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Molecular decompositions and embedding theorems for
vector-valued Sobolev spaces with gradient norm

by
A. PELCZYNSKI and M. WOJCIECHOWSKI (Warszawa)

Abstract. Let F/ be a Banach space. Let L%l)(IRid, E) be the Soholev space of E-valued

functions on R with the norm

S Wflpdz+ [ IV tgds = Ifl+ V7

R S
Tt s proved that if f < L%l)(lkd, E) then there exists a sequence (gm} C L%l)(Rd, E) such
d —-
€t £ = Fop, 905 T Ulgra 1+ IV 1) < 001 and flgm 1547 lgm 177 < B[ Vgim |1 for

m=1,2,..., where b is an absolute constant independent of f and E. The result is applied
to prove various refinements of the Sobolev type embedding L%l )(Rd, E) — LYR%, E). In
particular, the embedding into Besov spaces
1 i 8p.d
Ly (R E) < BYYD (Y, E)

is proved, where 8(p,d) = d(p™t + d i -Dforl<p<d/(d—1),d=1,2,...
The latter embedding in the scalar case is due to Bourgain and Kolyada.

Introduction. This paper is devoted to the study of Sobolev spaces
of differentiable functions in d real variables, mainly on the d-dimensional
Euclidean space RY, taking values in an arbitrary Banach space F. We are
primarily interested in the limit case of Ll-norm, i.e. when the norm is
defined to be the integral of the norm of the gradient of the function plus
the integral of the norm of the function. Denote this space by Lh)(Rd, E).
We expioit the following phenomenon called the molecular decomposition:

[very function in the Sobolev space endowed with the Ll gradient norm
can be written as an absolutely convergent series of uniformly bounded
Functions; the sup norm of each term is controlled by the ratio of dth power
of the L'-norm of the gradient of the term and the (d — 1)th power of the
Ll-norm of the term (where d is the dimension of the underlying Euclidean
space).
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The molecnular decomposition is clogely related to the coarea formul:
due to Federer and Kronrod (cf. [F], [Kr] and [BZ]) and to some isoperi
metric inequalities. Implicitly it goes back to Federer and Fleming [FF] anc
Maz'ya [M1] who used similar decomposition ideas to evaluate the best con
stant in the Sobolev type embedding theorem L%])(Rd, C) — L* (R4, C) du
to Gagliardo [G] and Nirenberg [N]. In integral form the molecular decom
position was stated by Bourgain [Brl] who then employed it to prove th
analogue of the Hardy inequality for analytic functions in Sobolev space:
with L'-norms as well as a refinement of the Gagliardo-Nirenberg embed
ding (cf. [Br2] and [Po]). The Bourgain-Hardy type inequality says, ronghls
speaking, that if f € L%l)(Rd, C) for some 4 > 2 then the Fourier Transforn
of f belongs to some weighted L'-space; the right weight is (1 + |¢[)!~¢
¢ € R? This weight function can be regarded as a linear functional or
(the Fourier Transforms of) the Besov space By, ,_,, , (R, C). Therefore i
suggests the embedding

(%) Ly(R*,C) = By 1y, (R%,T)

(cf. [Br2] and Kolyada [K]). Although it is not clear for what Banach spaces
E the Bourgain-Hardy type inequality holds for E-valued functions (not for
all—the space ¢p is a counterexample) the embedding (*) can he extendec
to all Banach spaces. To this end we use the molecular decomposition for
L%l)(Rd,E) as well as the fact that a large portion of the theory of Besoy
spaces can be carried over to Banach space-valued functions.

There are no essential difficulties in extending the molecular decompo-
sition to Sobolev spaces of vector-valued functions on tori, on nice domains
in R?, and on Euclidean manifolds. The required tools are an analog of the
coarea formula and the right isoperimetric inequality. The connection of the
latter with the Sobolev embedding theorem has been recently extensively
discussed by Ledoux (cf. [Le] and the references there). The right generality
for embedding theorems for Besov spaces seems to be that discussed in a
recent book of Coulhon, Saloff-Coste and Varopoulos [CSV].

Briefly about the organization of the paper. In Section 1 we introduce
vector-valued Sobolev spaces and the gradient norm in the space L '(ll)(lR'."’, E)

We show (Theorem 1.1} that f in L} (R%, E) always implies ||f()||; €
Ly (R%,R) (even when the norm | - || 7 is nowhere differentiable!). Moreover,
IVIIF(Ollel < [[VF]| a-e. Section 2 is devoted to the proof of the molecular
decomposition theorem in the E-valued case (Theorem 2.1). In the scalar
case we get it with the best possible constants. In Section 3 we apply the re-
sults of the previous sections to prove various embedding theorems; in some
of them we get best constants. Part of the section is devoted to extending
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some results on equivalence of various norms on scalar-valued Besov spaces
to the Banach space-valued case.
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birth of the present paper. 8. Kashin called our attention to Kolyada's
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Lemma 3.3 and Corollary 3.1). We are also indebted to K. Ball, T. Coulhon
and M. Ledoux for valuable discussions.

Preliminaries. R stands for the reals, C for the complex plane, R? for
the d-dimensional real vector space (d = 1,2,...), Z% is the lattice in R*
consisting of all points with integer coordinates. For z = (2(3)), v = (¥(J))
in R¢ we put (z,y) = Z;E:l z()y(5) and |z| = (z,2)'/2. By stands for the
closed Euclidean unit ball of R?, i.e. By = {z € R? : |z] € 1}. Ay denotes
the d-dimensional Lebesgue measure of R? normalized by Ag(1%) = 1 where

14 = {z = (z(f)) e R?: |z(§)| < 1/2for j=1,...,d}.

Unless otherwise stated, integration is against Az for appropriate d.
If £ is a complex Banach space and f : RY — E a measurable function
then the Fourier transform of f is defined by

For= [ Ha)e = de  for £ eR?
Rd
provided the right hand side makes sense, say exists for Ag-a.e. £.

1. Vector-valued Sobolev spaces and the gradient norm

Sobolev spaces of vector-valued functions on RY. Let E be a Banach
space. Partial derivatives of a function f : R? — F are defined with respect
to the norm topology of E. For example,

D(lv[}r"'sn)f(ayg) = __8.2{1) (o) =a € F
e lim fla — t71(F (o + #(1,0,..-,0)) = (o)) |5 = 0.

C'*)(R?, ) stands for the space of functions f : R? — E such that f van-
ishes at infinity and has continuous partial derivatives of order < k vanishing
at infinity. C*}(R%, E) is a Banach space in the topology of uniform con-
vergence of functions with all partial derivatives of order < Bik=1,2..).
DRYE) = (oo, CF(REL,E)N{f : R? — E : suppf compact} where
supp f = closure{x € R*: f(z) # 0}.
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Given f : R* — E and a multiindex o we say that g : IE&"' -+ H 1s the
ath distributional partial derivative of f (in symbols g = De F) provided

[ ¥(@)glz)de = (-0l [ DUp(a)flw)de  for ¢ € DIRER),
il R
where || =E;§=1 (7).
L#(R?, E) stands for the Banach space of equivalence classes of F-valued
functions on R* which are p-Bochner integrable (cf. [DS], Chapt. 111, §3,

Definition 4) with respect to the Lebesgue measure on 4, equipped with
the norm

£l = J i) " fori<p < oo,
Rd

[iflloo = ess sup || fliz forp= 0.
zERd

Now we are ready to define (similarly to the scalar case, cf. [St], Chapt. V,
§2) the Sobolev spaces (k)(R Eyforl<p<ocoandfork=12,.

L‘E’k)(R‘i,E) is the space of all functions f : RY — E h.(wmg all dis-
tributional partial derivatives of order £ k such that f € LP(RY, B} and
Def e LP{RY E) for |a| < k. The convergence in Li, (R, B} is the con-
vergence of functions with all distributional partial derivatives of order < k
in the norm topology of LP(R?, E). The space L‘E’k)(Rd, E) is banachable in
this topology (1 <p < o0, k=1,2,...).

If 1 < p < co then D(RY, E} as well as " (R?, E) can be regarded as
dense subsets of Lz(’k)(Rd, E). The proof is similar to that of [St], Chapt. V,
Prop. 1.

The gradient norm in LP (Rd E). By L(R%, E) we denote the Banach

space of all bounded real- hnear operators from R? into Ep where Fy is B
regarded as a real Banach space. The norm in L(R?, E) is the ustal operator
orm

Al = |4 :R* = B|| = < 1}
Note that if E is a complex Banach space then so is £(R?, &) with multipli-
cation by complex scalars (z, A) € C b L(RY E) »5 24 € L{RY, B) defined
by (sA4){y) = 2(Afy)) for y € RY.

Given f : R* — E and z € R* we denote by V/ () the operator in
L{R®, E) (if it exists) such that

lim £z +y) = flz) — VF()(;

ey =

Let U < R be the set of points z such that Vf (z) exists. The function
ViU — L(R% E) defined by 2 1 V f{z) is called the gradient of f.
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The distributional gradient of a function f : R® — FE is the function
ViR — E(R‘i E such that

f Vi(z Ndae=— ftr.] o) f(z)de for p € D(RE,RY,
Rd

where J(1) denotes the Jacobi matrix of the map ¥ : BY — R? and “tr”
stands for trace. If 1 = (31,...,q) then the right hand side of (1.1} equals

—IZ%

rl;l

The gradient norm in the Sobolev space L’(’l)(Rd,E) for 1 £ p<oois
defined by

Il = A+ IVFIE? for 1<p < oo,

1 £l 13,00 = max (| fllocs IV £ lloe) -

Remarks. 1. It is easy to verify that f : R? — E has a gradient
in distribution sense belonging to LP(R?, L(RY, E)) iff f has all first or-
der partial derivatives in distribution sense and these derivatives belong to
LP(R¢, E). Thus the gradient norm ||-{j1),p is well defined on Lf’l) (R4, E} and
it is compatible with the topology of LP-convergence of functions together
with their first order partial derivatives; precisely, limy, [[fn — fll(1),p = 0 iff
limy, ||fn — fllp = 0 and lim,, 18 fn/02(5) — BF Bz()|, =0for 1< j < d

2. If f: R — E has a distributional derivative, say v f, then Vf(x)
exists a.e. and Vf(z) = Vf(z) a

3. Sobolev gpaces of vector—valued functions on an Euclidean manifold
and on a closed domain of R? with sufficiently regular boundary are defined
similarly to vector-valued Sobolev spaces on ¢, analogously to scalar-valued
Sobolev spaces on such sets (cf. [St], [M2]).

A few more details in the case of the d-dimensional torus T¢. It is conve-
nient to take as a model of T? the cube I% = [-1/2,1/2]% in R* whose
boundary points are identified modulo the unit vector basis. The space
LT, &) of E-valued functions on T# which are p-Bochner integrable with
respect to the normalized Haar measure of T¢ is identified with the space
of E-valued functions on R? which are one-periodic in each coordinate and
locally p-Bochner integrable. We equip L#(T¢, E) with the norm

£ = [ If@Iza)”, 1sp<oo.
I[{t

The class D(R?, E) of “test functions” in the case R* is replaced by the class
(T4, E) of E-valued ¢ functions on k¢ one-periodic in each coordinate.
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For f € C®(T% E) and 1 € p < oo the gradient norm on L%)l)(Td,E) i3
defined by

/.
Tl = { [ 1@ e+ [ I95@d) "
Ed ]lr:!

For 1 < p < oc the space Lf}l)(’ﬂ’d, E) can be defined as the completion of
C(T9, E) in that norm.
Now we pass to the proof of the main result of this section.

TuEOREM 1.1. Let F be a Banach space and let d = 1,2,... Then [ €
Ly (RY, E) dmplies || f()|z € L(ll)(Rd,R). Moreover,
(1.2) VG sl < (VA @)

Proof Step 1: d = 1. Let f € Lj(R, E). Let h be the distributional
derivative of f. Then

z-a.e. on RY.

(13) heL'(R,E) and [ ¢hde=- [4/fde for ¢ € DRE).
R ®
It follows from (1.3) that
*
flt) = f h(s)ds forteR.
(Obviously h(z) = f'(z) for z € R whenever f € D(R, E) because D(R, E)
is dense in L(ll)(ﬂ{, E); n the general case the formula follows by approxi-
mation.)
Hence f is continuous, bounded, and

£(0) — f(a) = fh(m)dm for —oo<a<h<oo,
Thus )
(1.4)  [If®)le —~ 1)l < £ () — fle)lle
< fb||h,(o:) pds for —oo<a<h<oo.

It follows from (1.4) (recall that A € L*(R, E)) that ||f(-)|g : R — R is
a (continuous) function of bounded variation. Thus there exists a unique
Borel measure g on R such that

b
[ dp=1if®)z - 1f@)z for —co<a<b<oo.
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Moreover, p is absolutely continuous with respect to the Lebesgue measure
Aon R If g = dp/dA is the Radon-Nikodym derivative of y with respect to
M then g € LYR,R) and

o b b
(1.5) ] lg(x)| da = f dlu| < f |(z)|pdx for —co<a<b<oo.

€ 4]
Therefore
(5) ! ]| fllg == j ey o= j hgde  for ¢ € D(R,R).
R e R
(The symbol (9 f, ... dw stands for the Riemann-Stieltjes integral with

respect to a function w of bounded variation.) Using the integration by
parts formula for the Stieltjes integral we get

() [wdifls=—(8) [ N/lndy fory e DRR).
I 8
Obviously, if 1 € D(R,R) then v’ € L'{R,R), hence

) [ Wlede= [ liflze do.
i3 jind

Clorbining the last three identities we infer that g € L*(R,R) is the dis-
tributional derivative of ||f()||g. Hence [ f()|le € L%-l)(R,R). Moreover,
it follows from (1.B) and the Lebesgue theorem on density points that
\g() < ()| g Tor A-ae o€ R 4

Step 2. If [ € LR E) then |[f()|z € Li,(RER), d=2,3,...

_ Let h he a first order distributional partial derivative of f, say h ==
af/ox(1). They

(1.6) he LNRYEY,
d d f)’l,!f’ . d
] S L e - P el M 4 4 ] 4 D R ,]R .
(1.7) { 1bh. da mjl (,M(l)fdr for v € D )
" !

Put g o= (hy) where £ = 2{l) € R and y = (;r‘(?),...,:tr(d)‘) e R TG
follows frown (1.6) and the vector-valued Fubini Theorem ({DS], Chapt. 111,
§11, Theorem 8) that there is a set Zy C RA-1 of full Lebesgue measure on
B4 guch that

(1.8) W y) € LR, )
Next consider functions v € D(RY, R) depending on ¢ and y separately, i.e.

B() = P (Laly) for @ = (Ly) € RY (1 € DR,R), ¢y € DR, RY)).
Fix ¢, € D(R,R), Combining (1.7) with the Fubini Theorem we get, for

for y & Zy.
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all 45 € D(R“!“l R,
J sl J wonis vt dy = [ aly)] sty dt] dy.
Rd—-l

de 1

Hence there exists a set Z{¢1) R} of full Lebesgue measure such that
for (S Z('libl):

(1.9) f Pr(t)ht, ) dt = — f P f(ty)dt .

Thus for every countable set W C D(R R) there is a set Z(W) ¢ R*!
of full Lebesgue measure such that {1.9) holds for every ¢y € W ancl for
every y € Z{W). If we choose W to be dense in D{R,R) in the topology of
uniform convergence on hounded sets with all derivatives, then the standard
approximation technigue yields that (1.9) holds for every 4 € D(B,R) and
for every y € Z(W).

Fix W dense in D(R,R) and put Z = Zy N Z(W). Clearly Z is a subset
of R%™1 of full Lebesgue measure. Furthermore, h(-,y) € LY (R, £) is the
distributional derivative of f(-,y) € L(R, E) for every y € Z. Hence, by
Step 1, the function || f(-,%)||z € L*(R,R) has the distributional derivative,
say gy € L*(R,R), for y € Z. It is not clear, however, whether the function
(v,t) — g,(t) is measurable in R%. To bypass this cbstruction we need the

next construction,
1
— b —
n) 5 Hf( 27L>

For k,m,m =1,2,... we put
S CreE (e
1 N 1
el )l -l a)

A0

=1 m>n

1
<"'1
<3|

))u =3

Obviously, for (£,y) € A the sequence (2n(|| f (t+ 2l
satisfies the Cauchy condition. Define g : R* — R by

ey = d imen{(fE+ ) e = 1F(t— 3)s) for (¢,y) € 4,
g( 7:':/) 0 " f 4
or (¢,y) & A.
Since || ()| = is measurable, so is g. Note that if y € Z then it follows from

the considerations in Step 1 that the distributional derivative gy (defined
for y € Z) satisfies

=i

211

0 < a<b<co.

b
179z = @)z = [ g,(t)dt

icm
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Thus, by the Lebesgue Theorem on density points, for each ¥ € Z there is
a set Z{y) ¢ R of full Lebesgue measure on R such that for all t+ € Z(y)
the point (4,y) € A and g, (¢} = g(¢,y). Invoking the Fubini Theorem for
positive functions and taking into account that Z is of full Lebesgue measure
in R we get

Jlghde = [ [lattoat)dy=[ ([ lttv)ldt)dy

e it R Z  E(y)
= J ( f|‘]u dt) dy
Z 2w
< f( [ Int.v) ;dt) dy (by Step 1)
A AT
S

Thus |¢) € L'(RY, R) and therefore g € L' (R* R) because g is measurable.
Hence we can use the Fubini Theorem for g with ¥ € D(R?, R). We have,
for € D(RY,R),

[wgde= [ ([ wlt.)git.y)dt)dy= f( [ vt y)e(®) dt) dy

i weiet R 4 2wy
- f ( f‘” (I e dt) dy
z -’(u

i

el
et

Thus g € LY{RY R) is the distributional partial derivative of ||f(:)|| z with
respect to the first coordinate. Using the inequality |g,(t)] < {lh(¢,v)|| 5 for
y & 7 and for t € Z((y) where Z((y) C Z(y) is aset of full Lebesgue measure
in & we also have, for every nonnegative 1 € D(R%,R),

[lglde= [ [ oolstyldt)dy

Iyt PUEE
= J( S 'W('fﬂﬂ)ﬁyw(‘&‘)lclt) dy
Z 2w
< J ([ ol ylad)dy
4 Zyy)
= [ @) bz}l de.
R:l

Hence |g(z)| < |h(z)| 5 for Aa-a.e. z € RY,
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It follows from the above considerations that if f & L(ll)([R’,d, E) then
obviously |[f(:)||z € L(ll) (R*,R) and the function || f{\}||z
tional partial derivatives of the first order belonging to L*(R¢ R). Hence
17z & Ly (R, R).

Step 3. Proof of the inequality (1.2). Fix a unit vector ¢ =
(£(4)) € R? and consider the function fe = foTe where Tt is the rotation
of R? such that 7:((1,0,...,0)) = ¢. Then f € L (Rd E) implies f; €

Lll)(R"' E) and the dLStrlbutlonal partial derlvutlve a fe/0x(1) coincides

with the distributional partial derivative in the direction of ¢, g FlOE =

EJ L &38F/8a(5). It follows from Step 2 that | ()] & has the dlstrlbuhoual
partial derivative in the direction of ¢,

&
||f| Z B:r E;,

and there exists a set S{¢) C R? of full Lebesgue measure such that

Jﬁﬂfl “

Let {2 be a countable set of unit vectors Whlch is dense in the Fuclidean unit

sphere of RY. Put § = ﬂseﬂ S(€). Then S is a subset of R? of full Lebesgue
measure and

as all distribu-

for x € 5(¢).

laggﬂ( )‘ < Hg{-(m) i forze Sand £ 12,
For £ € § we have
5 ;
IVI£1)1 = sup 911 ()(6)! = sup | AUl
oy .
s sup e LT gggllvf(w)(f)llz«: = ||V F(z)],

which proves (1.2) and completes the proof of the theorem. w

OOROLLARY 1l Let 1 <p < oo. Then f € Lf’ (R E) dmplics | £()]]
) (RY,R). Moreover,

(1.10) VI < |9 F@) for Ag-are.

Proof. Pick # € D(R%R) so that n > 0 and Mlies = 5(0) = 1,
Put m(z) = plan™) for = € B and n = 1,2,... Then (e} — 1
and Vn(z) =0 for ¢ € R% Thus (n,f) iz) — f( for z € R% and

icm
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V(mf)(@) — Vi{z) for ae. 2 € RY because of the identity V(n,f) =
(Vi) f + 1,V f. The same relations also hold for [[f( ). Since n,.f €
L}, (R E)n L, (RY, E), Theorem 1.1 yields that ||(r, f)(- )||E = || f ()l 2

€ Ll‘ (R R, Mm eover, {1.2) applied to n,f for n = 1,2,... implies (1.10)
by letting n — oo, Thus |[f( e € L (Rd E). m

Remark, After this paper has beell submitted for publication S. Kwa-
pien observed that our proof of Theorem 1.1 in fact gives

TueorEM 1.1, Let B be a Banach space, let 1 < p < oo and let g : E —
R sabisfy the Lipschilz condition with constant 1. Then f & L (Rd,E)

implies that po I L(])(IRI 1) and
V(¢ o £)(2)] < IV )|  for ae. v € RY.

He also observed that the proof of Theorem 1.1 can be simplified. Indeed,
the function g = du/d\ appearing in Step 1 satisfies

()
™

This observation essentially simplifies the argnment in Step 2 that the func-
tion (¢, u) -+ g(¢,u) is Ag-measurable,

C‘OROLLA[W 1.2 (well known). Let f € L, (R%,R). Then fy = L F1+F)
and f.. = §(|f] - f) belong to L}, (R, R) and the following identities hold:

F=fe=Fo M= sl 1~
VAl = 19 F s+ IV F- 1

Proof. To prove the third identity of (1.11) note that v I+, V. and
V1 are a.c. equal to the derivatives of f4s foo and f. Moreover, Vf. (z) =0
for ae. @ € {f > 0} and Vf.(z) == 0 for a.e. z € {f < 0}. The other
assertions of the corollary follow divectly fromn Theorem 1.1 and linearity of
L%])(R"’,R). w

Remark. Because of the “local character” of inequality {1.2) there is
no difficulty in extending Theorem 1.1 and itg corollaries to Sobolev spaces
of F-valued funetions on an Buclidean manifold as well as a domain in R¢
with sufliciently regular boundary.

g(a) = limsupn [

Ty OO0

- llf(s:)uﬂ} sae. on K.
E

(1.11)

2. Molecular decomposition in IJ%EI)(IR”’,E). The main result of this
section is

Tuponsm 2.1, Let d = 1,2,... There exist positive constants a = a(d)
and b = b(d) such that for every Banach space E and for every e > 0, given
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a function f € L(ll)(IRd,E) there exists o sequence (gm) C L%U(ER’I, EY such
that

(2‘1) ng(w) = f(CC), Zﬁgm(m) = 67(‘1') ()\,1~a,ti.) )
22) D lgmls <@ +e)alifln Y IVgnl £ (1+2)a] V1]l
(2.3) gl Ll % < (L4 B[ Vgmlls  form=1,2,...

The g,,,’s are called molecules.

The existence of a molecular decomposition (2.1)-(2.3) reduces to estab-
lishing it for f in an auxiliary subset of L%l_) (R*, ). To define the subset we
first introduce

DerFINITION 2.1, A continuous nonnegative f : R — R with compact
support is called Ag-nonflal provided

Ag(sapp FALS > 0}) = Aa({f =c}) =0 forevery ¢ > 0.

Remark. The definition of Ag-nonflat functions on T% is the same. The
role of )y is played by the Haar measure of T¢. Clearly in this case every
function has compact support.

We begin with two lemmas involving the concept of Ag-nonflatness. Put
WH(R,d) = {4 € D(R%,R) : 4 Ag-nonflat},
W(E,d) = { € DR, B) : [4p() |z € WH(R,d)}.

LemMA 2.1. For every Banach space E and for d = 1,2,... the set
W(E,d} is dense in L}, (R?, B).

Proof. Pick ¥ € D(RYR) so that ¥ > 0 and Jpa o dm = 1. Next
define 7 € D(R%,R) by n(2)} = h(lz?) for « € R where h & D(R,R) is
nonnegative, symmetric with respect to the origin, A(0) = ||i|/eo = 1 and
for every ¢ > 0 and v > 0 the equation h(t) = ¢h(yt) has at most finitely
many solutions (for instance h(t) = exp(—{t? — 1)"* + 1) for [t] < 1 and
h(t) =0 for |t] > 1). For § > 0 and ¢ > 0 define 4 and e by

Ps(z) = 8% (67 ), Ne(x) = n(gx) for z e R,

For f & L{;,(R* E) put f, 5 = ny(ws * f) (here and in the saquel f g
denotes convolution). Repeating the argument in [St], Chapt. V, §1, Propo-
sition 1, we infer that fo 5 € DR, E) and | f,.5 — ey — 0 as & — 0 and
g.mde. Moreover, the nonnegativity of 1 and 7 combined with Theorem 1.1
yie

1fes()llE = ol = I F () 6) € PRER)  (o,6 > 0)-
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Thus given & > 0 there existys §y > 0 such that for 0 < § < 8y, 0 < p < &
one has

Ieo = Fllyy <e and {|fo5()lz € DR, R).
Furthermore, since 15 * || f{-)| x is strictly positive, ||fos{2)|g = 0iff n, = 0.
Thus

Aa(upp [ S ()2 \ {If0s ()l > 03) = Aa(suppn, \ {np > 0}) =0
because suppn, \ {n, > 0} is a (d — 1)-dimensional Euclidean sphere in R¥.
To complete the proof we show that for every fixed & with 0 < 6 < & there
exists a p with 0 < p < §y such that

Ad({llfps( ) =c}) =0 forevery > 0.
Indeed, if it were not true then for every g with 0 < p < 8y there would exist
a c(p) > 0 such that Ag({|| fo.s()|e = e(e)}) > 0. Thus there would exist g
and 7 with 0 < g < 7 < & such that Ay(X,.. N Xrs) > 0 where a = c(o),
b= e(r), Ko = (| Fa0 OVl = b, X = {[Fra ()l = b} Note that

XpuNXop={2g R? : (@) (s * || f()||z)(2) = a and

e (@) (s = | FO)] £)(2) = b}
Hence X,o N Xppy © {00t = ab™'} = {z € R? : nlgz)n~(rz) = ab™'}.
The latter set is, by the choice of 1, either empty or a finite union of (d—1)-
dimensional Fuclidean spheres in RY. Hence Ag(X, 0 N Xrp) =0, a contra-
diction. m

The analysis of the proof of Lemma 2.1 immediately gives

COROLLARY 2.1. The set WH(R,d) is dense, in the norm || - |(1y,1, @0
the cone {f & L%l)‘l(R’l,H@) f=0} =

LuMMa 2.2. Let f 5 0 be a Ag-nonflat function on R%. Define & :
[0, 171 0] —+ IR by
‘ MNl{f > ¢}) for0<e<|[flloo,
#le) = {od({j DA
Then & is continuous and strictly decreasing. Moreover, for every & > 0 there
eiats o strictly increasing sequence (Cm )iy With eq = 0 and Bityoe G ==
I f |l stch that
(2.4) if o€ ety em] then @(c) € (14 8)P(cn).
Proof, @ is finite because f has compact support, ${1) > 0 for 0 <
b <[ f|loo and @ is strictly decreasing because f is continuous and thcarefqre
{# >t} is an open set for 0 St < || fllao. Clearly 0 <t <'s < || fileo implies
(f>etc{f >t} and {f >t} = Uy {f > s} Thus
(2.5) b |t implies @(ty) TP(t) ask-—o00.
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If 0 < 5 < || f|loc then we have (),  {f >t} = {f > s} U{f = ¢} and
Nicpiie {F >t} = {F = [[{]lo}. Thus it follows from Ag-nonflatness of f
that

(2.6) i Tt implies S(ty) | H(t) ask — co.

Clearly (2.5) and (2.6) yield the continuity of &.

Now fix a strictly increasing sequence (¢5)3%., with &y = 0 and limy, £, =
| /lice- Fix & > 0. Since $ is strictly positive and continuous on [é...g, tx), the
function log @ is continuous and therefore uniformly continuous on [ty ., tg]
fork=1,2,... Thus, for k= 1,2,. .., there exists a strictly increasing finite
sequence (tk,?i)l_irLiwa(k)a with ¢g,1 = g1 and tg n(zy = ty, such that if e €
[thnsth,np1] then |log B(e) —log B(tpn)] <log(Ll+8) forn == 1,...,n(k) ~1.
The desired sequence (cm)i—y is the unique arrangement into a sirictly
increasing sequence of elements of the set (Ji, U:if_f f ""l{t,.,,n}k =

The next lemma reduces the proof of Theorem 2.1 to functions with
“nice” properties; precisely, those from W (E,d) (or from WH{R, d) in the
scalar case).

LevMa 2.3. Let W denote either W(E,d) or WH(R, d), and let cIW
denote the closure of W in the norm || - l|1y,1. If there are constants @ and

b such that for every f € W and every ¢ > 0 there exists (g9) such that
(2.1)-(2.3) hold, then the same is true for every f € clW,

Proof Let f € cl W. Then for every ¢ > 0 there exists a sequence (fy) C
W such that f =3 2, fo, 20 [ fell € (1) Fllx and 37, |V fully < (1+
)V f]l1, and moreover, for each k there is a sequence (gm,p) C L%L)(Rd, E)
satisfying (2.1)-(2.3) with fj in place of f. The construction of (fi) is triv-
ial for W = W(E,d). For W = WH{R, d) we proceed as follows. For fixed
F#0, fedW={fe L%l)(]Rid,R)  f 20}, and € > 0 pick g3 € W so
that || f11] < ellfll(1y,1 where fq = F — 1,1, Next define inductively for
n>1andfor j=1,...,2" ! the functions f,,, € l WU ~ ¢l W and @i €

WU —W so that f?s-—l,n = (fs,n—-l - (Pa',n—l)up, ffzs,n = “—(fﬁ‘-”,,.. 1Py ‘1)_,,,
Prs—1m €W, @og, € ~W, and
N fosrm = w2s—tnlliyn < 87| Fllay1 s
”f?.s,n - ‘7025,71”(1),1 < SWHEHIH(U,I ('9 = l,.. *52””2) :
Then
lesnlly <e@ 1+ 87 fll )0

Hence

=1...,2"" n=1,2,..).

zn—l

- 2
33 leialiay < (1+ “?;5) [ Fleey.e -
i=1

n=1
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— T L]
Moreover, f= 37" 3751 ®in-

Let (g ) be an arrangement of the elements of | ;o U oy {gm,k} in a
sequence. Then (g.,.) together with f satisfy (2.1)-(2.3) with ¢ replaced by
2¢+¢2, Note that (2.1) is a consequence of the general fact: if 3 [|hwmll1 <
oo then 37, hy, converges almost everywhere. =

L

Now we are ready to prove Theorem 2.1 for real-valued functions. Here
and in the sequel we put A{d) = '(d/2 -+ 1)V4/(/7d) for d = 1,2, ...

ProrosITion 2.1 Let f & Li,(RYR). Then for every ¢ > 0 there
ewists a sequence (gm) C Liy(RYR) satisfying (2.1)-(2.3) with a = 1 and
b= Bld) (d=1,2,...).

Proof. Assumne first that f € WH(R,d), i.e. f € D(RYR) and f is
Mg-nonflat, Let @ ¢ [0, ]| fllse] — R and let the sequence (cy)i2, satisfying
(2.4) be as in Lemma 2.2 for some § = 6(e). Let

Am = {J[ > Gm—-l} \ {.f > cm} for m =1,2,...
and define g, : B — R by

0 forz e {f < emor )
gm(x) = ¢ f(@) ~ ey for @ € Ap,

Con — Gl forx € {f > Cm}.

Then g, € L%])([R’.“,R). Indeed, if ¥ ¢ D(RYR) satisfies o(z) = 1 for
v € supp f then (f — ¢p-1)9 and (f — em)jtb belong to DER"’, 11{\:;) Hence,‘by
Corollary 1.2, gn. = ((f — cin-1)¥) s — ({em — FIY)- € L(l)(R[',R). In view
of Ag-nonflatness of f the distributional derivative of g, is

. o 0 for ae. ¢ € {f < cm—1 I\ {f > tm-1}

27 Vo) = { Vi) forae € Ay

It follows from the definition of g, that

i!ﬁ(m) - { Flo) forw g {f > e}y

e forw e {f>em)

.‘j:r;l
Thus
o
(2.8) Egj(a:) = f(a)  uniformly on R*,
j=1

Hence, using the positivity of the gn's we get

e [ S@d= 3 [ onlz)do =3 loml

]Rd' yype . Mrﬁ ==l
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Taking into account (2.7) and remembering that f is Ag-nonflat we have

(2.9) IVfl= [ [Vf@)de=> [I|VI)de
{f=>0} m=l A

= Z f [ﬁgm(&‘) de = Z ng\ll-
m=l A, el

Thus (g.,) and f satisfy (2.2) (with ¢ = 1) and therefore, taking also into
account (2.8), they satisfy {2.1).

The verification of (2.3} is less trivial. Fix m (m = 1,2,...). Clearly
”gm”m = Gy — Cme—1 and gm(w) =0 for z é {f > C,,n_..]_}. Then

A P e G O L)
{F>cm—1}
< | gmlloora{{f > em_1})l¢—174
= (e = Cm-1)B(em-1) 714
< (e = em1)@(em) @14 EEHI (by (2.4)).

The crucial estimate in our argument follows from a version of the Federer-

Kronrod coarea formula (cf. [F], Theorem 3.2.12, [BZ], Chapt. 11, §2.4, {M2],
1.2.4). '

If¥ > 0 is a continuous function on an open set 2 and Hy..., denotes the

{d — 1)-dimensional Hausdorff measure in R then for every f & D(RY R)
one has

flﬁ(a:)]Vf(:erx:}o [ #@)Hyi(da) at.
2

0 {f=i}ne
In particular, for # =1 and 2 = 2,, = {f > tm~1} \{f = ¢} one has
f |Vf{z)ldz = f Hoa({f =thdt (m=12..).
25 Cm—1

Obviously (2,, C A, and Ag(An \ 2) = 0 because F is Ag-nenflat.
Hence, by (2.7),

(210)  [Vgulhi = [ 1Vgm(2))da
Am
= [V dr= [ Has((s =) at.

Next use the observation (cf. [M2], 1.2.2) that for a.e. ¢ in R% the Haus-
dorft measure gy ({f = t}) equals the (d - 1)-dimensional measure of the
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surface {f =t} (the set {f =1} is a (d - 1)-dimensional manifold for a.e. t).
Now we use the second ingredient in our proof—the isoperimetric inequality
(cf. (BZ], Chapt. 2, §3.1). For a.e. t € R we have

Hia({f =t} = Agea ({f = 1}) = Aa—1 (0{f 2 t}) = M1 (B{f > t})
A1 (Sie1)
. )\(J(B(i!)uqnlj/d
where By = {w ¢ R? 1 2] € 1}, Sg-y = {z € R? : |z| = 1}, and §A denotes
the boundary of a set 4 ¢ R4,
A direct calculation gives

Aal{f > tH-1/d  (isoperimetric inequality),

. I 174
Aot (S ) ha(Ba) "V = Jrd T (% + 1) =B

Thus remembering that Ag({f > t}) = &(¢) and that € : [0, ||fllec] — R is
decreasing, we get
214 [ Heal{f =tz p@) [ @)D
[T Cm~1
Z ﬁ(d)._l@(cm)(dfl)/d(cm - f—'m—l) .
Jombining (2.9) with (2.10) and (2.11} we get

2.12) (gl gl <A@+ 5V Tglly (m=1,2,),
Choosing & > 0 so that (148741 < 14 we get (2.3), which completes
the proof for f € WT(R,d).

Now applying Lemma 2.3 and Corollary 2.1 we infer that the assertion
of Proposition 2.1 holds for nonnegative f € L%l)(]Rd,]R). Finally, every
f e Lh)(Rd,R) can be written as f = fy — f-. For fixed ¢ > 0, pick
sequences (g;h) aud (g;,) in L}, (R, R) for nonnegative f and f- to satisfy
(2.1)-(2.3) with a = 1 and b= B(d). Let (gm) C L{;;(R%,R) be defined by

darer =i g2 = =g (K=12..)

with a = L and b= #(d). &

Remarks 1. Thoe constants @ = 1 and b = #{d) are the best possible.
This is clear for «. For b = g{d) see Remark 2 after Theorem 3.2,

2. If one does not insist on getting the smallest possible constants one
can prove Proposition 2.1 in a more elementary way with a = 1 and b=1/2
(much larger than B(d) = o(d~*/?)) using the Loomis-Whitney inequality.
We are indebted to Keith Ball for suggesting to us this approach.

We have to estimate the quantity (em — cme1)B{cm) 4174 by |V gml|1.
Put Cp, = {f > cm} for m =0,1,... Note that Aa(C) = P(cp). For j =
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1,2,... denote by ;Cp, the orthogonal projection of U, onto the hyperplane
sR? = {z € R? : z(j) = 0}. Then by the Loomis-Whitney inequality (cf,
[LW]; [BZ], Chapt. 2, §4.3)

)\d(cm)dﬁl < ( H )\d—l (;,icm)) .
i=1

Hence there exists a j such that
)\d(cm)(dql)/d < )\d—l(jcm)-

Denoting by e; the unit vector perpendicular to ;R?, we have

Vgl = [ 1Vgm(z)| da = [ [ [Vgmu+tes)| dt dgr (dw)

R er‘d —o9

> f f!f?’g,.n(u+tej)|dt/\d_1(du).

jcrn — 00
Now fix u € ;O and put, for k= 0,1,
tf =sup{t:udte; € Coup}, b7 = inf{t: v+ te; € Cppp}.

since uy € ;Co and Cr © Ciy_y, theline {u-+te; 1 —0o < £ < oo} intersects
Cp. and Cy,_y. Clearly Cy,_y and C,, are bounded and the boundary of
Cra— is disjoint from the closure of C,,. Hence

—oo <ty <7 S <] < oo

_Clearly gm(ty) = gm(td) = ey and g (t7) = g (t7) = ¢ Hence the
increment of g, on the intervals [¢, ,#;] and [t"f,ta' | equals ¢y = Cppey and
€m—1 — Cm respectively. Hence for every u € ;C)y,

o ty té"
[ Vom(ut teg) dt = [ 1V gm(u + te;)| dt + fl\?gm(unimtej)fdt
o J
ta ¢

= 2(Cm - Cm—-l) .
Thus

f f Eva(u -+ tC’-j)I dt gy (du) > 2Ad»«t(jc'v-rr:,)((‘m "~ Cppye 1)
iCm —oo
Z 2@(0',“)0:5—4)/(4!((:?“ Lo J) .
Hence 2_1“v9mi|1 Z @(Cm)(d'"l)/d(c

» = €1}, Which combined with (2.9
yields (2.3) with b= 1/2. = " &

Now we are ready to prove Theorem 2.1 in full generality for vector-
valued functions, ‘
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Proof of Theorem 2.1. By Lemmas 2.1 and 2.3 it is enough to
establish the assertion of the theorem for F € W(FE, d). Note that if I’ €
W(E,d) then [ = ||[F()||lg € WH(R, d). Fix § > 0 and define (g,,)%-, C
LR %) as in the proof of Proposition 2.1. Define G, : R¢ — E by

_— {(g.mf""‘)F for £+ 0,
S for f=0,

for mo==1,2,...

First we check that Gy, & L%.l)(Rd‘, E)Yform =1,2,...

For m i 2 put g = g, & = G and & = 27 ¢, > 0. Tt has been
established in the proof of Proposition 2.1 that g € LEl)(le, R). Hence given
¢ = 0 there exists ¥ € D(RYR) such that [|g ~ ¢l < e, |Vg ~ Vo1 <e,
¢(z) = 0 whenever f(z} £ a.

Put @ == (4 f " VF for f # 0 and % =0 for f = ¢. Then ¥ ¢ D(R4, E)
and [taking into account that Y exists almost everywhere) we have

. i~V -V — g)VF
o -val = [ | GV, o)
- f f# f
{fza}
S et (el Voo + el VEFlloc)a™ -
(Let bt R - €, F s R — F. We use the formula V(hF) = Vh-F+h - VF;
the meaning of the second term is obvious: (AVF)(z) = Rz} (VF}{z) €
LR, E); the operator (Vh - F){w) is defined by
(Vh F)(@)(€) = (VR)(@)(€) - F(z) for {eRY)

On the other hand, |# — Gll1 = ||lv — gl <e.

dx
B

Thus ¢ can be approximated in the norm || - ||y, by functions from
D(RY, E). Hence G € LE'])UR\“, E).

Next consider the case of ¢y, Pick h & D(R*, R) so that h(z) =0 for x €
{f <4 tertand h(w) = Liorz € {f 2 27le b Write Gy = hGy+(1—h)G1.
Note that (1 h)GH = (1= k). Thus {1~ k)01 € PR E) C LY (R4, E).
Put g = hg, G = gf U for f g 0 and GF = 0 for f = 0. Note that
g & _[J(‘”(l]i&d,iﬁi_). (Tudecd, if ¢ ¢ D(R?,R) satisfies supp f C {¢ = 1} then
$(hf -~ e1) & DR R) and g = (hf)g ~ (@(hf - c1)).; the desired relation
follows trom Clorollary 1.2.) Now the proof that G € Ly, (R%, E) is the same
as that for ¢ = (4, for m 2 2 (with a = 47 *¢(). Finally, note that AGy = G,
Henee ¢ € ‘[4("1)(]111“5, B).

Now we are reacy to verify that () is the desired decomposition of F.

Observe that

|G (22)] forz e R (m=1,2,...).

B = {m (m)
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Thus ||Gmllee = llgrmllee and [|Gmll1 = [lgmili. Hence, by Prepositon 2.1
(more specifically, by (2.12)) and by Theorem 1.1, if 1--& > (1 -+ §)(-D/d
then

1Gm LA Gl = g [ g1 < B+ €)1V g0l
<ADA+e)|VEml: (m=12,...).
Hence the sequence (G,,) satisfies (2.3) with b= 8(d).

Since ' € W(E,d) and therefore f € WT(R,d), it follows from the
definition of Gy, and the proof of Proposition 2.1 that

o :

(2.13) Z Gu(z) = F(z) uniformly for z ¢ R

and

(2.14) Do MCmls= 3 gmlia = £l = 1E]r
=1 m=1

Now to complete the proof of the theorem it is enough to show that

(2.15) VGl < 3|VEL

szl

Indeed, (2.14) and (2.15) imply that ., Gy, converges absolutely in
L% {R*, E). Thus the completeness of Lll)(Rd E} and (2.13) yield that

F =3, Gm. Furthermore, (2.15} impliex that 37, V@, () converges a.c.
on RY. Hence VF(z) = Y, VG () for Aga.e. v & R

To prove (2.15) put as before Cpy—y = {f > ¢t }and Ay, = Cp (N O
for m = 1,2,... Note that

IVGnlli = [ IIVGu(z)|dz (m=1,2..).

Cm L

Moreover, for Ag-a.e. € (), q, we have
607“(“") = (f—‘]: (6Q}F)($) (qu (v f) )( ) (q'rn,j’m‘l vli,“) (m) .

Taking into account that g (z) = 0 for @ & Cp -, and ‘s’gm(;{:) =2 () for
z ¢ A, we get

Z Hﬁam‘ll Sh4 L+ I,

m=1
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wlhere

Iy s Z f ﬁgm(w)ldﬁh

=l Ay

L= | guf \VIIFC) | nde,

el

o0
Iy== Y [ guf H|VF| do.

el (U, Ly

By {(2.9), in view of Theorem 1.1, one gets

L= 3" Vgl =11V S |VEF]L-

s |

Next using the identity Crney = Jpou, Ak for m = 1,2, ... and remembering
that the Ag's are mutnally disjoint we get

) o0
LY. [ gul Y V|de= Z S [ gtV flde

el (U, maml k=g Ay

o ke

EL f(j.,,, dJ"‘"Z j ZJmf JWH‘“

fesa Lozl Ay, k=1 A, mssl

Z ] Vi(z)|dz  (by (2.8))
=t A,

= [ |V ) de=|VflL <||VFly (by Theorem L.1}.

Cl-'u
Similarly
no X ao ok
' ] Gnf” IHVF()H da = z E f _t],,.ﬂf_"lHVF(‘)“ di
FIEER G ST Rzl ynseml Ay
it
DI e |V

W=l Ay

T'his completes the proof of (2,15). Thus we have proved Theorem 2.1 with
the congtants mo= 3 and b= A(d) m»

Remarks. 1. The constant ¢ = 3 obtained in the proof of Theorem
2.1 does not seem to be the best possible. For complex E:Cd.l.fllb i.e. for the
space ‘[4 (@.“’ C) one gets a < V2, To see this, write f = 2 e 1 f;, where
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fo=®RN+, fi = (&), f5 = R, fo = (8F)~, and apply the same
argument as at the end of the proof of Proposition 2.1.

2. For the space L, (R, 1) (here I* denotes the space of real absolutely
convergent series) one gets ¢ = 1 and b = 8(d) by decomposing a function in
L(ll) (R, ') into induced coordinate functions and using the special property
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of the norm in {*. By the localization technique we get from the rosult for
I! the same constants for L}, (RY, E) where F is an arbitrary abstract I,'-
space.

3. For every f € L%‘l)(R‘z, E) and every & > 0 there exists a tnolecular
decomposition consisting of functions belonging to W (Z, d).

Proof of Remark 3. Let (g;) be any molecular decomposition of
f # 0 satisfying (2.1)-{2.3) with given ¢ > 0, For k = 1,2, ... let Ly =
(9ox.5,) be a regularization of g = gy, defined ag in the proofl of Lemma 2.1,
such that hy € W(E,d), Hhk - Qﬁ?“(l),l < E?“"H]’lill(”f!l(]_)‘j,“g)ﬂ”(l)!;l),
[illoo = N gkllos, Hhells < flgelli- Put A =3 hy. Then (Ag) i a molecular
decomposition of h, precisely (hy) and b satisfy (2.1)-(2.3) with &, < 2e-he?,
Moreover, ||A = fily1 < (14€)[fll¢13,1- Since & > 0 can be chosen arbitrar-
ily small, one can slightly modify the proof of Lemma 2.3 to getl the desired
molecular decomposition of f. =

‘Theorem 2.1 extends to Sobolev spaces on T¢ as follows,

‘T'HEOREM 2.1y Let E be a Banach space and let d = 1,2, ... There exist
positive constants ax = ax(d) and by = b.(d) such that for every Banach
space B and for every & > 0, given o function f & L%l)(’l[‘d, E) there exists o
sequence (gm) C Ljy, (T4, E) such that

@Dx D gmlay =), Y Vgulx)=Vf(2)

for a.e. @ with respect to the Haur measure of T4,

@2 3 lomls £ Wt 2aaliflie 3190l S (L e)ag [F1]1

m

174 d-1}/d . Vous
28)r Mgl gl 171 < (14 ) ¥ gnly + gl o)
Jorm == 1,9,...

Outline of the proof Define v : R — R aud Vg ¢ RE s T for
d=1,2,... by " '

1 for |t < 1/2,
v(t) =4 3/2—Jt| for 1/2 < |¢] < 3/2,
0 for Jt| > 3/2,
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o
vy(z) = H v(z(s))  for z = (z(4)) € R?.

For f € L(ll)('ﬂ“’*, E) regarded as an E-valued function on R?, 1-periodic
with respect to each coordinate, put f# = vgf. Then #* e L%l)(Td’E)5
moreover, if f i3 Ag-nonflat so is f#. Next for f# and for € > 0 construct in
the same way as in the proof of Theorem 2.1 a sequence (gy,) C Lty (T, E)
satisfylug (2.1) - (2.3). The analysis of the proof of Theorem 2.1 shows that
for m = 1,2,... the restriction of g%, to the cube [¢ = [~1/2,1/2]7 has a
wnlque extension to an E-valued function on IRY, say g.,, which is L-periodic
wilh respect to each coordinate. Moreover, g, € L(ll)('[l‘d, ). The sequence
(g ) satislies (2.1), and (2.2), with the same constant @ which appears in.
the prool of Theorem 2.1. Indeed, note that to establish (2.1) and (2.2) in
the proof of Thecrem 2.1 one uses pointwise estimates only, so we can work
with functions restricted to 1% To establish (2.3), we use the inequalities

||g‘rn||w = ”9&:;”003 H-G'm“l < HQSI‘HM

HVQSIHI i: A(d)(nv‘gm”l + HQT‘”«HJ-) (’F’I’L = 1: 21 - ) 1
where A{d) is a nunmerical constant depending only on 4 but independent
of f, the gu,'s and €, The first two inequalities are trivial; the third follows
by analyzing the construction of f# and the gn,'s. Thus, by (2.3), for m =
1,2,... wo have
: 1)/t ) g {d—1)/d & 0
& g3 < N I3 N 15 < (8d) + )11 V050 1
< (W(d) + ) AD)||Vgmll: . =

Remark, A similar argument shows that Theorem 2.1 on molecular
decompositions extends to Sobolev spaces L%n(ﬂ,E} where {2 is a com-
pact domain in RY such that there exists a linear extension operator of
Whitney type & @ ¢, R) — (R4 R) which extends to continuous op-
erators LT (2, 18) - LY(RY,R), L®(Q,R) — L= (R4, R) and LE-I)(J’B,R) —
L('”([[éi"',m:). For the existence of such operators cf. [St], Chapt. VI, §2; [H6],
Theorem 2.3.6, and [Jo]. To extend the result to Sobolev spaces on a com-
pact d-dhmensional manifold we use a partition of the manifold into charts
which are nice domains in B4 and apply a version of the theorem to each
chart separately.

3. Refinements of the Sobolev embedding theorem for
Lgi) (B8, E). In this section we apply the molecular decompositions to obtain
improvements of the classical Gagliardo-Nirenberg embedding L(ll) (R¢,C)
e LA/ (R4, €Y, Most of the results presented here have been discovered
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in the case of scalar-valued functions by Bourgain [Brl], Poornima [I], and
Kolyada [K].

If X and ¥ are Banach spaces of functions with a common domain then
we say that X embeds into ¥, in symbols X — Y, provided that X is a
subset of ¥ and the identity inclusion map is continuous.

‘We begin with introducing Lorentz and Besov spaces of vector-valued
functions.

Vector-velued Lorentz spaces. Given a measure space (£2, 3 1) and o
scalar-valued Z-measurable function h: 2 — € we put

pr(y) = p{lhl >y} fory >0,
() =inf{y > 0: pp(y) £t} fort >0,

qg 7 dt\ M
(— f (/PR (4))e —) (0<p<oo,0<yg<oo)
[Alipg=q VP o ’
sup tHPR" (¢)
>0
(cf. [BS], p. 216; [H]). Given a Banack space F, we denote by Ly, (92, i, 1)
the space of u-equivalence classes of E-measurable functions f : 2 - E
such that |[[[f{:)ellp, <00 (0 < p < o0, 0 < gLo0)If1<p< oo
and 1 £ ¢ < oo then L, (2,4, E) is a Banach space under the norm
([ lpe = WFC)Elp.g For u being the Lebesgue measure on R we write
Lpo(R%, E) instead of Ly 4(92, 4, E).
One has L,,(R% E) = LP(R%, E); moreover, Ifllp = |

< 00.

(0<p<L o0 g=00)

lpp for 0 < p

We shall need the following interpolation inequality:
BL Mfllaya-na S VAZALETV for £ € Lajaany 1 (R E).

The inequality (3.1) is well known in the scalar-valued case (cf. [BS],
Chapt. 4, §4, Proposition 4.2). The vector-valued case follows immediately
from the scalar one.

Besov spaces of vector-valued functions. Most of the definitions of Besoy
spaces of scalar-valued functions extend trivially to the case of functions
taking values in a fixed Banach space. This ig due to the observation that
estimates of ZP-norms of products and convolutions of scalar-valued func-
tions are usually preserved if exactly one of the functions ig replaced by a
vector-valued function. A typical example is:

LEMMA 3.1 If 1 < p < oo, 1< p; < oo, /r=1/p+ 1/p 1 > 0,
@ € LP(R%,C), and f € LP1(RY, E) where E is a complex Banach space then
e+ f el (RLE) and o flln < [liplpll £llp, '
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Proof. CL [HO], Theorem 4.5.1 and Corollary 4.5.2. The proofs pre-
seuted there for scalar-valued functions can be easily adapted to our case. =

To define vector-valued Besov spaces we first introduce an auxiliary fam-
ily of partitions of unity “on the level of the Fourier Transform”.

Let W (d) be the family of all sequences ¥ = (¥r)7, of continuous scalar-
valied functious on RY such that:

(i) suppeie < {[E] = 2}, suppepr © {250 < Jg| < 2%1) for k =
1L.2,..., X

(i) supy, H'I;’J‘;,,Hl_ =y 00,

(ii1) 2 pt ¥n(€) = 1 for £ € RY,

Now let Is be a complex Banach space. Let 1 < p < 00, 1 € g < o0,
D=d<l,

For a fixed ¥ € ¥(d) we define on D(R?, C) the norms

11 ag, ey = [ Fllp + BE o (£59),

19 o - 1/
(3.2) BEL2) = [ @M e 1))

)

Our notation differs from most of the books where the functions of ¥
are replaced by their Fourler Transtorims,

LEMMa 8.2, For every ¥, % € W(d) the norms BS (W) and Bf (&)
are equivalent; precisely, there evists « C = (¥, P) 2 1 such that
(33)  CUBY(5;W) < B ®) S OB (/W) for f € DRY,B).

Proofl. Consider the nontrivial case ¢ < co. Fix 7 and & in ¥(d) and
[ € D(RY, E). Put for convenience .1 = ¢.; = 0. Using (i) and (iii) for &
and (1) for & we get, for k==0,1,...,

R 1

i ¥ f o= [l oot o+ Bk + dpat)]N 4 f = > i % ¥ -

(V=T R

Henee by (ii), Lemumna 3.1 and the Holder inequality, for k= 0,1,...,

frepe |
e o FIG < T80 57 (1w F11
rphmehrse |

Thus summing over & with weights 29 and using the triangle inequality
we geb

BE (1;7) € Gaw By ,(f;9).
Hence by synunetry we get (3.3) with €' = 6 max(ay, ag). =
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DEFINITION 3.1, Let 1 € p <00, 1 < g <00, 0<8 < 1. The Besou
space BY (R% B} is the completion of D(RY, E) in zmy of the equivalent
norms (3.2) for ¥ € ¥(d).

Remarks. 1. Let F be a real Banach space. Let E¢ denote the com-
plexification of E. Then the Besov space Bg,q(R‘l, ) is defined to be the
real subspace of BY (R?, E) of functions taking values in £ identified with
its natural embedding in Fg.

2. The definition of Besov spaces on T¢ is similar. The only difference
is that the periodic analog of the family ¥({d) consists of all sequences of
functions (= sequences) on Z* satisfying obviously modified conditions (i)
(iif).

3. Our definition of Besov spaces slightly differs from that of [Pee], p. 48,
where it is assumed that (¢) C D(R?, C) and our condition (ii) is replaced
by

(i)’ for every multiindex ¢ of length d there exists ¢, > 0 such that
1D*y(z)] < ca271V (zeRY, k=0,1,...).

One can show that {ii)’ implies (ii) (cf. [Pee], p. 48) by a similar technique
to [Hé), Chapt. 7, §1. Now it follows from Lemma 3.2 that our definition of
Besov spaces is equivalent to the original definition of Peetre.

Next we recall
LEMMA 3.3. If 0< 1/p—1/r<1/d,p2 1, 7> 1 andd = 1,2,..., then
Byl /rm Y0 (RY, B) s B (RYE) (1< g€ oc).
Moreover, there ezists A(d) > 0 such that for every ¥ € W(d),
B o(£:9) < Ad)BpG= 0 (1,0)  for f e BY (RY, B).

In particular,

BT (R, E) - Baya-1y.1(RY, B) (1 <ps E‘J‘m d==1,2, ) ;
where 6(p,d) = d(1/p+ 1/d -~ 1).

Proof Fork =0,1,... let V; 4 : R% = R be the Fourier Transform of

the d-dimensional de la Vallée-Poussin kernel; precisely,

Via(a) = chd(ﬂ? for z = (a(j)) € RY,

J=1
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where vg ¢ 1 K - R is defined by

1 for |¢| < 2k+1,
2 - |t| for 2R+ < |y k42

GEFEToheT o < [t < 2842,

0 for [¢] > 202,

Tt i well known aud cfwy to_check LhaL there exists a constant A{d) > 0

independert of k such ¢ (@) and |[V.alloe < A(d)24. Hence

Hi}lﬂ.rl”yn 'd: A Cﬂ)zhd .l-~1/p-| for 1 f’_ Dy S d.

Next fix ¥ & ¥(d). Then for f ¢ D(RY, E),
[WVieat 0 Sl = | (Vi - ) = 5 5 £l -
Thus by Lemma 3.1, for py = (1/r ~1/p + 1)~ we get
1 L1l < 0 Vil |05 Fll < Ad) 254001770
Heuce BY (f;W) < Ad)ByG /""" (J:0) for every f € D(RE, E), which is

it
equivalent 1o the desired embedding. =

'!?]‘,’(.!(i) =

For 6 = 0 we introduce two other normns on Besov spaces. They are
equivalent to the norm defined by (3.2).

The fiest involves the concept of pth modulus of smoothness. For f &
LR EY (1€ p < o), we put

‘-Up(.)’.m t) = 1:"“13{ Hfh e fHP

where fi, () = fla+ h) for @ € RY. Next for 8 > 0 and 1 < ¢ < 00 we put

, , oo dt 1/¢g
B;(rq(f) e J: f [: u')]”(f l’)] t 3
0
and
(3.4) Mg, = BE (5 + 11

The second worm involves the degree of approximation of a function by
eritire functions of finite order,

For fe LP(RY, 1) we pul

Fag(f 6) = f{||f - gll, csuppd C{lE] €6 (>0, 1<p<oeo),

- ‘ ,at Yy

By (J) = [ J [ B 0] J (0>0, 1<g<00),

and

(3.5) 1, = 11+ By al)-
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PRrROPOSITION 3.1. Let 1 <p < oo, 1 < g < 00,0 < & < 1. Then for every
Banach space E the norms defined by (3.2), (3.4) and {3.5) are equivalent
on D(R®, E). Moreover, the Besov space BY (R, E} can be identified with
the set

{f € (R4 B) : B () < oo} = {f & LP(R, ) : B (f) < o).

Proof The equivalence of the norms (3.2) and (3.5) can be established
by repeating the argument presented in {Pee|, pp. 72-74 (Chapt. 3, proof
of Theorem 11). The only ingredients used there are the triangle inequality
and the scalar version of Lermnma 3.1.

To prove the equivalence of the norms (3.4) and (3.5) we first show that
for some C' > 0,

(3.6) Bp(f,r) < Cuwp(f.r™t),
Fix ¢ : R — C such that
() Jpe(lal+ Dlp(z)| dz = C < oo,
(3} Jpepla)dz =1,
(iij) supp @ C {£ € R¢: J¢| < 1},
For instance define ¢ by 3(¢) = an(£)exp(~[€[*) where n ¢ DR, C)
satisfies 7(0) = 1, suppn C {£ e R? : |¢] <1} and o is delermined by (ij).
Next for 7 > 0 put p.(z) = rPg(ra) for € R% Then, by (jjj),
supplie, * f1° = supp(@. f) C {|¢] < r}. Hence
Ey(f,7)

r>0, f e D(RY B).

< —ox flly for v >0,
By (i),
(7 —or+ ) f or(W)[f(x) = f(x —h)]dh  for © € RY.
lpli
Hence
1F = ok fllo < f lor WY = £~ Y| i
ke
f e () |wn( s [h]) dh = 1.
]H_d
To estimate /.. we need the inequality
(+) a1 1B < (r B+ D (F,77Y), # 20, he RE,

Since wy{f,1) is increasing in ¢, {#) is obvious for b < =t Let e
Let the integer k satisfy |h|r — 1 < k < |Alr. Then
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fl@+h) -~ f(x)
k .
S e ) - (e 2 oo ).
X [l Rl

Thus, by the triangle inequality,

G A D)~ g

5 ,
(i) = (ol oo o)

il
Since 1o term on the right band side exceeds wy(f,r~!), we get
/G A h) = T p S (B -+ Dawp(f,r ).
h|, we get (), Clearly () yields

n

Thus, taking into account that k < r

L S wplfor” j ler (h)|(r|h] + 1) dhr
Imd
= wp(fyr™h) J (J] 4 Dp{u)| du (substituting u = hr)
Rt
= Cuy(fyr ) (by ().
This proves (3.6).
Clearly (3.6) yields
. dr T . dr
qu frwp fﬂ ]) <Cf’}"6w1,(f,'r 1)—=—
0

(substituting r = ¢ ™).

—~(ijq(f)

Thus | fllge = Cllfllsg, -

To prove the reverse estimate put
Alg, B) = (- +h)—g() (g e LP(RYE), he RT).
Nexl recall an analogne of the classical Bernstein inequality
(BI)  AC = C(d) such that if g € LP(RY EYN CO R E)Y and supp g C
{1€] <5 v} for some v > 0 then

V9l < Crliglly -
Thus, for cvery h ¢ RY,

409, h)]p

H fl Vol + 'Lh)(h,)dt”p < Crlhilgllp -
0

The proof of (BI) mimics the argument in [Pee|, p. 51, proof of for-
mula (13). Again we exaploy Lemma 3.1 in full generality.
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Next fix f € LP(R?, E) with B (f) < co. Form = 0,1,... pick g,, €
LP(RE, BY N CU(RE, E) so that suppGm C {/¢] < 2™} and || f = g, <
2E,(f,2™). .

Put wg = go, Wm = G = gm-1 for m = 1,2,... Then f = 3" 5w,
(the convergence of the series Eﬁﬁo Wy, 18 a routine congequence of the
finiteness of the integral BY ,(f) and the fact that the function ¢ — E,(f,1)
for ¢ > 0 is decreasing). Our choice of the w.,’s implies ||wyll, < || £l and
form=12,...,

”wm“P S “f - Qme -+ ”f . g‘.er,Ml.”'p f.: ‘f»uyp(.ﬁ 2’”"“ l) .
Thus for A € R% with |h| € 277 for some n=0,1,..., we have

[ A, R)lp € 2lwmlly < 48,(f,2™ 1) for o> n
and, by (BI),

| Al Bl < ClRI2™ [ ||p € 402 B, (f, 2771 for m < n,
[ ACwo, h)[lp < Clhllwolly < C27"|[ ], -
Thus, for n=0,1,...,

o

wp(f:?-'"n) = Z &»U.p ”A(wm:h)“?’

m=0 1"

< b0, n)wup+z (m,n)E,(f, 27"

sl

where

2™ form < n
b(m,n) = -
(m, ) { C1 for m > n,
and ¢ = (1(d) is an absolute constant.

Let
1 1 14
=( f [t“%-,.(f,t)]qilf) )
J : ;

The crucial part of the proof is to estimate I' from above. We have

I = (i ?n[t*”wp(f’mq f%)l/u

fe==() gmn=1 '

<2e(Z[2*"9w;(f 2mp) " <203 A2 (f ),

=0

where (An)ilo is an appropriate positive sequence with o g AL = 1 where
(@) +g7 =1 "
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Hence
= )
20 S 3TN o0 m)|flp+ 3 bm,m)Ey(f,27)]
=) m=1
L) (2] oo
N P
< I fil» L Ana{0,n) + Z o g (2™ Z Apalm,n)
) sl n=0
where

a(mm, n) = {(7722(""’.‘3”““'9) flor m < n,
(20 (nm) for m > n
Let A be the operator determined by the matvix (Grn)mon=0,1,... A direct
caleulation shows that A 14 bounded as an operator from §*¢ into [* and from
I into 1. Hence it is bounded from 19 into 19", Let C* = |4 : 197 — 17|
Then by the Hélder inequality we get

L4 ] DO AT m— ]/q
1220 (17lg+ 3 2B (f, 27717

rrne=
6 i ; g
g 2 (ﬁ]* [“f“p '+ ( L [2711. Ep(f, 27!1 )]{) :| ’
el
Since F,(f, 1) s decreasing in ¢, we easily obtain, for some constant Cg
independent of f,

S ¥]

( SO E(f, 2 )]‘f) Mg Co By o (f)-

LTSN

- C*Ca B0 (f). Also

L/q
(fx ol ) <o ( feota)”

= 2(0g)” J‘/q”f”;ﬂ‘
Hence there exists a positive Oy = Cy(p, g, 8) (independent of f!) such that
e < CsllFlimo

Pt e

a)“

This completes the proof of the equivalence of the norms {3.4) and (3.5). =

Remarks. 1. Proposition 3.1 is well known in the scalar case (cf., e.g.
[Tr], Theorems 2.8,2 aud 2.5.4). However, some proofs presented in the liter-
atwre do nol carry over to the vector-valued case. In the vector-valued case
Proposition 3.1 ig a folklore. We give the proof for the sake of completeness.

2, Only cosmetic changes are needed to adapt our proof of Proposition 3.1
to the case of vector-valued Besov spaces on tori. :
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Some embedding theorems. We begin with the Gagliardo Nirenberg em-
bedding theorem (cf. [G] and [N]} in the vector-valued setting.
THEOREM 3.1. Let F be a Banach space and let d =1,2,... Than
L (R, E) — LYVU-D(RY, E).
Moreover,
(3.7) [ £lasga-vy S B@IVF Jor | iy (RY &),

Proof. Assume that the assertion of the theorem hag heen established
in the real case. Then one hag

[Hllaza—n = SOzl < B@IVIFONaly  {by the assumption)
< BNV (by Theorem 1.1).
Now let f & Lgl)(R""‘,R). By Proposition 2.1, given & > 0 there exists a
sequence of molecules (gr,) satisfying (2.1}-(2.3) with a = 1 and b = f(d).
For each molecule we have
Nomllasia-1) < ||gm\|iédﬁgm\| (by the Holder inequality)
S P +e)|Vgmls  (by (2.3).
Hence using the completeness of L4 W=D(RER), (2.1) and (2.2) we infor
that f € L¥-U(R4 R) and
1 llasea—1y < (1 +E)>: Ngm lasa-)
mn

S (L+e8(d) > IVgmlls < (1 +eB@)V /] .

™

(d—1)/d
1

Letting & — 0 we get (3.7). =
The next result is more subtle.
THEOREM 3.2. Let E be o Banach space and lef d = L2,... Then
Liy(R% B) = Laja-y)1 (R%, B).
Morecver,
(3.8) I llasca-1y1 < BDIVE Jor fe L (RY E).

. Proof. Repeat the proof of Theorem 3.1 with ouly one change: Use (3.1)
instead of the Hélder inequality. =

In the scalar case, Theorem 3.2 has heen proved by Poornima [Po] with
ancther constant. .

Remarks. 1. Theorems 3.1 and 3.2 it the following abstract scheme:

PROPOSITION 3.2. Let E be a Banach space. Let X (R4 E) be a Banach
space of Ag-equivalence classes of measurable E-volued functions on RY,
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Assume that X (R, B) is equipped with o norm || - || x(ne, gy Such that for
gome C (),

ot i/ (]
11w gy < CUAIT DY £
Then L%U(H{J", By e X (B4 B) and

NI g,y <2 3CB(@)V Fl

Moveover, if there exists o Banach space X (R, R) of Ag-equivalence classes
of scalor-valued functions on R such that for every f ¢ X(R?, E) the func-
don |FClle € X(RERY and Y1zl e = | Flixme,m then

I o,y S CHANYfIl - for fe L (R E).

The proof of the Grst part of the proposition uses Theorem 2.1 in its full
strengtly the proof of the “moreover” part just repeats the argument of the
proof of Theorem 3.1.

for fe X(RYE).

for J € L{,y(R,E).

2. Tt hag been discovered by Federer and Fleming [FF] and Maz’ya [M1]
(ef. [M2], Chapt. 2, §2.3, p. 103} that in the scalar case 8{d) is the best
constant in the inequality (3.7) (by evaluating both sides of (3.7) at smooth
approximations of the characteristic function of the Euclidean unit ball of
B4, Hence f(d) is the best constant in (3.7) for every Banach space E.

The same js true for (3.8).

3. Aubin [A] and Talenti [T] have found the best constants in the Sobolev
Inequality
B9 i S pATFl,  Tor fe L7 (RER) (1 <p < d)

The argument given in the second part of the proof of Theorem 3.1 shows
that (3.9) extends to vector-valued functions with the same best constants,

Now we pass 1o embeddings of L%l) (R%, ) into Besov spaces. The next
theorem extencs to Banach space-valued functions the result of Kolyada [K]
for scalar-valued functions. Our proof is different from that of [K].

THuEoREM 3.3, Lel d = 1,2,... and let E be o Banach space. Then

[:(IU(.[[\E“",E) ts Bg'(f)'r”(][{d,.ﬁ’),

where O(p,d) = d{1/p+ 1/d-1) and 1 < p < df(d-1).
Moreover, there coists e = o(p) such that
B ) < 8|Vl Jor f € Liyy(RY E).

We begin with two observations:
LEMMA 3.4. One Lo

: ; : p—L

wplF,t) € (£, 00772 flloe) 177
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Proof. Integrate against Ay over RY hoth sides of the inequality
Iz + B) ~ F@)% < [fC+ )= f)][ B2 flla)” ' m
Lemma 3.5, If f € D(RY, E) then
wi(fit) S VL
Proof. The identity

Jort > 0.

flz+h)~

h
= A f V(@ + ua)(m) dl

combined with the Cauchy-Schwarz inequality and the Fubini theorem yields

1
[ Vit +ih)

0

S lf+h)

Rd

- f@)|pde = |4 [

";:d

(1)

1
< [ [UIVH(e+th)| dide
e O

1
=hl [ [IV§z -+ ded

Oer

4 dae

ijf + th)||; di = |k [||w|||<u
4}
= IhHIVfiIJ. g

Proof of Theorem 8.3. The crucial point is to establish the appro-
priate inequality for molecules. Precisely, we shall show that the T existy

¢ =c(p,d) > 0 such that if f ¢ D(RY,E) satisfies 188D gt
(B(d) + €)||V fl|x for some £ > ) then

o0

f 6—6 n,d)

0

(3.10)

wp(f, ) < (e eIV AL,

where g(g) — 0 as g - (.

For f # 0 we brealt the integral Jo° nto [[; and [™ o » Where
a= (£ 11/1f o) /?.
Using Lemmas 3.4 and 3.5 and putting

91-1/p

D= T
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we Lave

i

f ,[{l—‘.?

&}

27
TS [t R0 pl0) VR £
0

- O(p: d) (d=1) (L 1/p)||f p— l/p”v‘f”l/lp
= Clp, A)(IFIS A FIL ey v g Le
< Clp, AP V2(1 + gDV £ -

To estimate the second integral we need the trivial inequality w,(f,t) <
271, and the inequality

1 fllp € BLa)HC1o)| |1~ g g d0=2/e)

The latter follows immediately from the Hdlder inequality

il [7
17l < Al Y2 £ ey
and (3.7). Now putting C'(p,d) = 25~ where
b= 1+dfp-d

we gt

j‘o tnlm'.é-«d/p (Ir [)

a3

28d)" VI A1 f'ﬁd“g““/‘”dt

"(p,d)B(d)* |V i ”Hfmoff’

DB VIR /N Flloo) ~2 4
Yl cA Rl A a1 et 3 A
BV EIT0B(d) + )PV EIS
p, B (1 + o(£))IVF]l1 -

Thus letting & -+ 0 we get (3.10) with ¢ = C(p, d)B(d)?/ P~ + C'(p, d) 3 (d).

Now using Theorem 2.1 together with Remark 3 after the proof of
Theorem 2.1, and letting & — 0 we get Bﬁ(f & (F) € 3|V Sl for all
Je Lfn( B¢, £, which proves the “moreover” part of the theorem.

Hence, by (3.7), for all f € L} (EE‘I, E),
d(L——l/p

A1 gotpar < 3V Fll+ 171, < Bl VAL + FIGE2E

< 3¢V f ]y + By Y@ a0 1)
< A, p) (V5] + 1£1n)

where A(d, p) is a positive constant independent of f. =

)
)
)
)

Fi e
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Theorem 3.3 extends to the limit case p == d/{d -- 1). One hay
COROLLARY 3.1. For every Banach space E and ford = 1,2,... one has

L(1 (R, E) Bd/ d--1), (R B

Moreover, for every ¥ € W(d) there emists C'y > O such that
o -~

B ya—y1 (W) = Z 1 * Prllasa-1y € CullVFl for [ LR B,
k=0

Proof Combine Theorem 3.3 with Lemma 3.3, =

As a consequence of Corollary 3.1 and the Hausdorlf Young inequaliy
([H3], 7.1.13) we get Bourgain’s analogue of the Hardy ineqnality for analytic
functions.

THEOREM 3.4. Letd=2,3,...

(3.11) JIF N+ 1ept—2ae < ovi;

Then there exists a C > 0 sueh thal

for e L, (R, R).

Proof. Fix ¥ € ¥(d) and f € L}, (RYR). Taking into accouni tha
the Fourier Transform of the product 01 fun( tions equals the convolution of
their Fourier Transforms, the inversion formula, and the Flausdorfl Young
inequality (rote that 4 > 2) we infer that
(312) H"/)k.f “d =< C(J)HW * .f“d/(dwl) (k =0,1,.. ') 1
where the constant C(d) > 0 is independent of f and ¥.

Put for convenience t..; = 0 and consider the partition of B¢ given by

Ao={lg] <1},  Ap={2"" <l <21 (k=1,2,..).

Note that
(3.13) [ a+1en9de <2%0a(Ba)  (myk=0,1,...),
A
It follows from (i) that
(3.14) (sapp ) NV A 5 B = | k| < 1 (== 0,1, Y

Thus, by (iii), for m = 0,1, ...
f | FEN(L+ eyt ae

f; E)1(L+ [l e

, we have

Vertor-valued Sobolev spares o7
-1
=y [ @I + g de (by (3.14))
fresrny L Ay,
el
< S [ @@l +1ept-
b~ 1 Ay,
m:t;l Jd \ (d—1)/d
< 3 (S Tt ag) (o en-a)
LRI | Am Am
(hy Holder)
il
< 20 BN Yl flla (by (3.13))
Rezegpye ]
et 1
2 NGB ST e Fllagea-n) (by (3.12)).
Resmary - 1

Thus stumming over m, and applying Corollary 3.1 we get

f I+ = 3 [ e

put el Ay,

c(d)zd,\J(B, (d-1 ”Zi\m * fllagea-ny
Res=()

C{)2 A (B Cy (W Fil + 1)) -

|(1 -+ 1&])! < dg

i./\

-
o

€

NPX

Thus we get (3.11) with

C = BC{d)24  Ag(Bg) D/ it Oy m

lpelp(d.)

Remark. Infact we have shown that the function (l+|£ 14 determines
a functional on the Fourler Transforms of BY d/de1), (IH\‘ C) for d > 2, while
Poorina nsed the fact that (1 4+ [€))4-¢ dotmmuma a functional on the
Fourier Transforms of Ly, (R4 C) for d 2 3.

COROLLARY 3.2, Let d = 2,3,... andn = 1,2,... If f € Lf.,,)(ﬂ%l",@)

Hhen
(3.15) [HFEI e de < oo
e
Proof. Flxdz 2,n>2and f € (]Rd ). Note that
R d(n»‘[) N )
(3.16) 5 f € [,g.l)(uad,cf;*,), F=1,...,d

dz(7)0
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Thus, by Theorem 3.1,
o> [
Jest
= [IF QDI+ eyt~ ae.
ERri
Since E;'L=1 lg(j "FL--l 2 a’(d}n' - 1)]&"%'“1 Wll@]:'ﬂ Cb(d, T o= ]) E | f{)r 7 «:’; 3

and a(d,n - 1) = d®=772 for n > 3, we get

J IR0 + e de < oo,
Rd

Hin—1) A
I:M)(n—al)fJ (é‘)‘(uﬂ €[4 de

Clearly f & Lgl)(ﬂ@fﬂ,@), hence by Theorem 3.4,
JIF@I0+ g4 d < 0.
Rd

Since 14 |71 » 22-7(1 4 1€, we get (3.15). m

The periodic analogue of Corollary 3.2 was disco i
' v 3. vered by Bourgain [Brl
in 1981. In [Po] our Corollary 3.2 was proved for d >3 ¢ e B
~ We do not know .Whei:hel“ (3.15) is already a consequence of the assump-
tion that flam;l all its distributional pure partial derivatives of order < n
belong to L' (R?, C). In particular, is it true that f, Dyutf, Dy f LI‘(RF(C)
implies f € L}(R?, C)? R ’
Another consequence of Corollar

. v 3.1 in the case o - o]
tions is [ scalar-valued func-

COROLLARY 3.3. Letd = 2,3 There em’sﬁ a
: ] U constant O = .
thet if f € LY (R%,C) then . C C'(d) such

)y (Df Fe )" < v sl + 1),

where
Do ={£=(£U) € R*: max|e(j)| < 1},
Dy={§eR": 2" < max[e()) < 27} (k=1,2,.)
; reei).
Proof. Combine Corollary 3.1 with the Hausdorf-Y, i i
i . ] - Young inequalit
the fact that the characteristic functions of the frames Dy’s a;}e bélfnillég

(uniformly in k) 1nultj_pliers on LEP(RE O f 1 «
Chapt. IV, §4). = (Y, C) for P < oo (ck eg [St],
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Remarks. 1. The periodic analogue of Corollary 3.3 was discovered by
Bourgain [Br2] around 1985,

2. Theorem 3.4 and Corollaries 3.2 and 3.3 carry over with the same
proofs to the case of Hilbert space-valued functions.

3. It seems to he unknown for what Banach spaces £ Theorem 3.4 re-
maing valid for L%‘l)(IRd, E). It gtill holds for £ being isomorphic to a sub-
space of LY while it fails for ¢q.

Iimbedding theorems in the periodic case. Theorems 3.1--3.3 and Corollary
3.1 extend to the case of spaces of Banach space-valued functions on tori
Thete ave very little changes in the proofs. We have to use Theorem 2.1
instead of Theorem 2.1, |V f|1 is replaced by [|[V£]l1 -+ || filz. Tn Theorems
3.1 and 3.2 we loose control of the best constant. The Fourier Transform of
a function on T* is a function (a sequence) on the lattice Z¢ of vectors with
integer coordinates. Thuy the counterpart of Theorem 3.4 and Corollary 3.2
is the following result due to Bourgain [Brl].

COROLLARY 3.2, If f & L-(l.l)('ﬂ‘d,@) then
S Fml(1+ )t < oo (m=1,2,..., d=2,3,..).

mezd
The proofs of Corollary 3.2, and of the periodic analogue of Corollary 3.3
require only cosimetic modifications of the proofs of their R¢ counterparts.
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