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STUDIA MATHEMATICA 107 (3) (1993)

Rearrangement of series in nonnuclear spaces
by

WOJCIECH BANASZCZYK (Rods)

Abstract, Tt iy proved that if a metrizable locally convex space is not nuclear, then
it does not saiisfy the Lévy—Steinitz theorem on rearrangement of series.

Let E;’;l u,, be a convergent series in a topological vector space E (all
vector spaces are assumed to be real). Its sum will be denoted by the same
symbal 0o, uy, that is

oa N

Uy, = lim Zu .
Z n N oo e
n=1 n=1

We shall frequently write S u,, instead of 3 .., un to denote both the series
and its sum.

The set of sums of the series 3 u,,, denoted by &(3 uy), is defined in the
following way: a vector v € E belongs to &(3 w,) if there is a permutation
7 of N such that the series Y o, Ur(ny converges to v. We also define

F(Zuﬂ,) ——"{fEE’:iU(unN <oo},
FQ(Zu,,,) = {v eE:flv)=0foral fe F(Zun)}.

Tt is obvious that G (3 tn) C L0(3 tn}+ 2 tn- The Lévy-Steinitz theorem
asserts that if 3w, is a convergent series in R", then

() o @(Z@mﬂ)zfo(z:un)—ﬁ—zun.

It was proved in [2] that R™ may be replaced here by an arbitrary metrizable
lo¢ally convex space, The aim of this paper is to prove the following

ematics Subject Classification: Primary 46A35.
w0 ey Yuords wiid phrascs: rearratgement of series, Lévy—Steinitz theorem.




214 W. Banaszczyk

THEOREM. If a metrizable locally convez spoce is mot nuclear, then i
contains a convergent series y . un such that (¥) does not hold.

The assumption of metrizability is essential: each convergent series in a
locally convex direct sum of real lines lies in a finite-dimensional subspace.

Let p be a norm on a vector space X. Let Y be a subspace of X and Z
a subspace of Y. By ¥}, and (Y/Z), we shall denote the spaces ¥ and Y/Z
endowed, respectively, with the norms induced by p. The Banach-Mazur
distance between a normed space X and izgimX will be denoted by dx.

Lemma 1. To each 4 € {0,1) there corresponds a constant ¢ > U satisfy-
ing the following condition:

(1) given arbitrary norms p, ¢ on a finite-dimensional vector space X,
one can find a subspace ¥ of X and o subspace Z of Y such that

(1) &m(Y/Z) > dim X,
(2) diyimy, < ¢,
(3) diyrzy, S c.

Proof Fix ¢. According to the Milman quotient subspace theorem,
there exists a constant ¢ > 0 satisfying the following condition:

(ii) every finite-dimensional normed space X contains a subspace ¥ and
another subspace Z C Y such that dim{Y/Z) > % dim X and dyyz < ¢

We shall prove that ¢ satisfies (i). So, let p, ¢ be two norms on an n-
dimensionai vector space X. By (ii), we can find a subspace ¥; of X and a
subspace Z7 of ¥7 such that

(4) dim(¥1/2Z1) > Vdn,

(5) d(Yl/Zl}p <ec.

Applying (ii) once again, we find a subspace ¥ of ¥;/Z; and a subspace Z

of Yy such that

(6) dim(Yy/Z2) > VO dim(Y1/Z1)

(7) d(yz)/zz)q <ec.

Let 9 : ¥1 — Y1/Z; be the canonical projection. Set ¥ = ~1(¥2) and Z =

¥~*(Zs). From (6) and (4) we obtain (1) because dim(¥/Z) = dim(Ya/Z).
If F is a subspace of a normed space E, then, naturally, dp, dg /p < dp.

Hetnice :

(8) diva/zay, < divay, € vz,

because (Y2/Z,), is a quotient space of (Ys), which, in turn, is a subspace of

(Y1/2Z,),. Since the canonical isomorphism ¢ : Y/Z — Yy/Z,, defined in the

obvicus way, is an isometry of (Y/Z), onto (Y2/Zs),, from (8) and (5) we
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obtain (2). Finally, (7) implies (3) because ¢ is also an isometry of (Y/Z),
onto (Ya/Zs)y. @

Let U, W be two symmetric convex bodies in an n-dimensional vector
space X. Their volume ratio will be denoted by Il_% More precisely, we
define

U] _ AT@)

Wl AT(W))
where X is the Lebesgue measure on R” and 7' : X — R™ a linear isomor-
phism.

LEMMA 2. Let U, W be two symmetric convez bodies in an n-dimensional
vector space N, with U C W. Let M be an m-dimensional subspace of N and
m: N — M an arbitrary projection. Then

wnM| _ ml U
it TS bl
@) A = W
oy [T 10
l=(W)] = nl W]
For (a), see [1}, Lerama 3. The proof of (b) is similar; we leave it to the
reader. '

LEMMA 3. Let r be an integer greater than 1 and let Er_y be an (r—-1)-

dimensional euclidean space. There exist vectors ui,...,ur € E,._1 with
norms <1 such that
(9) w4 e =0

and the following condition is satisfied:

(i) given arbitrary ki,...,kr € Z, denoting by o the fractional part of
LS ki, one has
T =

(10) | H ; K

Proof Let E, be an r-dimensional euclidean space and eg,...,ep an
orthonormal basis in E,. We may assume that Er_1 is the orthogonal com-
plement of the vector e; +.. . +€&r Let 7 : B, — Fy—y be the orth.ogonal pro-
jection. An easy calculation shows that the veciors u; = w(g;), ¢ =1,...,7,
satisfy the desired conditions. =

The closed unit ball of a normed space E will be denoted by Bg. Let
T . E - F be a bounded linear operator acting between normed spaces.
For each n = 1,2,..., we define

> o (L - a)%.

|7(Bz 0 M)\ ™"
on(T) ”}f}’( 1BFHT(M)E)
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where the supremum is taken over all linear subspaces M of E with dim M =
dim T(M) = n. If rank T < n, then we define v, (T) = 0.
Let p be a seminorm on a vector space E. The pseudometric on E induced

by p will be denoted by d,. We write By = {u € E : p(u) < 1}. By E, we

denote the space E/p~!(0) with its natural norm. The canonical projection

E — E, is denoted by t,. Thus |l¢5(u}l| = p(u) for u € E. Let ¢ < p be
another seminorm on E. The canonical operalor E, — E, is denoted by
Tpg. We write

'Un(p: Q) :Uﬂ(qu) (n = 1a2=-")'

Given a subset A of a vector space E, by gp A we shall denote the additive
subgroup of F generated by A.

LEMMA 4. Let p, q be two norms on o vector space F such that p > ¢
and

(11) limsup n® v, (p,g) > 1.
=00
(a) Take any ro € N and § > 0. Then we can find some r,s € N with
Tog S 1 < 8 and some wy, ..., ws € B, with
(12) w14, .. ws =0
such that the following condition is satisfied:

(iv) given arbitrary ki,...,ks € Z, denoting by o the fractional part of
15 1 ks, one has

(13) q(Z kiwi) > 7o (1 — a)]/2.

(b) Let K be a finitely generated subgroup of E. Take arbitrary v € K,
a € span K and € > 0. Then we can find some vy, ..., v, € By such that

(14) UL+ v =,
(15) dq(a,K—I—ZD1+...+Z1}5)qu(a,K)—s.

{c) Let K be a finitely generated subgroup of E. Toke arbitrary o €

span K and € > 0. Then we can find another finitely generated subgroup K’
of E with K C K’ such that

(16) K" =gp(K' N By),
(17) de(a, K'Y > dy(a,K) —¢.

Proof. (a) Let ¢ be the constant corresponding to the constant o = 0.95
due to Lemma 1. By (11) and the definition of v{p, q), we can find an n-
dimensional subspace L of & such that P|Ls 9|z are norms on L and

(18) 0.476n — 1 > max(rq, 210406 ~10) ,
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‘Bp n Ll > 01
|B; N L|

According to our definition of ¢, we can find a subspace M of L and a
subspace N of M such that

n

(19)

(20} m = dim(M/N) > 0.95n,
(21) d(M/N),, S C,
(22) d(M/N)q S C.

Let @ M~ M/N be the canonical projection. Set [ = dim M. Applying
Lemia 2(a) and then (b), we see that

le(B, N M| > m! By N M| > m! B, NI ‘
w(B,NM) ™ I [Bon M| T I nl[Bgn L
Hence, by (19) and (20), after easy calculations we derive

lp( By, N M) —0.3m
Lt St st RS .
(B 0 M)

It follows from (21) that there is an m-dimensional o-symmetric ellipsoid U/
in M/N such that

(24) UCw(B,NnM)cCcU.

Similarly, (22) implies that there is an m-dimensional o-symmetric ellipsoid
W in M/N such that

(25) c'WCp(B,nM)CW.
From {23)--(25) we get

(23)

vl
Wi

We may assune that M/N = R™ and
U == {({z1,. .., 5m) € R™: 22+ a2l <1}
Let uy % ... < jtyy be the principal semiaxes of W, We may assume that
W oz {(@,. .. @n) € R™: xf/,u% + .t wgn./!-‘f_n <1}
Let 7 be the integer part of /2. From (20) we get
2n r > 0.475n ~ 1,

whence r > rq due to (18). As B, C By, from (24) and (25) wehave U C W.
Therefore py,. .., im = 1, so that

(26) R

W
ST

e

Pl S et e e S L
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Hence, by (26), after easy calculations we get
(28) fhoo1 < 2ct0%,
Let || || denote the euclidean norm on the subspace
R™™ = {(21,...,2m) ER™ i3y = O for i > r}.

According to Lemma 3, there exist some g, ..., u, € UNR"? satisfying (9)
and (iii). In view of (24), for each i = 1,...,r we can find some w; € B,NM
with p(tw;) = u;. Then Y_;_, w; € N because, by (9),

(Z ) .Zt,o(w1 guizﬂ.

i=1
Therefore we can find some wyq1, . .., We € ByNN such that (12) is satisfied.

To prove (iv), take arbitrary ki,...,ks € Z and let o be the frac-
tional part of L0 k;. Then (10} is satisfied. From (25) and the inclu-
sion W N R™ v C pr1U it follows easily that g(u) > u 2 [Je(u
1 € o (R"1). Thus

a(Yo k) 2 o (3 ko)
i=1 =1

Hence, by (10) and (28), we obtain

Q(Z k:-iwi) > 2 Lo~ 401 [p(1 — )|V/2,
i=1
which, by (27) and (18), yields (13). This proves {a).
(b) Choose g > 2p(u) and 6 € (0,1/2) such that
(29) (1 - 8)[dg(a, K} — bg(u)] 2 dy(a, K) — &,
1
(30) : S0 = B2 2 dylo, K) — e

A standard argument allows us to find a subspace F of F with codim F < oo
such that

(31) 2(z+y) = (1= 8)g(xz)
This implies that

)| for each

”
\ = ‘L;‘}]‘H Zkiui .
=1

(z espan K, y € F).

(32) oo +y) 2z o— g > ;)Q(y)

It follows easily from (11) and Lemma 2(a) that

(zespan K, y € F).

lim sup n® Un(p|F,qu) >1.

TE—> 3

So, by {a), we can find some », s € N with ro < r < 5 and some Wiy .., Wy €
B, N F such that (12) and (iv) are satisfied. Set v; = sw; + Lu for { =
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1..,rand v = :}wi fori=7r+1,...,s Then (12) implies (14). For each
i=1,...,5, we have

1 1 1 1

i) K- ; - < = = =
because w; € By, and r > ry > 2p(u). Thus vy, ..., v, € Bp.
To prove (15}, take any b € K and ky,...,k; € Z. We are to show that
8
(33) Q:r:.g(a—(b-{—kai)) >dg(a, K)—¢.

i=1
According to the definition of v;, we have

(34) qu(a—b—%(gki)u~%gkiwi).

Let ¢ be the fractional part of 2 37_, k;. 'We shall consider three cases.

I. & € [0,8). Let m be the integer part of = 77_, k. Then b+ mu € K.
From (34) and (31) we get

> (1 8)q (a-b—«-(Zk) )z (1 - 8)[gla —b— mu) — g(ow)]

2 (L~ 6)ldg(a, K) ~ bg(u)].
Hence, by (29), we obtain (33).

IL o € [5,1 — &). From (iv) we have (13). Applying (34), (32) and (13),
we get

( kal) > 15 HE(1— )2,

i=1k
Hence, by (30), we obtain (33).
L o € [1 - 6,1). Let m be the integer part of 1+ ki Asin I, we

have

0= (1 —8)q (a - %(Zk) ) (1—8)[qg (a—b—.mu)—(l—a)q(uj}

qeml

> (1 - O)dg(es K) - |

(c ) LeL {uj ey be a set of generaﬁ:oxs of K. By (b), we can ﬂnd some
v, | € By such that vl 4. +ol =uand :

2ol L) = dglay K)-

] 2 dq(a,K)—E-

dy(a, K + Zvt +
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Applying (b) once again, we find some v3,...,vZ, € By such that L

2
vy, = uz and

dyla, K + Zo} + ...+ 20} + Zo} + ...+ Zu},)
> dy(a, K + vy + ...+ Zvy,) —

=

Then we proceed by induction. In the kth step, having constructed vectors ug
forallj=1,...,k—landi=1,...,s;, we can find vectors v¥, ... ,vf_€ B,
such that v§ + ...+ vf = uy and

ivk 8 . 18 £
de(a, K + gp{v] }j=1,i=1) 2 dgfa, K + gp{v] j:l,:i—:l) T

After I such steps we shall obtain some vectors Uf forj=1,...;,0 and i =
1,...,8;. Set K' = gp{v} };213’21 It follows directly from our construction

that K ¢ K', and that (16) and (17) are satisfied. This proves (c). =

LeMMA 5. Let E be a locally convex space. Suppose that there exists an
g > 0 with the following property: to each continuous seminorm g on B
there corresponds another continuous seminorm p > q such that v,(p,q) =
o(n=%). Then E is nuclear.

This is Lemma 2 of [1].

A topolegical group G is said to be locally generated if gpU = G for
each neighbourhood U of the neutral element.

LEMMA 6. Let E be a metrizable locally convez space. If E is not nuclear,
then it contains a locally generated subgroup K such that (3K)\ K # 0.

Proof. We can find a sequence py < p; < »y < ... of continuous
seminorms on E such that {Byp, 12, is a basis of neighbourhoods of zero

in F. If B is not nuclear, then, according to Lemma 5, there is an index kg
such that

(35) lim sup 2 vy, (pr, Py ) > 1

n—o0

for all & > kyp.

We may assume that ky = 0.

Choose some a & E with pp(a) = 2 and set Ky = 2Za. Then dy, (¢, K)
= 2. By (35) and Lemma, 4(c), we can find some finitely generated subgroup
I, D Ky of E such that Ky = gp(K1 N By, ) and dp,(a, K1) = dpy(a, Ky) ~
1/2. Next, we can find a finitely generated subgroup Ky D K of E such
that Ko = gp(KaNBy,) and dy (o, K3) > dp,(a, K1) —1/4. Then we proceed
by induction. In the kth step, having constructed Ky_;, we find, applying
(85) and Lemma 4(c), a finitely generated subgroup K, D Kr_1 of E such
that Ky = gp(Kx N Bp,) and dp,(a, Ki) = dy, (a, K1) — 27
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Set K = Uiy K. We have o € 3Ko C $ K. It follows directly from our
construction that I is locally generated and

dpy (6, K) 2 dp (0, Koy = > 27F=2-1=1.
k=1

Thus o & K, so that (JK)\K # 0.

Remark 1. If & is a locally generated subgroup of a nuclear space £,
then K is a linear subspace of E (see [3}).

Let 3" 1, he a convergent series in a topological vector space E. For each
m € N, let Z,, denote the closure of the set of all points of the form E;one N
where N is a finite subset of {m, m+1,...}. We define (3" tin) = [lpz1 Zm-
The set (3 uy) is a closed additive subgroup of & (see e.g. [2], Lemma 5).

LEMmMA 7. Let E be o metrizable vector space and K a locally generated
subgroup of I such that (5K)\ K # 8. Then there exists in B o convergeni
series > Uy such that A(> " uy) is not o linear subspace of E.

Proof. Choose some a € (3K)\ K. Let U1 D U2 D ... be a basis
of neighbourhoods of zero in E. For each m = 1,2,..., we can find some
vectors wi,...,wh € UnNK with wi + ... + wj’, = 2a because K is
locally generated. Consider the following series:

e
| i 1 1 _ .1
E Uy = W] - wi+wy —wy +— Wy — Wy
ne=l . 5 5
2 —_ —
-|—’w%-”w%+w5g_w2+_"-'+wk2 wk2+

It is clear that 2(3 un) contains the subgroup 27Za. On the other hand,
a & A uy,) because, evidently, (S uq) C K. ®

Remark 2. If ¥ u, is a convergent series in a nuclear space E, then
AT wy, ) is & closed linear subspace of E; see e.g. [2], Lemma 6.

Proof of Theoren. Let E be a metrizable locally convex space
which is not nuclear. According to Lemmas 6 and 7,.there exists a con-
vergent series 3 1, in F such that A(T un) Is not a linear subspace. I”.Iihg
definition of A3 uy,) implies immediately that 2(3 un) C (Y un). It is
a standard fact that &($ un) C UG Un) + 3 tn (sce 0.8 [2], Lemma 5).
Thus G($uy) # Lo} tun) + 2o tin. ®

Remark 3. The author does not know whether the following statement

i it contains
is true: if a metrizable locally convex space 18 not nuclllea.r, tk;f;xn%ltfzoid
a convergent sexies Yty such that &(T up) is not a linear .
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Some integral and maximal operators related to starlike sets

by

SAGUN CHANILLO (New Brunswick, N.I.},
DAVID K. WATSON (Camden, N.J.) and
RICHARD L WHEEDEN (New Brunswick, N.J.)

Abstract. We prove two-weight norm estimates for fractional integrals and frac-
tional maximal functions associated with starlike sets in Euclidean space. This is seen
to include general positive homogeneous fractional integrals and fractional integrals on
product spaces. We consider both wealk type and strong type results, and we show that
the conditions imposed on the weight functions are fairly sharp.

0. Introduction. This paper is concerned with studying weighted norm
inequalities for certain generalizations of the Riesz fractional integral oper-
ators and associated maximal operators. One such operator is the following:
on B™, n > 1, define

Ia,ﬁf(m) = fx ka,ﬁ(w) y
where

1
(0.1) ka,5(x) = e i-a P’

for & = (21,..., %) Here, -0 <a < n—1 and 0 < B < 1. We may think of
these operators as interpolating between an n-dimensional Riesz fractional
integral operator and a 1-dimensional Riesz fractional integral operator in
the last coordinate.

We shall derive results for our operators from corresponding results for
more standard operators. For example, we derive weak and strong type
estimates for [, s from corresponding results for the ordinary fractional
integral I,.pg. The necessary requirement for this derivation is that we have
precise control over the operator norms of the standard operators in terms
of the constants appearing in the conditions on the weights.
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