponding L'-function is a bounded operator
from the space of sequences to L. In fact, our methods show directly that
there are absolute constants 4 and B for which the L'-norm of the function
represented by the trigonometric series with coefficients (c(n)) is bounded
above by Alle|a + Bll¢|s-

For cosine series, the coefficients in the complex form of the series are
even, and condition (1.4} is automatically satisfied. Condition (1.3) reduces
to the one specified in the abstract. For sine series with coefficients (b(n))
condition (1.4) reduces to the statement that 3, ; [b(n)|/n < co.

Condition (1.3) is equivalent to the regularity condition obtained by re-
placing the indices (2™) by any sequence (ky,) for which the ratios k1 /kp
all lie between constants ¢ and b with 1 < a < b < co. It is also equivalent
to the requirement that

?

>, 1A
3 I “21;,2,1\4 ‘o
M==1

It follows from regularity that the sequence (Ac(n)) belongs to £, that is,
that the original sequence (c(n)) has bounded variation. A sequence (c(n))
with bounded variation is sufficiently symmetric if and only if

(L.5) i e(2™) — e(~2™)] < oo

m=0
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Again, the indices (2™) can be replaced here by amny sequence (k) that
grows rapidly enough but not too rapidly.

Now fix a regular sequence (e(n)). Given two positive numbers a and b,
denote the union of the intervals {a, b] and [~b, —a) by %[, b]. It is well known
that the sequence of Dirichlet kernels D,(t) = > p__, et is uniformly
bounded on each set £[§, 7] with § > 0. Since the sequence (e(n)) tends to 0
at +oo and has bounded variation, it follows by summation by parts that the
series ) oo _ . ¢(n)ei™ converges uniformly on each such set =[, 7]. Denote
the sum of the series by F(t). Matters essentially reduce to determining
whether F(t) has a bad enough singularity at ¢ = 0 to prevent F from being
integrable.

Let f(t) = (1 — e *)F(¢t). The series 5o ___ Ac(n)e'™ converges abso-

lutely to f(£), and hence f(n) = Ac(n) for all n. The function F is integrable
if and only if

iuw%<m.

For each natural number m let E,, be the union =(x/2™", 7/2™]. Then F
is integrable if and only if

> [ 1l < oo,

m=0 B,

Now in each set E,, the quantity |¢| is nearly constant, and the measure of
E,, is about equal to any value of |¢| in Ey,. So the sum above is finite if
and only if the sum, on m, of the average values of | f(f)| in the various sets
E., is finite.

We estimate these average values by splitting the series for f into the
partial sum s,(t) = 35, com Ac(n)e™ of order 2™ and the tail T, (t) =
F(t) — s (t). Then Ton(n) = Ac(n) if [n] > 2™ and Tin(n) = 0 otherwise. In
particular, | Tnl[1,2,0m < |Ac|} g 0m . This is exactly what we need to control
the size of [ [T (t)ldt.

Denote the measure of any subset B of [—x, @] by |[£]|. When [E| > 0
and g is an integrable function on E, denote the average (1/|E|) [ g by g=.

LEMMA 2. There is a constant C so that if g is an integrable function
on [~m, 7|, and if I s an interval of length /2L in [—m, 7], then

(1.6) lglr < Cllgll12.2m -

We will comment on various proofs of the lemma in the next section. Tt
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follows from Lemma 2 that

(1.7) Z |Twl2,, = C Z HACIM 2,21 — =Cllefla-

m=0 m=0

Given any integrable function f on [—m, ), let sy, (£)= Ei:_g,n f(n)e'mt,
with the convention that s_; = 0. Also let f, = sy — Sm—1 when m > 0.
Variants of the following statement have been used in earlier work [6, 14] on

this topic. We will prove it at the beginning of the next section.

LEMMA 3. The sums s, have the property thot

(1.8) I_Elmi [ lsmlt) = smlO)| dt < 027 32| F 1.
m Em

J=0

For the function f obtained from F as above, adding these estimates as
m tuns from 0 to co, and reversing the order of summation on the right
vields that

o0
(1.9) Z |$m — sm ()], <2C Y 1 Jill = 201 |11 = 2C] Ac]ls -

i=0
Inequalities (1.7) and (1.9) combine to imply that, for a series with regular
coefficients, the function F' is integrable if and only if the sum on m of the
numbers |s,,(0)| is finite.

Now $n,(0) = e(~2") — (2™ + 1). The two series Y oo_, |e(~2™) —

c(2™ + 1)| and Y00 [e(2™) — (—2™)| differ from each other by no more
than >, |Ac(2™)|. This sum is finite because regularity implies bounded
variation. So the sum on m of the numbers |$,,(0)| is finite if and only if the
series in condition (1.5) converges.

Thus F is integrabie if and only if condition (1.5) holds. This condition is
equivalent, for sequences with bounded variation, to condition (1.4). When F
is integrable, its Fourier coeflicients and those of f must satisfy the relation
fin) = AF(n } for all n because Ft)=(1- e~ F(£). But also f(n) = Aeln)
for all n. Therefore the sequences F and ¢ can differ only by a constant, which
must be 0 because both sequences vanish at infinity.

To summarize, regularity implies that the series converges except at 0
to F(t). Adding sufficient symmetry leads to the conclugion that F is inte-
grable, and that the given trigonometric series represents #. On the other
hand, if a series with regular coefficients c(n) represents an integrable fune-
tiom, Gﬁsay, then the function f : ¢ ~— (1—e™*)G(¢) will have two properties.
First, f(n) = Ac(n) for all n; second, the function t — f(#)/# is integrable.
Applying Lemmas 2 and 3 to f then yields that the sequence (¢(n)) must
be sufficiently symmetric. This completes the proof of Theorem 1.
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We conctude this section by stating our results on norm convergence. We
will prove them in Section 3.

THEOREM 4. If the coefficients c(n) in a trigonometric series form a
reqular and sufficiently symmetric sequence, then the sertes converges in
Ll-norm if and only if
{1.10) e(n)logln] -0  asn — tco.

The norm-convergence criterion (1.10) also follows from weaker restric-
tions on the sizes of the differences of the coefficients, provided that the
geries is assumed ¢ priori to represent an integrable function. Denote the
indicator function of any set E by 1z, even though this is inconsistent with
the convention that gg denotes the average value of the function g in the
set 1. Also denote the sum 3>~ [|dlf] 2 9= by [[d]’. Call a sequence {c(r))
asympioticolly regular if

(1.11) lim limsup{(Ac)- 1ypg gl = 0.
A—=l4 A soo

We will show that if the Fourier coeflicients of an integrable function, F'
say, form an asymptotically regular sequence, then the Fourier series of F'
converges in Ll-norm if and only if
(112} ﬁ(n) log|n| -0 asn— xco.

An even weaker regularity condition suffices here. Given an integer K
and a sequence (d(n))22 ., let

K
(1.13) a3 = > 4l 2.0m -
m=(
Note that when 2™ > AM, the middle intervals that are deleted in comput-
ing || -||{ 2.2 include the intervals +[M, AM]. So [[(Ac)- Liparannllyzom = 0
for these values of m, and
H(AC) B li[M,)\‘M}”J = H(AC) . 1i[M,AM]”3‘ when 27 > MM

Given numbers A > 1 and M > 0, let K(A, M) be the smallest integer
with the property that 25(WM) > (X — 1)M. Say that the sequence c is
asymptotically locally regulor if

A=14 M eo '

It is easy to verify that regularity implies asymptotic regularity, and that
this implies asymptotic local regularity; moreover, one can devise examples
to show that the converse implications are false.

THEOREM 5. If the Fourier coefficients of an integrable function F form
an asymptotically locelly regular sequence, then the Fourier series of F con-
verges in LY -norm if and only if F(n)logln| — 0 as n - oo,
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2. Proofs of the lemmas. We begin with Lemma 3. Clearly,
g
@1 s snOlm. € 3 [Flsup{e™ 1[0 € Bl
n=-—2m

Now |ei™ — 0| < |nt|, since |(d/dt)e’™| = |n|. Also, |t] < =/2" for all
t in E,,. So the supremum in the sum above is at most |n|v/2™. losert
this upper bound, and then split the sum into pieces corresponding to the
functions f;. This yields inequality (1.8) with C = =, thus completing the
proof of Lemma 3.

In the context of Lemma 2, we can use L°°-norms on [~Tr ] and £*-
norms on the integers to get the elementary estimate |g| g, < |iff||m 19]/1.
We can rewrite this £2-norm as ||g]]1,1,2m. The point of Lemma 2 is that in
bounding |g|z,, we can replace the middle index I in ||g}|1,1,2m by a 2, and
use a multiple of |g]|1,2,2m, which can be much smaller than |[§]1,1,0m.

In proving Lemma 2, we will work mainly with L%*norms and £*-norms.
Given a function g and an interval I satisfying the hypotheses in the lemma,
translate I and g so that I is centred at 0. This has no effect on igl;, or |3,
or [|Fl1,2,2m -

Fix m >0, and let hy(t) = 27™ Zi:o_l ¢, Then the real part of i,
is bounded below by 1/+/2 on the interval [ = [—w/2"+? /2% 2] Again
use the notation 1; for the indicator function of J. Then

(2.2) gl < [ V2hogl- 11 € V2l afhmglls
I
= V272 [ hglla .

We show below that ||2mgllz < 2v/2~™|§]l12.2. Dividing the inequality
above by || yields inequality (1.6) with C' = 4//T.

Of course, hmg is the convolution of hm and 7 g Now h . Vanishes outside
the interval [0,2™) and [ llz = 272 Let 3 Gj be the restriction of § tc
the interval [72™, (7 +1)2™), and suppose initially that the pleces g; vanisk

when j is odd. The various convolution products ﬂm * gy with j even have
disjoint supports. So, in this case, Hhm #Jll2)? is equal to the suin over ever
s of the terms (|[B, * §;]l2)%. By Young's lnequahty for convolution, cact

of these terms is bounded above by (|| l2]/d;11)% = 27™(|;]1)?. Adding
over even j's yields that
(23) (1 # Gll2)* < 27 (|3ll1,2.2m)?

provided that §; vanishes for all odd values of j. The same estimate hold:
when g; vanishes for all even values of j. In general, simply split 7 into twe
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parts vanishing in alternate intervals of length 2, and apply the estimate
(2.3} separately to each part to complete the proof of the lemma.

There are many precedents for Lemma 2. It is equivalent by a duality
argument to the statement that if & is a function that vanishes outside some
interval, I say, of length 7/27 and if |kl s < 2+1 /7, then [[kflcos,m <
C. If the function & also has the property that its average value is 0, then
it is an afom as in [11], and the conclusicon about the Fourier coefficients of
k can be proved as in [11, p. 574]. If the average value, ¢ say, of &k is not 0,
then split k as ¢l; + &, where ¢ is an atom supported by the interval I. It is
easy to verify by direct calculation that the coefficients of ¢1; also have the
required property.

The corresponding statement about Fourier transforms of atoms on the
real line has been rediscovered repeatedly [2, p. 71]. Again the extension to
other hounded functions supported by intervals is easy, and the inequality
on the circle follows from the one on the line. Alternatively, on the line, one
can use a change of variable to reduce matters to proving the estimate

1Fllsoa < CllFllec

for functions f that vanish outside some interval of length 1. This estimate,

with the L®-norm on the right replaced by an L2-norm, which is smaller

for such functions f, can be found in work of Plancherel and Pélya [25].
Another application of duality leads to the estimate

(2.4) lgll2.001 < Cllglinzr

which is an endpoint for F. Holland’s extension [18] of the Hausdorff-Young
theorem to amalgams. This estimate and versions of it that follow by rescal-
ing the variables are the analogues of Lemma, 2 on the real line. Our method
of proof transfers easily to that setting, and has the advantage of avoiding
the use of duality. Conversely, it is easy to deduce Lemma 2 from inequal-
ity (2.4).

There is a striking similarity between the regularity condition (1.3) and
a condition that arose in unpublished work by C. Fefferman. He showed that
a sequence (d, ) has the property that d - G e  for all G in classical H* if
and only if supyy [|d]j} 2,5 < 0. It suffices here to take the supremum over
valunes of M that are powers of 2, and then the condition is that

so (13-

(2.5) sup {Z { Z deﬂg}l/? < o0,

n= 727"

Various proofs of the multiplier theorem were published in [28], [31},-[5], and
[19]. A key step in all of these proofs is to show that condition (2.5) implies
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that the series

[e0]
(2.6) > dne™
n=0

represents a function with bounded mean oscillation.

In [28] and [31] this is accomplished by first proving a dwual statement
about coefficients of H '-functions. Except for the use of duality, the methods
used in 28] and [31] are similar to those used in the present paper. These
methods can be used to give a direct proof that the series (2.6) must belong
to BM O if its coeflicients satisfy condition {2.5). Note first that the condi-
tion implies that d € €2, so that the series (2.6) does represent a function,
f say, in L*[~x, 7). Let I be an interval with length lying between =/27+2
and 7/2™ %!, and split the series for f into pieces s,, and T, as in the proof
of Theorem 1. The proof of Lemma 2 also applies to intervals like [ and
yields that

le!I < 20‘[Tm”1,2,2m :
The norm above is majorized by the supremum, K say, in (2.5). It follows
that

[T, = (T )11 S ACK .

Similarly, the proof of Lemma 3 applies with the set E,, replaced by the
interval I, and yields that

m
(2.7) lsm = (sm)1ls <2027 29 F1.
§=0
Inserting the upper hound ||J/”}H1 < K in (2.7) completes the proof that
feBMO,
Given an integrable function f and a positive integer mi, let

0SCon(f) = sup{|f — felr : /27 < |T) < m/2m},

Then f € BMO if and only if the sequence (OSC,, ()%, is bounded. The
proof of Theorem 1 shows that if

o
(2.8) Z [ 1122,0m < oo,

=0
then the sequence (OSC,(f)) belongs to £!. This smoothness property of
[ is the endpoint case M09, .1 of a class of mean-oscillation conditions in-
troduced by Ricci and Taibléson (26]. The spaces MOF, with o > 0 and
1 < 5,7 < co coincide with certain Besov spaces [26, 12]. The proof of
integrability in [14] used properties of Besov spaces.

To see that the conclusion of Theorem 1 holds with | F||; bounded above

by Alclla + Blle||z, first note that [F()] < (x/2)|f(#)|//t]. Then use the
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splitting
(2.9) F(£) = sm(0) + [sm(t} — m(0)] + Tn(t)
when t € E,,. By inequality (1.7),

Z f‘T ‘t' <2GHCHA

m=0 g,
for all sequences ¢ that tend to 0 at 4-co. By inequality (1.9),

Z f ism 5m 1‘ | <4G”AC”1

m=0 E,

Moreover, there are constants C” and B so that

S [ lsm(0 |,t| < S 90s5,.(0)) < C”|| Aclly + Bllells
m=0

=0 F,
Finally, ||dc|li £ 2|l a.

3. Proofs of the norm-convergence theorems. By Theorem 1, the
hypotheses in Theorem 4 imply that the series represents a function, F' say,
in L(T). Since regularity implies asymptotic local regularity, Theorem 4
follows from Theorem 5.

It is still worth while giving a separate proof of Theorem 4, to clarify
the pattern in the more complicated proof of Theorem 5. For each pos-
itive integer N, let Vy be the trigonometric polynomial with coefficients
that are equal to 1 on the interval [-N, N], that vanish outside the inter-
val (—2N,2N), and that are linear on each of the intervals [N,2N] and
[—2N,—N]. As is well known, these (de la Vallée-Poussin) kernels can be
written in the form 2K,n — K for suitable Fejér kernels Ky, and the
convolutions F Vi converge in I*-norm to F.

If the partial sums Sy of the series converge in Ll-norm, then they
nust also converge to F. So the series converges in Ll-porm if and only if
| F*Vy—Snlj1 — 0as N — oo. The coefficients of the difference F+xVy — S
vanish outside the intervals (N, 2N). Split this difference into pieces Ly
and Ry with coefficients vanishing outside the intervals (—2N,—N) and
(N,2N) respectively. It is clear that if |[Lyl{s — 0 and ||Bnfly — 0 as
N - oo, then |F % Viy — 8y|ly — 0 as N — oc. The converse implication
holds too, because Ry is equal to the convolution of F'x Viy — Sy with the
polynomial ¢ — ¢*V*Vy(t), which has L*-norm no larger than 3.

In fact, |Ry]l1 — 0 as N - oo if and only if ¢(N)log N — 0 as N — oo,
and | In|p — 0 as N — oo if and only if ¢(—N)log N — 0. To verify this
for Ry let Ry (t) = Ry (—t) for all £, and consider the sum Ry + Ry. Then
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HEN Il» = ||R~]l1 and the frequencies of By allliein the interval (-2, ~N)
Applying the observations in the previous paragraph to By + Ry shows tha
its L'-norm tends to 0 as N — oo if and only if this is true for the norm o
Ry alone.

We fill the gap in the spectrum by letting Gy = J%N +e{N)Dy + By
We will see below that the hypotheses of Theorem 4 imply that || x|y — (
as N — co. Assuming this, we have |[Rnfl; — 0 as N — oo if and only i
le{N)YDy|l1 — 0 as N — oo. Now the latter condition holds it and only i
c(N)logN —+ 0 ag N == co.

To estimate ||Gw||1, observe that its Fourier coeflicients are constan
except in the two intervals (2N, —N] and [N,2N], where G coincides
with ¥y - F. For values of n in these intervals, split AG ~(n) as

Vi (n)Ac(n) + e(n -+ l)AvN(n) =dp(n) +ey(n), say.

Set dx(n) and en(n) equal to 0 for all other values of n. The hypothesis

that ||clla < oo and the fact that |T7N(n)| < 1 for all n imply for each value
of m that |EdNH1,2,2’" - 0 as N — oo. Also

(=]
1wl = Z ldnllipgm =0 as N — oo.

It is easy to verify that |[Vxl a4 < 20 for all N. This fact and the hypothesis
that ¢(n) — 0 asn — Hoo imply that |lex|’ — 0as N — oo. So ||Gylla — C
as I — oo; moreover, [@nllz = 0, becanse Gy is even. Finally, IGn]L £
AlGxla+ B||@x| s, so that |G w1 does indeed tend to 0 as N — oo,

To prove Theorem 5, we use condition (1.13) with the parameter ) run-

ning through the range of the sequence (1+1/k)%2,,. Given & > 0, we choose
integers k > 1 and H so that

(3.1) IF Loqarar e sigGepnnny < €

when A = 1+1/k and M > H. We will not change k in the rest of the proof,
but, if necessary, we will replace H by larger integers to ensure that other
conditions also hold.

We use the modified (de la Vallée-Poussin) kernels Vi, y with coefficients
that vanish outside the interval {(—(k+ 1), (k4 1)N), are equal to L on the
interval [~kN, kN], and are linear on the intervals [k, (k + 1)N]. Since

VkN = [(k%—l)ﬁ R+1)NHKAN]/FC we have ||F*V;CN F||1 — 0 as N — o0.
We alter the choice of B so that

(342) . “F*Vk’]\;—F”l <€
whenever kN > H.
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Given M > H, let N be the smallest integer for which kN > M. Matters
reduce to controlling the size of the Ll-norm of the difference F * Vi v —Sne
Again, split this difference into pieces L s and Rps. Then R,y vanishes off
[M, (k4 1)N]. Since k(N — 1) < M, it follows that N < M/k + 1 and that
(k+1)N <€ AM + k. So [M,(k+ 1)N] C [M, M + k]. We require that
H > k? in order to ensure that & < M/k = (A — 1)M. Then the support
of Rps is included in [, M 4 2(A — 1)M], and this is included in [M, 3A].
It follows as before that ||Ras|{: and [[Lasf|: are both bounded above by
3[{Lar 4+ Rarlls- The idea again is to show that |[Razl1 is small if and only
if e(A) log | M| is small. N

It follows from inequality {3.1) and the inclusion of the support of Ras
in [M, M + 2(A — 1)M] that [|[Ras|[% py S < 2¢. On the other hand, ||[Ra||’
can be much larger that this, because it is computed by summing all terms
HRM 1].9,9m with 27 < AM, rather than restricting the summation to terms
with 2™ < (A — 1} M.

We work instead with the function Qu given by ¢ — el MtR ().
This polynomial has the same L'-norm as Rar also [@umilkoan
# || Bl % (5 ary- The frequencies of Qas all lie in [N, N + (k + N — M].
Rewrite the right endpoint of this interval ag (kN —A)4+2N. Then AN M <
k because k(N — 1) < M; also, our requirement that H > &2 implies that
k< M/k < (kN)/k = N.So (kN — M) < N, and @y vanishes off [N, 3N).
Hence,

1Qumll" < 2/1QuellFe(a 01y >
which is bounded above by 4e. Lgt QM (lf) = Qr{—t) for all ¢, and deal with
102 + Qarlly by letting Gar = Qar + F(M)Dy + Qur.

The differences of the coefficients of Gy vanish outside the set &[N, 3N].
On this set, split these differences into terms das(n) and exr(n) as in the
proof of Theorem 4, but replacing ¢(n) by F(n), and Vi by the polynomial
Py v with the following properties. The coeflicients of Pps,x vanish outside
the interval [~(k + 2)N + M, (k + 2)N — M, they are equal to 1 on the
interval [—(k+ 1)N + M, (k+1)N — M], and they are linear on each of the
intervals +[(k + 1)N — M, (k + 2)N — M].

Much as before, |ldsr||" < 4= whenever M > H. Now use the fact that F
vanishes at 400 to further alter the choice of H so that |F(n)| < & whenever
|n| > H. Then |lea||’ < 40¢ for all M > H. It follows that {Gar|s < 44e
for all such values of M.

We now suppose that the Fourier series of F converges in Ll-norm, and
we further alter the choice of H so that we also have ||F — Sarlly < & for all
M > H. It follows that

(3.3) | Las + Baclly = |1 F # Vaw — Sulle < 28
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for all such values of M. This implies that |[Ras|l1 < 6z, and hence that
|Gas = F(M)Dwlls = [[@ae + Qurllr < 12

for all M > H. But also, [|Gar)y < 44e, so that |F(M)Dy||; < 56¢ for al
such values of M.

In any case, there is a positive constant C' so that | Dyl = C'log N for
all N > 1. Here, N > M/k, and M > H. As noted earlier, our requiremen
that H > k* implies that & < N; hence N? > kN > M. Therefore,

|F(M)log M| < 2|F(M)log N| < (2/C)IF(M)Dyl|y < (112/C)z .

So hypothesis (1.14) and L'-norm convergence of the series imply that
ﬁ(]\ff JlogM — 0 as M — co. By symmetry, these assumptions also im-
ply that F(~M)log M — 0 as M — co.

Finally, drop the assumption of L'-norm convergence, but assume con-
dition (1.12}. Then choose H > k? so that conditions (3.1) and (3.2) both
hold when M > H, and so that | F(—M)Dy||; and ||[F(M)}Dylly are both
bounded above by £ for all such values of M. With this choice of H,

1O~ + Qulh = |Gar — FIM)Dyl|; < 45¢.

Then |||y = [|@n |1 £ 225¢, and this is also an upper bound for ||L ]|y
So

|1 F * Vv — Surlly = || Loz + Rarl|y < 450¢,

and hence [|Sy — F||; < 451¢ for all such values of M. So conditions (1.14)
and (1.12) do indeed imply L'-convergence of the Fourier series of F.

4. Conditions on individual differences. We begin with the equiv-
alence between condition (1.1) and the Sidon-Telyakovskit condition, as an
example of a type of argument that we will use again. Suppose that the
sidon-Telyakovskil condition holds. Then the smallest sequence (45) with
the properties specified is the one given by A, = sup{|Aay| : k = n}. Since
this sequence (A,) is nonnegative and nonincreasing, the condition that
322 0 An < o0 is equivalent to the reguirement that

¢

[}
(4.1) E 2™ sup  |Aay| = Z 2™ Aym < 00 .

ome=1 -,1227)1.“-1

It follows that condition (1.1) holds. On the other hand,

m==}

o

sup |da,| < Z cmax |Aag].
m22m j=m‘_123“'1<n521

Multiplying by 2, adding on m, and reversing the order of summation on
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the right shows that

-] o
E 2™ sup |Aa,| <4 g 20 max |Aan|.
ooy n>am-1 5=0 Bi=lngs

So condition (1.1} implies condition (4.1).
Fomin’s condition (1.2) can be rewritten in the form

(4.2) 2 i 2('m"1)/P’( > |Aan1p) VP 00,
m=1

Fr—langdm

where p’ denotes the conjugate index given by 1/p + 1/p’ = 1. Then p' is
finite when p > 1. In these cases the factars 2(m—1)/7 grow geometrically
as m — o0, and the same kind of argument as above shows that condition
(4.2) implies the seemingly stronger condition that

(4.3) i (m=nita' ( 3 EAanF’)l/p <00.
m=1

n=2m-=1

When p = 1, condition (4.2) becomes the requirement that {Aay) € £*,
while condition (4.3) states that

oo [ss)
(4.4) S (Y 146al) <o
m=1 p=0m—1
As in [13], reversing the order of summation in condition (4.4) shows that
it is equivalent to the condition that
=]
(4.5) Z |Aan|log{n + 1) < oo,
n=0
which is strictly stronger than merely requiring that (Aa,) € £'.

In fact, it is known [37, Chapter 5] that, for sequences {a,,} tending to 0,
condition (4.5) implies integrability of cosine series with coefficients (ar ), but
monotonicity does not, and hence neither does requiring that (Aay,) € £1. To
relate condition (4.5) to regularity, proceed as in the discussion just before
the proof of Lemma 2. Rewrite (4.4) in the form } 0 [lAall] 1 5m < o0,
and replace the middle index 1 in |[Aaf|] ; 5= by a 2 to get the condition
that

%1
(4.6) Al =Y lAa]igem < co.
m=0

This step is valid, since #'-norms are stronger than £*-norms.
We can pass from Fomin’s condition to condition (4.6) in a similar way.
By Hélder’s inequality, if condition (1.2) is satisfied for some value of p, then
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it is satisfied for all smaller values of p. So we may assume that 1 <p <2,
Then we rewrite (4.3) in the form
oqQ
(4.7) S 2™ || Al 0m < 00,
m=(

Consider ||Aal|’, and apply Holder’s inequality to the inner sums to get
y

12 -1 G "
(4.8) S |Aa,| <207 [ 3 |Aa”|f’] .
n=jam n=jam

Fix m and regard the right side of (4.8) as a sequence indexed by j > 1.
Because p < 2, the £2-norm of this sequence is majorized by ity £/-norm,
which equals the summand on the left in (4.7). Hence Fomin's condition
implies that |jal|a < oc.

In Tanovié-Miller’s extension [33] of Fomin’s condition the indices 2™
are replaced by indices k,, with the property that kuy.41/kn > @ for all m
and sorme constant @ > 1, and condition (4.2) is replaced by the requirement
that

(4.9) ik},{?’( S IA(L.,L{?)I/I]<00.

m=0 by En <l lim 1

It is then also required that

oo kms1—1 L
(4.10) Z Z iAam|log( ]:H'l) < 0o.

m=0 n==fm,

It is still assumed that p > 1, and it still turns out that if this combination
of conditions holds for one value of p in the interval (1, co], then it also holds
for all smaller values. When the ratios k41 /%y, [orm a bounded sequence,
condition (4.9) is equivalent to Fomin’s condition (4.2), and the second re-
quirement (4.10) reduces to the condition that (Aa,) € £, which follows
from (4.2). When there is no upper bound on the sequence (ki1 /b ), how-
ever, the combination of conditions (4.9) and (4.10) does not [33, p. 508]
imply Fomin’s condition.

In relating condition (4.6) to this combination, we may assume that
1 < p < 2. We first consider a sequence (dy,) that vanishes outside one of
the intervals [kar, kars1), and we seck an estimate for |d]}’ in terms of

B0 ) amd Y

kag Sn<har 41 har En<kprin

dn| log(kazy1/kae) .

Any sequence can be split inte such special sequences (d,, ), and we can s

such estimates over all values of A to deduce regularity from conditions
(4.9) and (4.10).
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In any case, {|di|} 5 9m < {|d|l1 ,9m because £F-norms are stronger than
£2-norms here. Cover the support of d with intervals of the form [j2™,
(74+1)2™), and apply Holder's ineguality in each interval in the cover to get

Alpam <2 (5 ad)

Ry sn<harg

Then add these upper bounds for all values of m for which 2™ < ks, and
get at most

; 1/p
Clf” (> AdaP)
karSn<kiarg
In this step, it is necessary that p > 1.

The term [|d[l] 5 m is also bounded above by 37 . ek, ., 1dn|- Adding
this fixed upper bound over values of m with kar < 2™ < knreq vields at
most

k karri—1
Zlog( f+l> Z fdn] -

M Sl
Finally, [|d]} 3 gm = 0 for all values of m for which 2™ 2 kar41. So Tanovié-
Miller’s condition implies condition (4.6).

To get examples where condition (4.6) holds but the ones nsed earlier do
nat, consider series in which the coefficients are constant in long intervals.
Suppose for instance that Aa, = 0 unless n is a power of 2. Then regularity
becomes the requirement that

(4.11) i i |Aa,? < co.

m={ n=23%"

Let a, = 1/(m -+ 1) for all integers n in each interval (2™, 2™*']. Then
Aagm = 1/(m+1)(m+2) for all m,

and Aa, = 0 for all other values of n. It is easy to check that condition
(4.11) holds, but that conditions (4.1), (4.2), and (4.5) do not. Similarly,
if condition (4.9) held for this sequence (@), then it would follow that

I fa? ’/ log” (km) < o0, but in fact this series must diverge when p > 1.
It is known [3] that cosine series where the coefficients tend to 0 and
have differences that are 0 except on a lacunary set are integrable if and

only if condition (4.11) holds.

QUESTION 1. Suppose for a sequence {dr) that the conditions that g, — 0
as m — oo and that |Aay| < |dy| for all n imply integrability of the cosine
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series with coefficients (ay). Does it follow that

o0
[l = > Bl zom < 002
mea=(

As noted above, the answer is yes if d,, = 0 off a lacunary set of n’s, but
the question seems open in general. It is known [32] that on the real line the
condition that || f|l12 < oo characterizes the measurable functions f with
the property that every measurable function with smaller absolute value
than f has a Fourier transform that is a function. Question 1 is complicated
by the fact that regularity involves a combination of overlapping amalgam
DOTIS.

Fefferman’s theorem about condition (2.5} can be rephrased as follows.
A sequence (dn)52.; has the property that sup,,5q |d]|] 5 gm < o0 if and only
if every series Y oo | ene™ with |ey| < |dp| for all n belongs to BMO.

QUESTION 2. Does the condition that ||d||” < oo held if and only if every
series with coefficients magorized by |d| belongs to the space MfOSO‘:l?

In [10] and [33] there are discussions of various conditions that were
known at the time to imply that property (1.12) characterizes L'-norm
convergence of Fourier series. The weakest of these conditions that involves
only the sizes of individual difference of coefficients is that there be some
index p > 1 for which

(412) i, Timsup A7 (AF) - Lagaz,aanlp = 0-

Subsequently, it was shown [30] that property (1.12) characterizes L'-norm
convergence under the seemingly weaker condition that there be some value
of A > 1 and some index p > 1 for which

(4.13) sup MY [(AF) - 1eppr il < 0.

This condition is discussed further in [16] and in [22, p. 205], where it is
pointed out that if the condition holds for one value of A > 1 then it holds
for all A > 1.

As in the comparison of integrahility theorems, condition (4.12) implies
asymptotic regularity. On the other hand, examples with lacunary differ-
ences of coefficients show that there are regular sequences that do not satisfy
condition (4.12). These examples also show that condition (4,13) can fail for
such sequences.

Another way to explain this is to observe that if condition (4.13) holds
for some index p > 1, then condition (4.12) holds for all smaller values of p.
To verify this, we suppose that (4.13) holds when p = ¢; as noted above, we
may take A = 2."We then fix an index p < g, and let 1/r = 1/p — 1/q. We
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consider values of A in the interval {1, 2], and apply Hdlder’s inequality to
get

(AF) - Lo anlle £ HAF) - Laparoallg - [ Lepeaanll
By inequality (4.13), with p = ¢, there is a constant, C say, so that the
£9-norm above is no larger than CM Y4 Provided that (A — 1)M > 1,
there are no mors than 4(A — 1) integers in the set [, AM}. Then the
¢#"-norm above is no larger than [4(A — 1)M]/". Combining these estimates
yields that

MYP(AFY - Tgpmpanlls < MYP CMYVEA0 - MY

for all M > 1/(A — 1). In particular, this provides an upper bound for
the limit supremum of the left side above. The right side simplifies to
C[4(X — 1)]*/7, and this tends to 0 as A — 1+, because 1/r > 0 here.

5. Other conditions on differences. So far, we have only considered
conditions on the sizes of individual differences. Fomin proved his integra-
bility theorem for cosine series by showing that conditions (1.1) and (1.2}
imply that

o0

(5.1) >

m=2

[/

z Attt — Aam«}-k
k

k=1

Telyakovskil had shown earlier {34] that this condition on the sizes of com-
hinations of differences implies integrability of cosine series when the co-
efficients also tend to 0 and have bounded variation. The example with
an = 1/(m + 1) for all integers n in each interval (2™,2*] shows that
(4,6) does not imply (5.1). We do not know whether Telyakovskil’s condi-
tions for integrability imply regularity.

Another sufficient condition for integrability involves differences with
various step lengths. To state it, we revert to using the complex form of
trigonometric series. Given a sequence (c(n))52 ., of coefficients and an
integer k, let Apc(n) = e(n)—c(n-+ k). We will explain below how standard
methods show that if e(n) — 0 as n - Zoo, and if

=]
(5.2) S22 | Agmells < oo,
m=0 ) .
then the trigonometric series with coefficients (e{n)) is integrable.

Later in this section and in the next section, we explain why, for se-
quences tending to 0, conditions (1.3) and (1.4} imply condition (5.2), thus
providing an alternate proof of part of Theorem 1. In general, condition (5.2)
does not imply condition (1.3), because it does not imply that the sequence
{¢n) has bounded variation. In the next section, we show that condition (5.2)
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does imply conditions (1.3) and {1.4) for sequences that tend monotonically
to 0 at --oo in the following sense. In addition to requiring that the sequence
tend to 0 at doo, we also require that there be a positive integer N so that
the sign of Ac is constant in the interval [IV,0c) and also constant in the
interval (—oo, N]. If a cosine or sine series has real-valued coeflicients that
tend monotonically to 0 in the usual sense, then the corresponding complex
form of the series hag coeflicients that satisfy the monotonicity condition
above.

We deal first with the fact that condition (5.2) implies integrability of
series with coefficients that tend to 0. The corresponding implication on the
real line, with the summation on m running from —oc to oo was regarded
as known twenty-five years ago {17]. We include a proof of the version that
we need here to clarify its relation to Theorem 1.

If condition (5.2) holds then, in particular, ||Acllz < oo, so that the
series with coefficients (Ac(n}) represents a function, f say, in L?. As in the
proof of Theorem 1, matters essentially reduce to showing that the function
F it f{#)/(1 —e ™) is integrable. For each nonnegative integer m, let
Fo(t) = F(t){1 — e™™"*) for all £. Then

am 1 2]

(5.3) Fu(t) = F()(1 - ™) Z e f(2) Z okt
k=0 k=0

for all t. Because of this, the coefficient F, (n) is the sum of the coefficients
Ac(7) of f as j runs through the interval [r,n-+2™), and is therefore equal
to Aameln) for all n.

On the other hand, the real part of (1—e~™") is at least 1 for all points
i in the set E,; that was used in the proof of Theorem 1. So,

JIFOIE < [ 1ol < 1o, 2l Pl
B

= OB = 27O/ A

Adding these inequalities as m runs from 0 to o yields that F & L' with

1 oo}
[P E%:‘oz 2 A2

Note that the factor 37 ~* e='** that appears in line (5.8) is just 2™ times
the conjugate of the factor h,,(t) that was used in the proof of Lemma 2.
The same factor could have been used in both proofs, but the choices made

seemed more natural in each context.
As mentioned earlier, conditions (1.3} and (1.4) imply condition (5.2) for
all sequences that tend to 0 at £oo. In the next section, we will prove this
directly, using many of the same ideas as our first proof of Theorem 1. We
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can prove this implication much more quickly, however, by observing that
in proving Theorem 1, we actually showed more, namely that

oo
(5.4) D rEF 1, < oo,
m=0

We also deduced this from the assumption that the coefficients tend to
0 and satisfy condition (5.2). Denote the left side of inequality (5.2) by
|ellB(z/2,2,1)- Then condition {5.4) implies that ”ﬁ”B(l/z,g'z) < . This cor-
responds to well-known [23] characterizations of more general Besov spaces
on R.

The special case that we need here can be proved very simply. It suffices
to estimate 27™/2||(F - 15, )" | B(1/2.2.1) in terms of 27™/2||F . 15_||2. To
simplify the notation suppose that the function F' vanishes off the set E,,.
The sequence Ay F(n))2° . consists of the coefficients of the function
Fiy it = (1 —e~2"1)F(£); so the norm of this sequence is equal to || Fy[|a. In
any case, this norm is bounded above by 2|| F|| 3; in the present case, the norm
is also bounded above by 2F~™x{|F||a, because of the restriction on the sup-
port of Fy. Use the first upper bound when % > m, and use the second one
otherwise. The outcome is that ||Fi| g(1/2,2,1) < C[|F|lz if F vanishes off Ey,.

In [8] Buntinas and Tanovié-Miller denote the condition that we call
regularity by dv?; they show that dv? implies another condition that they
call ev?, and they show that this second condition implies integrability of
cosine series. Condition cv? does not imply condition dv? because it does
not imply bounded variation. Their proof of integrability actually shows,
however, that cv? implies condition (5.4), and hence implies condition (5.2).
The conditions in [34], namely that the coefficients (a,) in a cosine series
tend to 0 have bounded variation and satisfy (5.1), also imply (5.4), but our
proof of this is too complicated to include here. :

Condition (5.2) is the dual version of the smoocthness condition that
arises in Bernstein’s theorem on absolute convergence of Fourier series. It
is easy to formulate dual versions of our conditions that also imply abso-
lute convergence. Suppose for instance that f is continuous on the interval
[~m, 7], with f(—m) = f(r), and that f is differentiable in the interior of
this interval except possibly at 0. The analogue of condition (1.3) in this
setting is the requirement that

e o]
(5.5) ST g pom < 00
m=0

Here, the functional {|-[[7 5 . jom is defined by using the interval [0,7/2™) and
disjoint translates of it to cover [—m, w), and then computing £? combinations
of Ll-norms over the intervals in the cover, but omitting the two middle
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intervals. Qur method shows that if f satisfies the conditions specified above
then

(5.6) i |f(”); < 0o if and onty if Dj: w

n=—00

dt < 00.

As above, however, the method actually proves the stronger conclusion tha

(5.7) izm/?{ > \f'(n)!z]wmo,

m=0 2re<in|<am+l

and this is equivalent to the requirement that f € B(1/2,2,1). Half o
this equivalence is the well-known fact that Bernstein's method shows tha
absolute convergence follows from the assumption that f & B(1/2,2,1).

6. Another proof of integrability. Suppose first that condition (5.2
holds, and that the sequence tends monotonically to 0 at Zoo. Let IV be
a positive integer so that the sign of Ac is constant in the interval [N, oo’
and also constant in the interval {—co, N]. This implies that Ac € £, S¢
|Acl|i,2,0m is finite for all m, and in verifying inequality (1.3) it will be
enough to show that 3, ||Acll] 5 4m < oo for some integer M.

Choose M so that 2™ > 2V. Then fix an integer m > M and an integes
j & {—1,0}. For each integer k in the interval [{j — 1/2)2™, §2™) the sign o
Ac is constant on the interval [k, k- 2™%!), and the latter interval includes
[72™, (7 + 1)2™). Hence

(§+1)2m -1 kg™l
N lde(n) < ] 3 Ac(n)| = | Agmsrc(k)]
n=jam n=k

for all such integers k. Square this estimate, and add as k runs through most
of an arithmetic progression of step-length 2™ to get,

(6.1) [l Aclioaml € 57 [Apmsrelho + 522
j=—o0

for all integers ky in the interval [2~1 2. Now add as by runs througt
that interval, and take a square-root to get

2('!’!1—1)/QHAC[ ilg‘gm < HAQm-mf_{Hz .

Finally, divide by 20"~1/2 and sum on m to get

[s o o8]
> HAcligam <2 Y7 272 Ay ]
m=M m=M

which is finite.
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At this point, we could appeal to Theorem 1 to deduce sufficient sym-
metry from regularity and the fact that condition (5.2) implies integrability
when the coefficients tend to 0. We prefer, however, to work directly with
condition (5.2) and the fact that sequences that tend monotonically to 0
at foo have bounded variation. Given a positive integer m, let Z(2™) be
the average of e(n) over the interval [2™, 2™ 4 2m~1), and define Z(—2™) by
averaging over the interval [—-2™, 2™~1), As was pointed out in Section 1,
condition (1.4) is equivalent, for sequences with bounded variation, to con-
dition (1.5). Similarly, the latter condition is equivalent, for such sequences,
to the requirement that

(6.2) Z 2™ — &(—2™)] < oo
m=1

for sequences of bounded variation. Now

27
oy 1
[E2") ~ =2 < oy Y 2™ R) o2 kR 2T
k=0

By the Schwarz inequality, the swm on the right is bounded above by
2m=1121 Apirel|2. Tt follows that

[s 0] oo .

ST — -2y <2 3 22 Aguupacl

me=1 m=1i
which is finite. So condition (5.2} does indeed imply conditions (1.3) and
(1.4) for sequences that tend monotonically to 0 at -co.

The converse implication holds for all sequences that tend to 0 at %oo.
We saw in the previous section how this follows from our first proof of
Theorem 1. Proving the implication directly seems to require steps that
resermble those in that proof. Suppose that conditions (1.3) and (1.4) hold,
and again use the fact that

42" 1

(6.3) Agme(n) = Y Ac(j).
j=mn

Split the sum on the right into a part, &,,(n) say, involving indices § with
—amtl < 4 < 2™ and a part, Tm (n) say, involving all other values of j.

Cover the integers with disjoint translates of the interval [0,2”). Then
|fm(n)| is bounded above by the £'-norm of Ac over the translate containing
n and possibly the next disjoint translate to the right, and 7}, was defined
so that the middle two translates do not have to be used here. Hence

(=]
37 Tk +r2™)P < [2]]Acly5,0m ]

T -0
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for all integers k. Add these estimates as k runs through the interval [0,2"")
and take a square root to get [{Tom |2 < 207 T2/2|| Ac|] 5 gm. Therefore

2273 Tnlle £ 2le]a,

m=0
which is finite.

The sum %,,(n) is empty unless n lies in the interval {~2™F' 27y Sup.
pose first that n € [0,2™), and split 3, (n) into subsums, ﬁ,ﬂ,b(n) say, ir
which the index j runs through the interval I}, that is equal to [0, 1] if & == (
and to (2*~1,2¥] otherwise. A particular subsum fi . (n) only occurs in for
mula {6.3) when k < m; for the moment, define ﬁ,,m (n) to be 0 when k >
and when n < 0. The sum ﬁcm(n) is empty when n > 2% and hence s alsc
equal to 0 in that case. So, for fixed &, the sum fk,m(n) vanishes unless

n € [0,2%]. In any case, | fx.m(n)| is bounded above by the sum of the terms
|Ac(7)| as 7 runs through the interval I),. Therefore

* 1/2
(6.4) | 3 Fem)P] < @ 1M 1A
n=— o0 iely
Since the quantity on the left is equal to () when m < k,

S e[ 5 ] < 3 et Y jact).
m=k

-m==0 n=-—oo jeliy
Reversing the order on the right vields the upper bound 8 > ser, 1Ac(d)

for the contribution of the terms ﬁm (n), as m and n vary with n > 0
to the sum of the terms 27™/2| Agmc||2. Adding these upper bounds as &
varies shows that the total contribution of the terms ;Tkm(n) is no more
than 8| Acljq.

The sum 5, (n) can be split in a similar way when n € (271, —27]
and a similar analysis shows that the total contribution of these terms tc
Voree0 27" | Agmells is no more than 8||Ac]|,. Finally, suppose that n ¢
(—2™,0). Let k be the largest integer for which the interval [-2% 2%] i
included in [n,n + 2™], and split Agme(n) as

-28_1 ekl pgomoy
(6.5) (=3 + 3 o).
j=n j:__gk jzgk
The outer sums here can be further split and analysed much as above, anc
their contributions to 377, 27™/2|| Agmc|y are each bounded by 16]|Ac||;
'The middle sum in (6.5} is equal to c(—2%) —~¢(2*%). For fixed & the indices
n for which this is the middle term in (6.5) are those for which at least one
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of the relations n € (—2%+1, —2%] and n+2™ € [2%, 25%1) holds. There are at
most 2°+1 such indices n. The contribution of these terms to 2=™/2| Agm ||
is bounded above by the product of 2%+1=m)/2 and |e(2m) — ¢(—2™)|.

For fixed m, the indices & that can occur in the splitting (6.5) are those
for which 2% < 2™. Sum the upper bound above as k runs from 0 to m — 1,
and then add as m runs from 0 to co to see that the contribution of these
middle terms to 3-ov_ 272 | Agmel|s is at most 4 3.°_ [¢(2™) — c(—2™)],
which is finite.

This provides a second route from conditions (1.3) and (1.4) to the con-
clugion that the series must be integrable. Unlike the first proof, this method
does not also lead directly to the fact that condition (1.3) and integrability
imply condition (1.4). There is, however, a standard way to deal with that
part of Theorem 1. It reduces to showing that if the coeflicients (b,) in a
sine series satisfy the condition that

(6.6) > 1Ab] 5 m
m=0

oo

and if the sine series is integrable, then 7", |b,|/n < co. Indeed, by the
second method outlined above, condition {6.6) and the fact that b, — 0 as
n -+ oo imply that the cosine series with coefficients (b,)5%, is integrable.
If the sine series is also integrable, then so is the series Y. ; b,e™™, and it
then follows [37, Chapter VII, Theorem 8.7] that > 2 (b,|/n < oo,
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