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Estimation of the position of intermediate spaces
for a Banach couple

by

EVGENII PUSTYLNIK (Maifa)

Abstract. The position of intermediate spaces for a Banach couple is estimated with
the help of its fundamental function and co-function. We study the completeness of the
collection of all such functions, and the methods of calculating and estimating them for dif-
ferent couples. Finally, these functions are used to compare the position of spaces obtained
under the action of some interpolation functors.

L. Introduction. A basic concept in interpolation theory of linear op-
erators in Banach spaces is that of a couple A= (Ap, A1), where the Banach
spaces Agp, Ap are continuouslty imbedded in a common Hausdorff topologi-
cal vector space. Without loss of generality one may assume that the spaces
of the couple consist of elements of the same nature with natural definitions
of sums and equalities. Each couple A generates a collection of spaces lying
between A(}i) = Ap N Ay and Z(}i) = Ap + A; and called intermediate
gpaces. Among them the interpolation spaces, i.e. those invariant under any
linear operator T : X(4) — X(A4) bounded in Ay and in A;, are the most
studied cnes. In the last 10~15 years certain fine results were obtained which
describe all or the greater part of interpolation spaces for different Banach
couples. They use orbit methods [02], interpolation functors [BK2], mini-
mal and maximal interpolation methods [J], isolate spaces with important
special properties [Cw], [5] ete.

There are considerably fewer papers which deal with objects more general
than interpolation spaces (we mention the rather old work [D], the recent
work [MM)] and the author’s papers [P1, 3-5]). However, there are many
situations when almost nothing is known about a given space except its
being intermediate in certain Banach couples. As a consequence of this, the
Instruments and methods for investigation of such spaces are not elaborated
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3o far. As a bit of help one can take the imbedding constants of a space A4
in the couple 4, i.e. the minimal numbers C, D for which

lzlla < Cllzll gz, (V2 € A(A)),  lellpa < Dlizlla (vz e 4).

To make even more use of these constants it makes sense to consider the
imbedding of A in the couples {cvAdg, 541) for all possible o, § > 0 and to
use, as a characteristic of the position of A in the couple 4, the constants

Cla,f) = sup —2lla D(a, ) = sup 12ladorsa,
, :z:EA(f{) “mHC)éAoﬂﬁA1 , 26 A ”-’L'”A

considered as functions of a, 5. These functions are homogeneous of de-
gree one, hence one of their arguments may be taken fixed. In particular,
C(1,1/%) and D(%,1) coincide with the fundamental function ¢ 4(t, 4) and
fundamental co-function 14 (, ﬁ) defined in this paper (the reasons for such
choice will be given below).

The present paper continues the study of the collection of all interme-
diate spaces of an arbitrary Banach couple with the help of fundamental
functions and co-functions, initiated in the author’s previous works [P1,
3-5]. In Section 2 the definitions and properties of the above-mentioned
functions are given. In Section 3 these functions are applied to comparison
of different intermediate spaces, and the following “completeness” theorem
is proved: if there is an intermediate space A for the couple A with a qUuasi-
power fundamental function ©a(f, A) then each gquasi-concave funciion is
equivalent to the fundamental function of some intermediate space for this
couple.

Some examples of computing fundamental fanctions and co-functions are
given in Section 4, We prove there a theorem on conditions under which two
quasi-concave functions , ¢ are equivalent when they take equivalent values
on some sequence of positive numbers ¢ = w,. This allows us to describe
the weighted sequence spaces which do not have a “complete” collection of
intermediate gpaces.

The main results of the paper are contained in Section 5 where the funda-
mental functions and co-functions are used for comparison of interpolation
functors for concrete Banach couples. For real interpolation functors, the
position of the space AE in the couple (ﬁgﬂ, ﬁgl) only depends on the posi-
tion of £ in (Ey, E1) but not on the couple 4. For the Calderén-Lozanovskii
functor the dependence on A does exist, and it is estimated in the cases of
weighted L,(w) spaces and Orlicz spaces.

For the reader’s convenience we formulate some previous results from
not translated or not easily accessible Russian literature which relate to the
subject and are used in the basic text.
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2. The fundamental function and co-function of an intermediate
Banach space. The Banach space A is called intermediate for the couple
A = (Ag,A) if A(A) c A ¢ Z(4), where A(A) = Ap N 4, X(4) =
Ag -+ Ay and all imbeddings are considered to be continuous. In the case of
an imbhedded couple, i.e. when Ay C Ay, we obtain 4g € A C 4, i.e. the
usual notion of being intermediate for spaces ordered by imbedding. The
collection of all intermediate spaces for the given couple 4 will be denoted
by m(4).

It is desirable to characterize the position of intermediate spaces more
precisely with the help of some addifional parameters, which would allow
one to estimate their proximity to the “extremne” spaces of the couple. Such
parameters also allow one to compare specific intermediate spaces, to isolate
clagses of spaces which are easier to study, and to approximate the other ones
(e.g. for the assessment of interpolation properties). As a model, one may
consider the collection of rearrangement invariant spaces intermediate for
the couple (Lo, L1). The position of a space E with respect to this couple
is characterized by the fundamental function @gr(t) = [|x |z, mesD = t.
Among all the spaces with a given fundamental function the narrowest and
widest ones are determined, which are called Lorentz and Marcinkiewicz
spaces respectively and characterize the whole structure of rearrangement
invariant spaces (see e.g. [KPS]).

The abstract analog of the above-mentioned function is defined by

SDA(t) = ‘PA(tJ‘Z) = sup HIHA: 0<t<oo,

“m“AQS]-t HWHA]_St
and still called the fundamental function. It is not difficult to verify that
this agrees with the previous definition for each rearrangement invariant
intermediate space F for the couple A = (Lo, L1 ). The following inequality
is valid:
lzlla < lzlaoeallicla/lzlan), =€ A(4),

where p4 cannot be replaced by any other quasi-concave function ¢ dis-
tinct from @4 at least at one point. This function was first introduced by
A. Dmitriev [D] and further extensively used in [P1], [DKO], [M] etc.

Let us note some properties of fundamental functions:

1) pa = pae, where A° is the closure of A(A) in 4; in particular,
pp = pp for A,B € m(A); . '

2) if A C B, then p4(t) £ Cpp(t), where C is the imbedding constant;

3) panp(t) = max(pa(t), ¢5(t), pa+rs(t) < min(pa(t), vu(t);
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4) for each nonimbedded couple A with A(}I) not closed in Ag, 41 we
bave 4,(t) = 1, @4, (t) = t, @aa)(t) = max(1,t), and Emin(1,¢) <
tpE(;U(t) < min(1,%), where

k = sup H$||;:(A)/||$Hm21)

5) if As,As € w(A), A € w(As,Ay), walt) = walt, ), Palt) =
walt, As, Ag), then

pa(t) < 04, (0)Palpas (B)/0a:(1));
6) walt, A1, Ag) = t(,OA(l/i, Ap, Al);
7)if A ¢ Ay with imbedding constant C, then p a(t) = const (= p4(C)}
for t > C and all A € n(A);
8) if AS C Ag with imbedding constant C, then 4(t) = tCip 4(1/C) for
t < 1/C and all A € 7(4).

The fundamental function can be expressed through the Peetre func-
tional J{¢, &) = max([|z[| 45, tllz]l4,) by the formula
‘PA(t) = sup !ix“-‘l/'j(l/tvm) ’
zeA(A)
ie. wa(t) = inf@(t) over all quasi-concave functions ¢ for which |lzf|sa <
(@} (1/t, x) for all 2 € A(A), > 0.

Unlike for rearrangement invariant spaces, the abstract fundarental
function is not sufficient for characterizing the position of an intermedi-
ate space since it estimates the norm ||z|{4 from one side only. Another
characteristic is obtained by passing to the dual space:

par(t,A') = sup IAlar,
1704z <2, Hfil,;»iﬁ

0<it< oo,

In the case of a nondense couple A the adjoint spaces do not form a Banach
couple, hence the use of another form of duality is essential (see [P2]). In
order that w4 be independent of the choice of the dual couple (it automat-
ically does not depend on the choice of A'), it is sufficient that the couple
A be normative dual for A, ie. that

2l astaq == sup{[{z, ¥} : (9]l agniran)y < 1}

for each £ > 0 (note that the conjugate and preconjugate spaces as well
as the dual spaces from [BK2] satisfy this condition). In this case ¢ 4/(£) is
expressed through the Peetre functional K(t,z) = inf{|lzo||la, + t|z1la, :
xgp € Ap, 1 € Ay, 2o + &1 = z} by the formula

@ar(t) = sup tK (1/t,2)/l|zlla -
2EA
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We shall denote the right-hand side of this formula by ¥ 4(t) = ¥a(t, A)
and call it the fundamental co-function, whether the dual couple exists or
not. Then ¥a(t) = infe{t) over all quasi-concave functions # for which
lzlla = tK(1/t,z) /() forallz € A, t > 0.

As above, in the case of a nondense couple, AY is the closure of A(A) in
A, i=0,1. I_f?' it possible to replace, in the definition of w4 (t), ¥ 4(t), the
couple 4 by A°7 The answer is affirmative if A € 7(A4°). In the other case
walt, A) = g (t, A°), but for the co-function it is only possible to assert
that 1a(t, A) > 1as (¢, A°).

Let us record some properties of fundamental co-functions, by analogy
to those of fundamental functions:

1) if A ¢ B, then ¥4(t) < Ciplt), where € is the imbedding constant;

2) Yangp(t) < min{va(t), ¥a(1)), ¢A+§(t) > max(4(£), ¥ (), and the
second inequality turns into equality if 4 has a normative dual couple or
A, B e n(4°);

3} for each nonimbedded couple A with A(A4) not closed in A9, A1 we
have th4,(t) = t, ¥a,(t) = 1, ¢z (t) = max(1,?), and Emin(l,2) <
LY ( ) < min(1,t) (with the same k as for p 4(t});

) 4} if Ag C Ay with imbedding constant C, then v 4(t) = const (= ¥4 (C))
for ¢ > C and each A € w{A);

5) if Ay C Ay with imbedding constant C, then ¢ 4(¢) = O (1/C) for
t<1/C and each A € r(4).

For a rearrangement invariant space A intermediate for the couple
(Lo, L) the equality wa(t) = ¢3(t) = t/pa(t) is valid, hence to char-
acterize such a space it is sufficient to know the fundamental function. In

general, there is no connection between ¢4 and Pa; some connections ap-
pear under additional restrictions on the whole couple A or on the space 4

[P3], [D].

PROPOSITION 1. Let A be an interpolation space for one-dimensional
operators acting in the couple A. Then wa(t) < Cyph(t), where C is the
interpolation constant.

PROPOSITION 2. Let the Peetre functionals for the couple A satisfy
Ktz A

(1) inf sup ——gi:l =
¢ :[:EA(E) ‘](t7m7‘4)

Then 14 (£) = % (t) for each intermediate space A,

> 0.

Remark. The converse to Proposition 1 is also valid: the inequality
Pa(t) < Coty(t) implies that A is an interpolation space for one-dimensional
operators. .
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3. Comparison of intermediate spaces. Now let us show how the
fundamental functions and co-functions of intermediate spaces can be used
to estimate their relative position. For this purpose we define a generaliza-
tion of Lorentz and Marcinkiewicz spaces playing the role of “marks” in
7(A) by analogy to the case of rearrangement invariant spaces. Namely,
for every quasi-concave function ¢ let AW(A’) be the intersection of all
spaces in w(z) for which @4(t, 4) < {t), and let M, (ﬁ) be the sum of
all spaces in m(4) for which v,bA(t A) < *(t). Bvidently, S,;(Jzi) C Mgo(ﬁ)
and AW(A’) C A C My (A A) for each A € w{A). For these spaces to be
instrumental it is especw.lly important that for some indices the inverse
imbeddings also hold. As was proved in [P1], the inequality

W(t)
f tio(t)

is sufficient for the imbedding M, C Ay;. From this we deduce tmmediately
the following

dt < o0

PROPOSITION 3. Let A, B € n(4) and

2) = f el g o o

Then B C A with imbedding constant depending only on C.

Note that the requirements on ¢ 4,15 cannct be weakened in general;
this follows e.g. from the equivalence of the norm in A, and of the inte-
gral

ro T
o

for quasi-power ¢ (i.e. p(t) ~ t*9(t°~*) for 0 < o < # < | and some quasi-
concave 9) The spaces A, (4 4) and M(,,(A) are iuterpolation spaces for the
couple A and even generate interpolation functors in the category of Banach
couples. Hence if 4 € 7(A), B € n(B), wa(t) = ¢alt, &), en(t) = pn(l, B),
then {2) implies that the triple By, By, B is interpolating with respect to
the triple Ag, A, A.

The functors Ay, M, are particular cases of real interpolation func-
tors because they are expressed through the Peetre functionals J(¢, ) and
K(t,2) [P1]. As was shown in [BKL], for description of such functors, in
fact, the K-functional alone is sufficient. We only formulate here part of
this statement in a form suitable for our purposes.
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PI{O_I:OSITION 4 Letz € E(E), Yy € Z‘(E‘) and suppose K(t,:c,ﬁ) <
K(t,y, B). Then for each quasi-concave i,

“33'HAP[;1) < C”yHAw(B') Hm“Ms,(ﬁ) = C]|y||M¢(§) .

This means that interpolation from A,,,,(f}) to A‘P(A') (as well as from
J\-fw(ﬁ) to I\d’tp(;‘i)) is K-monotonic. Tt follows that the above-mentioned
interpolation from the triple By, By, B to Ag, A1, A under condition (2} is
also K-monotonic, i.e. the K-orbit of each z € B (see [02]) is contained
in A.

Using the paxtial ordering of intermediate spaces induced by imbedding
we may say that each intermediate space is bounded above and below by
some spaces A, and My, with possibly different indices. To have an imbed-
ding A, C A C M, with equal indices it is necessary and sufficient that A be
an interpolation space for one-dimensional operators acting in the couple _Z{;
all the more, such an imbedding holds for any space which is an interpolation
space in the general sense. For ¢, we can take any quasi-concave function
o satisfying Croa(t) € ot) < Coypi(t) with some constants C1,Cs > 0,
hence it is not unique. In order that all the admissible ¢ coincide up to
equivalence it is sufficient, for instance, that the condition (1) be satisfied.

Another question: To what extent an inverse correspondence can be es-
tablished such that for each quasi-concave function ¢(t) there exists a space
A € n(A) with @alt, A) ~ (1)? Evidently, in the case of nonequivalent
wa(t), pp(t) the norms in A and B are not equivalent on An B (we shall
write A # B). Consequently, the norms in AW(t)(A), AK;,B(t)(A) are also

nonequivalent. Thus the store of intermediate spaces for the couple A with
nonequivalent fundamental functions can be estimated by that of A (A)
spaces. Moreover, one can use the duality between A, and M- to estimate
the store of M, spaces. In the next section it will be shown by examples of
concrete couples how this store may be incomplete, but now we will present
some general results (partially proved in [P4]}. Recall that the couple A
is called ¢rivial if A(J) is closed in X(A A), and the function () is called
reqular at zero (infindty) if limg-o () = 0 (lims o0 () = oc).

PROPOSITION 5. Let the couple A be nontrivial, the functions o1, 8 be
quasi-concave and 8* be regular at zero and ot infinity. If one of the following
conditions 4s satisflied:

1) Aw(ﬁ) is mot imbedded in Ag, and () = 8(p(2)) for t <1,

2) A‘P(}i) is not imbedded in Ay, and ¥*(2) < 8(p*(t)) fort > 1,
then the spaces A, and Ay are noneguivalent.

If one of the following conditions is satisfied:
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1) Mw(ﬁ) does not contain Ay, and 9(t) < 8{p(t)) fort > 1,
2) M, (A) does not contain Ay, and 1™ (t) > 8(:2*(t)) for ¢ < 1,
then the spaces M, and My are noneguivalent.

In particular, it follows that the generalized Lorentz and Marcinkiewicz
spaces with numerical indices are nonequivalent for different indices, gince
these indices are, in fact, power functions with different exponents.

As follows from the definition of A, spaces, their store (and so that of
A, spaces in the dual couple) is connected with the store of K-[unctionals
for the couple A. The latter is called complete (or abundant) if for each
quasi-concave y there exists 2 € Ap + A such that K(t, z, E) ~ p(t) with
a universal equivalence constant. It was shown recently [BK2] that for 4 to
have an abundance of X-functionals, it is necessary and sufficient that there
exists at least one z € Ag + A; with a quasi-power K-functional. Again
referring to [P4] we can compare the generalized Marcinkiewicz spaces in
this situation.

PROPOSITION 6. Let the couple A have an abundance of K-functionals.
Then My(A) = My(A) iff ¢ ~ . Moreover, for @,y nonequivalent M, (A)
cannot be densely imbedded in Mw(ﬁ).

Using some basic ideas of the above-mentioned proof from [BK2] we now
prove the following general assertion.

THEOREM 1. Suppose that, for a couple ;1, there is an intermediate space
A with a quasi-power fundarental function. Then, for any given quasi-
concove function o, there exists an intermediate space for this couple whose
Jundamental funclion is equivalent to ¢ (with o universal equivalence con-
stant).

Proof. We show that the spaces Atp(}i) have the required property.
First we consider the space A, (A). Tt is not difficult to see that its Fun-
damental function is precisely ¢.4. Since we shall only deal with general-
ized Lorentz spaces, we may suppose without loss of generality that disa
dense couple, and introduce the conjugate couple A*. Assuming (A}) = A;,
i = 0,1, we get the normative duality of the couple A for the couple
A*, and therefore 'a,./)Mrw:4 (t, A*) = a,, (t, A) = @alt, A). Denoting by §
the unit ball of Jlfiﬂp;«i(;l*) we obtain sup_.g tK(1/tm, &%) = pa(t), Le
sup,cg K(t,z, A%) = (¢}, where %(¢) = tpa(l/t) is also a quasi-power
function.

Fix some 7> 0 and a sufficiently small ¢ > 0. There exists o € 5 such
that K(7,2,, A*) > (1 — e)(r) while K (¢, 2., A*) < 4(t) for any ¢t > 0.
It follows from the definition of the K-functional that for each ¢t > 0 there
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exists z = z(7,t) € A} such that

lz(m8)llag + tlzr — 2(rt)|la; < (1)K (t2r, AY) < (1+)(t) .
As was shown in [BK2], since ¢ is a quasi-power function, for each r > 1
there exists A > 1 such that rp(t) < $(AL) < Ap(t)/r, ¥E > 0. We fix some
r > 2(1+¢)/(1—¢) and the corresponding A. Now we define u, € A(A*) by

Uy = 2(7, A7) — 2(7,7/A) = (2. — 2(7, 7/ A)) — (zr — 2(T, A7T)).

Then two estimates are valid simultaneously:

K(s,ur, %) < Yurllag < [|207, Ar)lLag + 1207, /M)l a3

S (A Aeppdr) + (1+e)p(r/A),
K(s,uﬂ;l*) < SHuTHA; < 8|z, — z(r, /N )[ar + sllzr — 2(7, A7)l ax

S

< (42N 4 (1)

or by the gquasi-concavity of 2,
K(s,ur, &%) < (L+&)(A + 1) (r),
Combining these we obtain

(3) K(s,ur, A*) < (14 &)(A+ 1) min{1, s/7)¢(7) .

On the other hand, for each t, the K-functional has all the properties of
the norm, hence

I\’(T,UT,Z*)
> K(7, 20, A%) = K(r, 2(r, 7/ \), Ay — K(r,z,

K(s,ur, A%) < (14 &)(A+1)stp(r)/7.

— z(7, )\'r),.?l*)
> K(r, %, ﬁ*) = |\=(r, 7-/)\)“‘43_* e, — 2{7, AT)|| 42
> (L= e)p(r) = (L +e)p(r/A) — (L+e}p(Ar)/A.
But 9(7/A) < ¢(r)/r and P(A7) < Ap(7)/r, whence
(4) K(r, uq.,;i*) > (L=gyp(r) —2(1 + &) (r)/r.
By the choice of r,
y=(1-g)-2(14+¢g)/r>0.
Setting vy = u./(y9(7)) we obtain from (3) and (4) the estimate
min{1, s/7) < K(s,vr, A*) < Cmin(1,5/7)

where C = (L +£)(A+1)/7. :

Thus for each 7 > 0 there exists an element in A7 + A] whose K-
fanctional is equivalent to min(1,s/7) with equivalence constant indepen-
dent of 7. Again referring to [BK2] we hence obtain an abundance of K-
functionals for the couple A By Proposition 6 this guarantees the nonequiv-
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alence of M'Lp(;i*) and J\Jw(ﬁ*) with any nonequivalent ¢ and ¢. Finally, the
duality of generalized Lorentz and Marcinkiewicz spaces gives the analogous
nonequivalence for A(P(Z) and Ay (A).

It remains to show that for each A, (A) tts fundamental function is equiv-

alent to the index. To get a contradiction, suppose that () = © 4, (A) (, 21)
is not equivalent to ©(t); evidently, 1¥(t) < p(t). By definition A‘P(}i) C A

for each A with ¢4 (f, A) < @(t), s0 wa(t) < 9(t). Hence A¢(ﬁ) = Ay(A),
which is impossible. This finishes the proof.

4. The fundamental functions in some special spaces. As a rule,
the exact computation of fundamental functions is a difficult problem. It is
easier to get estimates of the form ¢ 4 (%, 4) < Cp(t) by proving an inequality

(5) lzlla £ Cllollage(lizlla/llz]la0)

for some quasi-concave function ¢ and all © € A(fi). Families of spaces hav-
ing such a property for a given couple A were studied in [P5] under the name
of massives. A massive is called homogeneous if similar inequalities connect
any three spaces in the massive. Estimates like (5) occur in almost all ab-
stract constructions of spaces with function indices: the real interpolation
method, the constructions of Calderén-Lozanovskil, the functors of Ovchin-
nikov [O1], Janson [J] etc. An inverse estimate for the fundamental function
can be obtained by constructing special elements on which the inequality
(5) turns into equality.

EXAMPLE 1. The Holder spaces H,, consist of functions z continuous on
[0,1] with modulus of continuity w(%, z) satisfying

|z, = sUp w(t, z)p(t)/t < o0

(two functions differing by a constant are identified). In the case of ©(f) =
wo(£)8{p1(2)/wolt)) where g1 and 8 are quasi-concave, one can easily
establish the inequality
(6) lell e, < llzllz,, 0zl m,, /] a,,) -
If z(t) = min(f, A} for some A € (0,1), then [Jx| g, = ©()\) for each quasi-
concave v and equality is achievad in (6), thus
(7) (PHLF(t: «H-lpmffl,h) = 9(6)

Consider now an arbitrary space H, intermediate for the couple
(Hyy, H,, ) (for that, it is sufficient that min{pg, ¢1) < v < max(eo,¢1)).

By the general properties of quasi-concave functions we again obtain (7)
with

6(¢) = sup pls) min(L/po(s), H/or (5)).
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The same “test”ﬁfunctions z(t) = min(t,A) allow us to establish the
inequality (1} with 4 = (Hp, Hy), v = 1. Since it is well known that H

is an interpolation space for (Hg, H,) we may apply Propositions 1 and 2,
whence

TpH‘p(t’ HU:HI) = W*H,(t,HG:Hl) = t/‘ro(t) -

EXAMPLE 2. Inequalities of the type (6) are valid for different families
of rearrangement invariant spaces if their fundamental functions (in the
classical sense) are taken as indices. For instance, Lorentz, Marcinkiewicz
and Orlicz spaces are of that kind. At the same time, equality is achieved for
each x(t) = Xo, A](t), hence a formula for a “mutually” fundamental function
like (7) is also valid for these families. Let us now take three arbitrary
rearrangement invariant spaces F, Ey, Fy such that F ¢ w(E‘), E= (Eo, E1)
and try to estimate pp(t, E) through their classical fundamental functions

wr(t), vr,(t), vy, (t). Using characteristic functions one can easily get the
inequality

wu(t, B) > 0(t) = sup @ (s) min(1 /0, (5}, #/0m: (5))

hence only the opposite inequality is a problem. Sometimes such an inequal-
ity can be obtained by using the relation {P1]

A B = Ag(Myy (E), My, (E)), v = woble1/%0),

which holds when # and /@g are quasi-power functions. Indeed, if
YR, Py, pE, May be taken respectively for @, g, ; in this relation, then

‘PE(t: E]) < goALP(EA)(t,Mch(E’),ﬂ’I%(E)) < B(t) -

Notice that in general g (t, E) need not even be equivalent to #(t). The
corresponding examples are given in [BO], [MM].

ExaMpPLE 3. Let E be a Banach lattice on (0,00}, and w be a mea-
surable almost everywhere positive function. Then E(w) is deﬁne;i to be
the space with the norm ||z|| gy = ||2w||z. We consider the couple E () =
(E(wo), E(uy)) and the intermediate space E(w) with weight w =
wob (wy /ug). From convexity of the norm in E it follows easily that

Izl 2y < 2028 81z 2w /12l Bws))

for any quasi-concave 8, thus the corresponding estimate for the fundamental
function ¢ g (t, E ()} holds. The inverse estimate depends on the rélation
between the weight functions w;, ¢ = 0,1, and the measure p on (0, o).
Suppose that p{a < wi(s)/w(s) < §} > 0 for any @, § from the range of
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UM /'LUO. Then

@ g (£, B())

> sup ljzewof (w1 fwo)ll =
[|= max (wo,w1 /1) |le <1

= su _@'_Wf_(_"tﬂl_/“_’g)_ ’ = ess sup 0(w /we) min(1, two/w) .
i< (| max(wo, wi/t)

By the above assumption the “esssup” may be changed to “sup”, hence for
all ¢ from the range of wq/wp,

0 gt BE(©)) > sup{#{w; /we) min(1, two/w1 )} = O(t}),

whence @ gw) (t E(@)) ~ 8(t).

For Welghted sequence spaces the situation changes just because of the vi-
olation of the above-mentioned assumption. Both the fundamental function
and the K -functional are continuous functions of a continuous argument,
while the elements and the weights are discrete; that leads to different vari-
ants of noneguivalence and incompleteness of the stores of K-functionals and
fundamenta! functions. Restricting ourselves for simplicity to one weight we
consider the couple K = (B, E(w)), where w = (wn), n = 1,2,... For
an arbitrary quasi-concave § we then find that @ g(swy) (b E) 2 6(t) for all
t=w,,n=12... At the remaining points ¢ > 0 the fundamental function
does not, in fact, depend on #(t) but is always less than 26(t). Taking into
account the quasi-concavity of the fundamental function and the minimal
possible A(t) we get the estimate

6'(15)/2 < (PE(Q w) (L E) < 25(15), Yt > 0,

where § is the piecewise linear function connecting the points {wy, 8{wy)).
Note that in the case of § concave the equivalence turns into the exact
equality @ mew)(t £) = 0(1).

Thus in the case of a couple of weighted sequence spaces the question
about the store of fundamental functions (and also of A-functionals) reduces
to the question of equivalence of quasi-concave functions which coincide (are
equivalent) on a sequence of values of their argnment.

THEOREM 2. Suppose that two quasi-conceve functions o,y take equiva-
lent values on some increasing sequence of positive numbers wy, n= 1,2,.. .,
e Y(wn) < wlwy) € Cv(wg) for all n. In order that eny two such fune-
tions be equivalent for all € > 0, it is necessary and sufficient thot the se-
quence Woi1/wy be bounded,

Proof Without loss of generality we may assume that o(w.,) == % (wy,)
= ¢, for each n. It suflices to consider the minimal and maximal guasi-
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concave functions taking the given values at the points ¢ = w,. Let , 1 be
such functions. Then for uy, < ¥ < wnyq,

(P(t) - l'ﬂin(C?L+1 ) tc'rl/wn), T}’)(t) == max((:ﬂ, tc'r‘b-kl /’wn_i_l) y
therefore

i< ‘P(ﬂ/’iﬁ(t) < 1113'X(cn+]./cn: 'wn+1/t: t/wna cnwn+1/(cn+lwn)) .
By quasi-concavity, ¢n < tpqq and cpp1/cn < Wny1 /Wy, and hence

1< Lp(t)/’t/}(t) < wﬂ.+1/wn.7
which proves the sufficiency.

To prove the necessity we consider the pair , 1 as described above for
tn = /Wr, and compare their values at t,, = | /WnWnt1. In this case w(tn) =
VW41, P(tn) = /wn and p(t,) /¥(t,) = \/m; while {wp) = ¥(wn)
for all n.

The above theorem implies the possibility of existence of coinciding se-
quence spaces E(@(w)), E(¢(w)) with nonequivalent ¢(£),4(¢). This fact,
however, is not too informative, until the role of the massive {E{p(w))} in
the collection of all intermediate spaces of the couple Z is clarified. This
vagueness can be avoided by some concrete choice of the space E (see
e.g. [02]).

PrOPOSITION T. The spaces £1(p{w)) are generolized Lorentz spaces
for the couple &y = (f1,0(w)), and the spaces fos(pp(w)) are generalized
Marcinkiewicz spaces for the couple foo = (Lo foo ().

Choosing some sequence of positive' numbers w = (w,) such that
lllnn_,oo?,!JnH/wn = o¢o, we construct a couple El for which the spaces
A (31) may coincide for nonequivalent indices. As follows from the proof
of Theorem 1, only the minimal such index coincides with the fundamental
function of A, (£), while the others (nonequivalent) cannot at all be real-
ized as fundamental functions of any intermediate space of the couple El
Thus the store of fundamental functions for this couple is incomplete. In
particular, for this couple there does not exist any intermediate space with
a quasi-power fundamental function.

Pagsing to dual spaces we get the possibility of coincidence of the spaces
M ((’m) with nonequivalent indices. By Proposition 6 this means the in-
completeness of the store of K-functionals for the couple I, with weight
sequence (w.,) as above. The results of [BK?2] then show that there is no
2 € log + oo () which has a quasi-power K-functional K {t,z, E ).

5. The use of fundamental functions for comparison of interpo-
lation functors. A functor F acting in the category of Banach couples is
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called an interpolation functor if for each Banach couple . A it determines the
space F(A) € w(4) such that any two triples Ao, A1, F(A) and Bo, By, F(B B)
are interpolation trlples for each other. Of course, F (A) is always an inter-
polation space for A. Applying F to the couple of one-dimensional spaces
(R,#R),? > 0, we obtain the space w(¢)R with some quasi-concave function
. This function first appeared in [DKO] and was called the characteristic
function of the functor F. The authors have also shown that for any Banach
couple :ﬂi,

(8) A (D) © F(A) € M,(4).

Recall that A, and M, are interpolation functors themselves, therefore
they are extreme among all having the given characteristic function . The
space F(A) turns out to be intermediate for the couple (4, (A), M (A)) To
describe its position in this couple it is again natural to use fundcunentcxl
functions. In other words, we have to estimate ¢z 7, (¢, 4 (A) (A)) and

Ve A (A, My (A)). This will provide the comparison of interpolation
functors not only with respect to their imbeddings but also with respect
to their proximity to the extreme cases. In general, such an estimate may
depend not only on the functors, but also on the couple to which they are
applied. However, for real interpolation functors one can give some uniform
{nontrivial) estimate independent of the couple A

Indeed, in [BK2] it was shown that each real interpolation functor is
representable in the form ﬁg , that is, it vields the space with the norm
lz]| = || K (¢, =, ;1)||E, where F is the value of this functor at the couple
(Lowy Lioo(1/t)) on the semi-axis (0, 00). The functors A, M, are just of this
type; let Eg = Ap(Loc, Loo(1/1)), B1 = My(Loo, Loo(1/t)). Then

@F(Fl)(t: A‘P(;i)a sz(ﬁ)) = sup
”}<(t!$:é)”EOS1
& (t2,A) ]| 2y <0

1K (t,z, A)||z < pr(t, By, By).

Note that A, M, can be replaced by arbitrary real interpolation functors
to get an analogous result.

From the results of the previous section it follows that the inequality here
may not, in general, be changed to equality, and ¢, A)(t A (ﬁ) M (A))

need not even be equivalent to ¢p(f, E). We do not know whether this'is
possible for a couple A with a complete store of K-functionals.

Ag an example of a nonreal interpolation functor we consider the exten-
sively studied Calderén-L.ozanovskil functor, which generalizes the complex
method to the case of a function parameter when A is a couple of Banach
lattices. For each quasi-concave a(t) it yields the space £,{A) consisting of
all z € 5(4) representable in the form |z(s)| = |zo(s)|&{|z1(s)|/|zo(s)]),
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where z; € A;, i = 0,1, and &(¢) = 1/w(1/t). This space is normed by
lz|| = infmax(||zo|| 4, |21/, ), where the infimum is taken over all pos-
sible representations of x as above. Applying £, to the couple (R,IR) we
obtain its chag-acteristic function equal to «(?) and thus the imbeddings
Ao(A) € Lo(A) € My (A). The first of them means that

(9} Pro(A) (t, -’—i) < aft).

Again, as above, we pose the problem of estimating the position of Lo (4)
in the couple (A4 (A4), M, (A)). Further results will show the dependence of
thig esgtimate on the couple A and even the character of this dependence in
some cases. We restrict ourselves to two situations, in which the functor £,

is easily computable in an explicit form. First we study couples of weighted
spaces [ = (B, E(w)), for which Lo{E) = E(a(w)).

THEOREM 3. Let E = L, (p > 1) and suppose the weight funciion w is
not equivalent to o constant. Then

(10) ‘Pﬁrz(ﬁp)(tv Aa(ﬁp)a ]\’fr!(ip)) < Ctl/q:

where C' does not depend on p and o.

Yi>0, 1/g=1-1/p,

Remark Just as for sequence spaces, the analog of Proposition 7 is
also valid for L, spaces. Namely, Lo (Ly) = Ay (L;), which yields ¢ = oo in
(10), while £a(Les) = My(Loo) yields ¢ = 1 in (10). Thus in these extreme
cases the inequality (10) is known to hold and even turns into equality by
property 4 of fundamental functions. The core of Theorem 3 is to show in
what manner the fundamental function varies with p passing from 1 to oo.

Proof. To get {10) we must take some x satisfying H““"HAL,(EP) < 1,
|l gy, g,y St and estimate its norm in Lo(Lp) = Ly(a(w)). Fix such an 2

o\ p

and set ¢(s) = K{s,x, L,). Tt was shown in [O2] that by concavity of o(s)
there exist two positive numerical sequences a = {a,), ¢ = (o) such that

(11) 0(8)/2 < K (5,0, Loo, Lo () S K (5,0, 8, 4(0)} < 20(s) .
It then follows frow Proposition 4 that
lallaw e eton < 22l g,y =2

10/ 0, (2o ton(eh) < 2Nl a2,y S 2
In view of Proposition 7, this corresponds to the inequalities
(12) el €2 lalltatey <2t
Using the I5lder inequality we now obtain

lafeyatey < 2677
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Now consider the triples Ly, Ly(c(w)) and J.E;,J,Ep(oz(a)). By the Ovchin-
nikov theorem [0O1] they are interpolation triples and from [S] it follows
that this interpolation is relatively K-monotone. Hence the elements with
equivalent K-functionals (in their own couples) have equivalent norms in
the corresponding spaces. It remains to note that, since £, is intermediate
for the couple (f1,£s), the functional K(s,a,fy, £y(c)) is also equivalent to
o(s) and so

Jl ey < C#/1.
THEOREM 4. For the fundamental co-function af the space Et,,(ﬁp) for
the couple (Ao (Ly), Mo{L,)) the following estimate holds:
(13) ¢£Q(Ep)(ta Aa(ﬁp): Ma(Ep)) < ctir.
Proof. We start with the well-known duality relations
f‘; = (Lg(1/w), Lg), (ﬁa(f’p))* = Ly(1/alw)) = Lar (L;) ;
where a*(t) = t/a(t). Moreover, the couple (A, (E;), Ma+(L*)) is a norma-

e
tive dual for (As(Ly), My(Lyp)). Hence from Theorem 3 it follows that

".bga(f,‘p)(ta/la(f’p)a Ma(Ep)) = ‘Pga*(iz)(ta Ao (E;): Ma*(i;)) = ctHr.
COROLLARY. We have the imbeddings
Apra(AalLy), Ma(Ly)) € Lplalw)) © Marn(Aally), Ma(Ly),

which means that Ly(a(w)) is an interpolation space with respect to one-
dimensional operators for the couple (Ay(Lp), Ma(Ly)).

The next result relates to comparison of the functors Ay, My, L, applied
to the couple L = (Lo, L1), for which they yield, respectively, the Lorentz,
Mareinkiewicz and Orlicz spaces with fundamental function . We also use
the function

m(t) = sup aofts)/a(s)
which is widely used in interpolation theory.

'THEOREM 5. The fundamental function and co-function of the space
Lo(L) for the couple (AL (L), M, (L)) satisfy the inequalities

(14) e oyt AalD), Ma(E)) < Ctm(1/1),
(15) Yo gyt Aa(D), Ma(L)) < Om(t). -

Proof. As in the proof of Theorem 3 we fix z such that |z| , By S L

#llar,(zy < t and define g(s) = K(s,z,L). We also take sequences a,c
satisfying (11), which leads to inequalities (12). From this point on, the
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proof becomes different because instead of £,(a(r)) we need £, (als)) =
L (oo (@(0)), €1 (a(0))). 1t then follows from (9) and from property 6 of
fundamental functions that |||y, (a0 < 2tm(1/t).

The next step consists in establishing the imbedding /,,{a(c)) C
Lo(loc, 1(0)). Let a € £n{a(o)), and let ag € fo, a1 € £ be taken in
such a way that a = apfM(a1/ag) and

lafle, oy = max(llaca(o)llen, llero)]e) — &

for some € > 0. Suppose that ug = aga(o), u1 = a1a{o) /o, u = wpte{u; /up).
Then

[l 20 lon ta (o) S max(||ug]| e, s 10 ]ley)

max({|age(o)fie...; llarc(o)ie,) < llallen oo + -

A

i

On the other hand,
u = uptef{uy /up) = eoa{o)B(ay/(oag))
= awa(o)/a(ca/a1) 2 aofa1/a0) = a,
whence
o] 2atten tr (@) S Nollemiaon +¢-
It remains to let € — 0. .

Now note that, in view of (11}, K(s,0, £e,f1(0)) ~ K (s, T, L) and that
interpolation from (fue, £1(0), La(bos, £1(0))) to (L, La(L)) is relatively K-
monotone, which implies that |z|, 7, < Ctm(1/t) and (14) is proved. To
prove (15) we pass to dual spaces taking into account that

I'=L, (La(D)) =Lar(D), (Aa(D)) = Moe(L), (Ma(L)Y = Aa-(L)
and
supa™(ts)/a’(s) = tm(1/t).
CoOROLLARY. The following imbeddings hold:
Az (Aa(D), Ma(I)) € La(L) © My (Aa(D), Ma(L)) .

Unlike the corollary to Theorem 4, we obtain here generalized Lorentz
and Marcinkiewicz spaces with different indices, which does not allow us to
claim that E“(.E) is an interpolation space with respect to one-dimensional
operators acting in the indicated spaces. The coincidence of indices and the
interpolation property can only be obtained for a(t) = /7 with any p > 1.
Note one more peculiarity of all results in this section. It follows directly
from the definitions that for any couple A we have Aq(A) C My (A_)' with
imbedding constant 1, and thus for each space A lzing between Ay (A) and
Ma(A) both pa(t, AelA), Ma(A)) and Pa(t, Au(A), Mo (4)) are constant
for t > 1. Hence the estimates of fundamental functions and co-functions
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obtained in this section provide some useful information only for 0 < ¢ <1,
characterizing the decay of these functions as ¢t — 0.
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