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into Q(D, D) satisfies (5.3), (5.7) and (5.8). Now the theorem follows upon
applying Proposition 5.2.
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On the representation of uncountable symmetric
basic sets and its applications

by

TRANCISCO L. HERNANDEZ (Madrid) and
STANIMIR L. TROYANSKI (Sofia)

Abstract. It is shown that every uncountable symmetric basic set in an F-space
with a symmetric basis is equivalent to a basic set generated by one vector. ‘We apply
this result to investigate the structure of yncountable symmetric basic sets in Orlicz and
Lorentz spaces.

1. Introduction. There are three results about Banach spaces with an
uncountable symmetric basis having some relevance to the subject of this
paper. Firstly, it was shown by renorming arguments in [T,] that if X is a
Banach space with a symmetric basis {€,}aga Which contains a subspace
isomorphic to cp(I") (resp. to £1(I")) for an uncountable set I' then X itself
is isomorphic to ¢o(A) (resp. to £'(A}). Later, nsing this result and combina-
torial considerations, Drewnowski [D;] proved that for nonseparable Banach
spaces with a symmetric basis, all uncountable symmetric bases are equiva-
lent. Recently, in the special context of Orlicz spaces, Rodriguez-Salinas [R]
has given necessary and sufficient conditions for isomorphic embeddings of
Orlicz spaces hy(I7) into a space hy(A) for uncountable sets rcA

Qur aim in the present paper is to analyze the above results in a general
framework, that is, to generalize them to F-spaces, i.e. complete metric
linear spaces, to determine the context of validity of possible connected
extensions, and finally, to give some new applications.

For example, we prove that for the class of F-spaces the above mentioned
result of [T|] on spaces containing an isomorphic copy of ¢o(I") can be
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extended, while the corresponding version for spaces containing £'(I") iy
not true for F-spaces. We also show that, for every 0 < p < o0, there exist
Orlicz spaces has(A) with a symmetric basis, different from €7(A4), containing
an isomorphic copy of £(I") for uncountable sets I" C A (Proposition 7).
However, unlike the case of Orlicz spaces, it turns out that the Lorentz spaces
d(w, p, A) do not contain any isomorphic copy of €7(I") for uncountable sets
I'C A and 0 < p < oo (Proposition 10).

Our main tool is a structure theorem for isomorphic embeddings of spaces
with an uncountable symmetric basis into F-spaces with a symmetric bagis.

Let X be an F-space with a symmetric basis {eq}ned. A basic set
{vy}ver in X is called a block basis generated by a vector x = Ei?;] U Oy,
if there exist digjoint infinite subsets {v(£)}32, of A4, for v € I', where v 3 §
or i # j implies (1) # &(7), such that

oQ
Uy = Za,iew;) for each v € I'.
=1
MaN THEOREM. Let X be an F-space with a symmetric basis {eq}aca.

If {uq}ver is an uncountable symmetric basic set in X then {ty }yer is
equivalent to a block basis {v,},cr generated by one vector.

In the case of Banach spaces this result was reported at the Vth Spring
Conference of Bulgarian Mathematicians [Ty] and is presented in the Doc-
toral Thesis of the second author.

II. Proof of the main result. Let us start with recalling some defini-
tions. By X we will denote an F-space, i.e. a complete metric linear space,
with an F-norm || - ||.

DEFINITION 1. A family {eq}aeca of vectors in X is said to be a sym-
metric basis of X if:

(i) it is an unconditional basis of X, i.e. for every ¢ € X there is a unique
family {a,}aca of scalars such that

T = Z Qo
aEA

(ii) for any two sequences {er,} and {} in A, the basie sequences {eq, }
and {e,, } are equivalent. ‘

(in the sense of sumabitity), and

Denote by II 4 the family of all one-to-one correspondences 7 from 4 onto
A and by X4 the family of all functions ¢ defined on A taking values z:1.

Suppose that the symmetric bagis {€ataea is regular (cf. [KPR]), Le. for
every A > 0,

(+) p(A) >0, where () inf eal-
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Then, as in Lhe case of Banach spaces, it turns out that each = € X can
be represented in a unigque way in the form z = Za Ga€q, Where the con-
vergence 8 unconditional and the families {7} remss {8)sex, of operators
defined by

() == Z(Lnew(w) and F(zx) = Z o(@)ogeq
fx &
are equicontinnous. The proof is the same as in the case of Banach spaces,
taking into account that for every x = Za fnes the set {ﬂ'aeﬁ}(m,ﬁ)em is
bounded (see [LT1).

Remark. The regularity condition () is essential: let w be the space of
all scalar sequences and {en )55, be the natural basis of w. Obviously, {e,}
iy a synunetric basis, but for every A > 0, inf, |Ae,|| = 0 and {%} is not an
equicontinuous family of operators.

From now on we only consider uncountable symmetric bases. For such
bases the regularity condition {(*) is obviously satisfied.

In an F-space X with an uncountable symmetric basis one can introduce
an F-norm by the formula

) |

Yince {#} and {F} are equicontinuous, the F-norm |- | is equivalent to
| ||, i-e. they generate the same topalogy.

For our purposes we shall assume, without loss of generality, that the
initial F-norm in X satisfies

(2) Aelf < =l i [Al <L,
(3 |FFz]| = ||z|| foro € Xa, 7€ Ha.

The existence of an equivalent F-norm with (3) follows from (1). (For
(2} see [Ro] or (KPR].)
Let ¢ take values 0, 4=1. Then it follows from (2) and (3) that

@) 3c) < 22/ <2l and Jimp(3)=0.

LEMMA 1. Let X be an F-space and {ex }35-, be an unconditional basis
in X with biorthogonal system {ef, )50, Let {x,}52, be an unconditional
basic sequence in X such that UMy see €5, {2n) = €5, (z) for somez € X cm‘d
for every m € N, Then the sequence {yn}om with yn =Tn —z forn € N s
equivalent to {@, )

Proof. We proceed in a standard way (cf. [M]). If = & [Zn)2, th*en o:ve
consider the sequence xg = 2%, 21,63, .. and put ¥ = [mn]:j:()'_ Let {27 }nto
be the biorthogonal system to {z }5ly. Since z 7 0, there exists a na,tu.ral
mumber m such that en(z) # 0. We may assume without loss of generality

= sup sup |d7z|.
ceXygnella
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that e (x,) > a > 0 for some a > 0. According to (4), for every y € ¥,
e ()| < 2||y|. Then, if z}(y) > 0 for every n € N we have

6 Yei)<at S wi)enlza) =

Since {2,1°%, is an unconditional basis of ¥, it follows from (5} that for

every y € ¥ we have
> lan) < oo
n

oGk ta ot bl e
S o ®h(y) is continuous. Let

“lepm(y) <207y

and the linear functional f defined by f(y) =

ng be such that
. 1
‘ 5 x’u(m)\ < 5

N>
* o
and take Y5 = %0, Tng+1, Tng+2, - - = 24(Y) + 2 nsn, Taly). Since

zh(z) = 1/2, we have

(6) ()

The operator T : ¥y — ¥ defined by Ty = g(y}x is linear and continuous.
By (8), the operator U : Y — ¥, given by the von Neumann formula
Uy = 302 T™y is linear and continuous and it is the inverse of I — T.
Thus, the sequences {&n}nsn, a0d {Yntnsng are equivalent. m

J. Let g{y)

| <1,

LeMMA 2. Let {em}i_y be a symmelric basis of an F-space X with
biorthogonal system {ef,}2 ;. Let {2, 15, be o symmelric basic sequence
in X, x € X a nonnull vector, and {m,}52, o sequence of elements of Iy
such that

(7 lim || 2y — &} = 0.
T =X

Then {zn}0r, is equivalent fo the symmetric basic sequence {y, }2%., where
Y = Yot € (Z)erimny forn € N and 7(m,n) are different natural num-
bers.

(In other words, the lemma says that the sequence {2,155, is equivalent
to a block basis generated by the vector z.)

Proof By passing to a subsequence if necessary, we can assume that
limp oo €, (T} = G, exists for every m € N, Let M = {m & N : a,, # 0}.
We shall show that there exists a one-to-one correspondence 6 from M into
N such that ej ()} = am.

Assume the opposite, Then there exists a 0 such that if Card A denotes
the cardinal number of a set A, then Card A > Card B, whete 4 = {m :
Um = a} and B = {m : e} () = a}. Pute—-mf{\em('n)-—al mé& B} >0,
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and let ng he great enough so that for n > ng and every m € 4,
() o] <e/2.
Then for n = ng, m € 4 and & & B,
(8) lehlen) = eh(@)] > e/2.
Since Cord A = Card B, for each n there exists s, such that s, €

mu(ANT, Write pu, == w; ', Then for n > ng according to (2), (4) and
(8) we have

o e (e - w)e,, || = H(czﬂ(sn)(mﬂ)
Zple/2) >0,
which contradicts (7). Henee, there existy a correspondence 8 : M — N such
that ef,,, (@) = @ vnd # 18 nvertible. As the basis {e,, }%_; is symmetric,
there exists oy € X such that e, (20) = an, for m € N, Now, by Lemma 1,
we can agsne, without loss of generality, that

(9) Jdim e, (24) =0

2”%?-“3.5” N a Ezﬂ (m))eﬂn H

for every m & N.

We can find an increasing sequence {m; 155, of natural numbers such that
oy

(10) [ 3 e

it b bl
Now, let us define recusively an increasing sequence (ng) of natural
nwhers in the following way: Put ng = 0. Hlaving chosen ny <... <nj_1,
by (7) and (9), we can find n; so that

“ é{ for each { € N.

. 1
(ll) lﬂ(le""’”‘d (m)(wni)n < W
form =1,...,m; and j = 1,...,i~1, and
. - 1
(12) Ry, Ty = ]| < 5

Define Ag =, A; = < i} and

{tay ()t m &

By = {m, e My, (m) € AN U AJ} forieN.

Jmal
We shall show that

: 1
(13) ol |ed, (@, )]) = pI for each m € By

Indeed, since m € B;, there exist j < i and s < r; such that fm, (M) =
oty (#). But

i~ ™
Oy (Ry g ) = e:um(m)(m"f) = (H)(m‘”‘") '
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Therefore (11) implies (13).
Denote by Ny the set

{k € N : there exists m such that k = p,(m), ex(z.) = 0 for all n ¢ N},

Without affecting the generality we may suppose that Ny is infinite. (If Ny is
finite or empty we may consider the space X x X which has a symmetric basis
equivalent to {e,}, and the elements (2,0}, (z,0) and @), (u, v) = (T, v)
for (u,v) € X x X, instead of X, z,,, &, and 7.}

Let {ki tmen, be disjoint subsets of Ny. Consider

o Ky for m € By,
Tl Z A o, (m) for m & By,

and the vectors

My oo
_ § : * _ § : * .
Uy = e'rrb(m)eTm,i’ Uy = e'nl(z)(zf‘m,i‘ ?
m=1 me=1mqy+1
and
oo
%
wi = 2 e?n(ﬂﬂimni)eTm‘i'
m=1
Since
)
— *
In; = § e'u,“i(m) (w'ﬂ‘i)e,l.ﬁn,i H
m=1
we have

Tn

Wy = Z e;w (m)(mm)(e“ni(m) ot ekm) .

meB;
As Card By, < my, it follows from (3} and (13) that

1
(14 e = sl < gy
and using (3), (10) and (12) we get

(15) s = (a0l = [ Fugin, — 0l < 3, o] <
Therefore it follows from (14) and (15) that |[zn, — ui] < 272 for {
N. Thus, the sequences {z,,}52, and {u; i=y are equivalent, As 7y, for
m = 1,...,m; and © € N, are different natural numnbers and {e, 152, I8
a symme‘gric basis, we find that {u;}52, is equivalent to {1}, where
% 5= 3 e €n(®)er(m,q) for i € N. But from (3) and (10) we decduce that
[l2: — gall < 27* for i € N, Therefore, the sequences {y;}%, and {z}32, arc

equivalent, whence it follows that {«;}32, and {y;}%, are equivalent. =

for each i e N,
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Proof of Main Theorem. By Lemma 2 it is sufficient to ind se-
quences {7 }59, C M, {%}2, ¢ I and a vector € X such that

(16) ’11}1010 [Ty —x|| =0, where o #; foré# 4.

Let us introduce in X an equivalence relation: we say that 21,2, € X are
equivalent if there exists a bijection m € IT 4 such that Tz, = 5. Denote by
[X] the resulting quotient space, and introduce a metric ¢ in [X] by
ezl y)) = int{|z — y|| = € [a], y € [y]}

Tt is casily seen, hy (3), that o satisfies the triangle inequality and that [X]
is separable. Let v be the natural quotient map from X onto [X], and let
7 == {te pye e I 0{U) is & countable set, then there exists an uncountable
subset Iy ¢ 1" and v € I such that v(u,) = v(uy,) for every v € I,
whence there exists m, &€ IIp such that 7. u, = u,, for each v € I'y. This
implies directly the assertion in this case by taking = = 1.,.

Assume now that #(U/) is uncountable. Since the quotient space [X] is
Lindelsf, it follows that there exists an 2 & X such that the intersection of
an arbitrary ueighborhood of »{z) with »{U) is uncountable. Therefore we
can take, for each natural number 4, maps =} and 7; in IT4 and a vector
Uy, € U such that

=) =

i~ R | = 7 < olu(&),v{un)) <
Hence
|l - Tyl =0 asi— o0,
which concludes the proof =
COROLLARY 3. In o nonseparable F-space X with o symmelric basis all
symmetric bases are equivelent.

In the case of Banach spaces the above result was obtained by Drewnow-
ski in {I)(] with a different method using combinatorial arguments.

TI1. Applications. In this section we shall present some applications
of our main result and some exatples.

CoroLLARY 4. Let X be an F-space with a symmelric basis {eafaca
which containg n subspace isomorphic to co(I") for uncountable I'. Then X
is isomorphic to co(A). :

Proof. By the Main Theovem there exists a symmetric basic set {tin Yer
in X, where .

uy = 3 aieny,  v(i) €A, A0 #6() HiFjorv#S,

drn]
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which is equivalent to the natural basis in eg(I"). Let ag 5% 0; then, by the
regularity condition (x} and (4), we obtain

1 -
3 sup ||byeq || € ” § bvewtl)H < 2”&1 1 E b.fu,,” .
K v k!

This implies that the basis {e,}aca is equivalent to the natural basis of
CQ(A.). ]

R emark. The validity of the above corollary for Banach spaces X with
an uncountable unconditional basis has been analyzed in [Dg].

Remark. As mentioned in the introduction, an analogous result to
Corollary 4 is valid in. the context of Banach spaces when the space ¢o(1") is
replaced by £1{I") {{T1]). In the general framework of F-spaces such a resull
is not true: we shall show below that there exist (nonconvex) Orlicz spaces
has(A4), with a symmetric basis, containing an isomorphic copy of £1(I).

Recall that an Orliez function M is a nondecreasing function from [0, co)
into [0, c0), left continuous for ¢ > 0, continuous at 0, with M (0) = 0, M (1}
=1, and M(t) > 0 for ¢t > 0. For each Orlicz function M we define the
Orlicz space 1j7(A) consisting of all real-valued functions defined on A for

which
(3] - () <

for some A > 0. The space {{A) is an F-space with F-norm defined by the
formula

liz]] = inf{\ > 0: M{z/\) < A}.

In the case of being M convex, one can introduce a norm in {37(4) by
llz)| = mf{A > 0: M(z/)) < 1},

which is equivalent to the above F-norm || - ||.

Let ey be the function defined by e, (8) = b g for a, B € A. 'We shall
denote by has(A) the subspace of Iy (A) generated by the family {eq}aga.
It is easy to see that hjs(A) consists of those vectors z € ! a (A) for which
M(z/A) < oo for every A > 0.

We will say that an Orlicz function M satisfies the AJ-condition if there
exists a constant ¢ > 0 and a #g > 0 such that M (2t) £ CM(t) for 0 < ¢ <
to. If M satisfies the AJ-condition then l5;(4) = A w(A) and the unit vectors
{ea}aca are a symmetric basis in { m(A). If A s a countable set we write
hur and Ias as usual. We refer to [Ro] and [I.T] for other basic properties of
Orlicz spaces. .

The study of the symmetric structure of convex Orlicz sequUence spaces
hy has been mainly carried out by Lindenstrauss and Tzafriri (cf. (LT,
while the nonconvex case has been done by Kalton (K]). In particular, the
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Orlicz sequence spaces hy which can be embedded isomorphically into an
Orlicz space har arve entirely characterized in terms of the associated set
Car1 (cl. [LT], Thm. 4.a.8). Recall that the compact set Cpry is defined as
v Far, in the space C0,1/2] , where

EM,L = {]\J(S'{f)/f\/f(s) D<s < l},

Recently, the question of whether this result can he extended to Orlicz
spaces hag(A), for an uncountable set A, has been answered in the negative
by Rodriguez-Salinas [R]. In his proof the compactness of Cpry plays an
important role. Here, we will get the main result of [R] as a consequence of
our representation theorem (also we extend the result of [R] to the nonconvex
casa):

PRrOPOSITION 5. Let M and N be Orlicz functions (not necessarily con-
vex) and let A and I' be sets with Card A > CardI" > Ng. The following
slatements are equivalent:

(i) k(L) 48 isomorphic to a subspace of has(A).

(i) There exists & = {2;}52, € ha such that the functions N and Q are

equivalent al 0, where

[o 0]
Q) = M{zit}.
il
These imply
(iil) There exists a positive function W € LY0,1] such that the functions
N and R are eguivalent of 0, where
L M(st)

J () Wi{s)ds,

R(t) =
In addition, if M satisfies the AS-condition and is p-convez ot 0 for some
p > 0 then (i)« (il).
Proof. The implication (1)=>(ii) follows from the Main Theorem. One
can easily verify divectly that (ii)=>(1).
(i) (iii). First assume that 2; = 0 for ¢ > n. Then we put W(s) = M(s).
We have R(t) = ]01 M(st)ds, and

: 1

T}iM(f—) s [ M(st)ds < R(t) < M(e).
2 2 1}2

Assume now that @ == {#;}%2, containg infinitely many nonzero elements.

Since M (z/)) < oo for every A > 0, we get z; — 0. Without loss of general'ity

we may assume that 1 =1 2 @2 2 ... 2 0, We can find an increasing

sequence of integers (my) so that my =1, Tmy > Tmy > .- and #; = T,
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if mi € i < mpaa. Now we take a decreasing sequence {y; )i in [0,1]
containing {z,,, }$2, as a subsequence, so that

yi=1 and y/y; = 1/2.

Let

n Myt — Mg if Yy = Lrnge s
. = . , 50
? 0 ify; & {2y ooy

Evidently for ¢ > 0,
o0 o0
Z ]W(QL‘T;T,) s Z ‘fl.jM
i=1 j=1
We define a positive function W on (0,1] as follows:

Yogw 7!
Wis) = n,-( W) if s € (yj+1,95]-

Hid1

We shall show that W is the required function. Since

:Z;”j(yj"yjﬂ ( TM(»U))

we get W € L0, 1]. Obviously

_F M(st) _ ~1 Y M (st)
B = e WO Z””( EONE RS

bit1 Hi+1

<Y niM(y;) < oo,

4=1

This implies

anM (y;t/2) £ ZnJM(yﬂlt < R(t) € ZnJM(%
F=1 i=1 F=1
Hence R is equivalent to Q(¢) = Y oo, M (2yt), so to N at 0.
(i) => (ii). Take

“1 Wis)

Ae = M (s)

ds.

9= (k41)

‘We may assume that AO == 1, For ¢ < 1 we get

Z,\kM 2~ U4 < R(E) < ZA;CM(Q k).
k=0 k=0
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Now, by the p-convexity of M, there exists ¢' > 0 such that M (At) <
CAPM () Tor At € [0,1]. Thus

el o o0
DoM< S F DM < < (O + DM(275)
foe () fee=l) k=0
]
<Y AeM(27R) + z C2RP M (L)
heza() L, 0
e (1e 0 —k
£ L+ 75 Z/\RM £,

k=0
where [ 8 the integer part of . Hence we conclude that
0
Q) =Y (M) + )M (27" 1)
k=0
iy equivalent to F(#) at 0. m

Remark. It follows immediately from Proposition 5 that if ks (A) and
hy (A) are isomorphic and A is uncountable then the functions M and N are
equivalent at 0. In the countable case this is not true: there exist isomorphic
Orlicy sequence spaces iy and by defined by two Orlicz functions M and
N which are not equivalent at 0 ([LT]).

Remark, Given an Orlicz function M, denote by a1 the set of all
Orlicz I"um,tions, (0 satisfying the statement (i) in the above result. It is
clear that X'y is contained in Uy In general, Xy is not compact: If
M(t) = {?/|logt| at 0, 0 < p < oo, then reasoning as in ([LT], p. 158) we find
that the family of functions {Ng}toeg<1 for Ny (t) = t*/|log th is contained
in Xy . But it ig not difficult to see that the function #¥ is not equivalent
to any function in Xy (see [R]).

COROLLARY 6. Let M be an Orlicz function with the A3-condition and
peconven ab 0 for some p = 0, and A be o set with Card A > No. Then
M s a submultiplicative function ot O iff every subspace of hpr(A) with an
uncountoble symmetric basis {ybier with I' C A s isomeorphic to hp (I7).

Proof I {y:}ies is an uncountable symmetric basic set in hpa(A) then
it follows from the Main Theorem that {y; }ier 18 equivalent to the canonical
hasis of some Orlicr space hy (1), where N € . Hence N > M at 0.
Now, by the sul;nnultiplicativity of M at 0, we have N(£) = 3 M(ast) <
C37 M (2))M(t), Therefore hy (L) = hpe (7).

C;ouv@rac‘lv, assume {2, 102 and {yn}ang with @, N, O,yn N 0, and
M{my1) > A"M (@) M (y) for each n € N. Consider the Orlicz function
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N defined by
oo
N{t) = — for0<t<1.
( ) ol 2 M(Iz)

Then N € X1, so, by Proposition 3, hy(A4) har(A). Moreover, since
N(yn) > 2°M(yn), N is not equivalent to M at 0, which is a contradic-
tion. m

The following proposition will show in particular that the results of [T)]
on Banach spaces containing copies of £1(I"}, or ep(I"), do not carry over to
e, p>1

PROPOSITION 7. For every p > 0 there exists an Orlicz function My,
which does not satisfy the A3-condition, such that the Orlicz space hpr, (A)
contains an isomorphic copy of £2(A). Moreover, if p > 1 then M), is conuver.

In the proof we need the following two lemmas:

LeMMA 8. There exist strictly increasing sequences {k;}72g, {mitic, of
integers such that m,; > k; = E;;B my, fori=1,2,...,

(17) lim (mgy —m;) = oo
and -

(18) if(m—l—k:z-):l forz>1,
where -

(19) fz) = ix[mi,mﬁn(@ -

Proof. We proceed by induction. Define fy : N — {0,1} by fo(l) = 1,
foln) =0forn > 1, and put kg = 0, mg = 1, Ip = L and Fa(n) = fo(n).
Assume that natural numbers kg < by < ... < Ky, o < ™y < .. < my
and Ip < I < ... <lj,and maps f; : N — {0,1}, i = 1,...,4, have heen
chosen such that

filn) = fima(n) forn <my;  filma) =1

and the maps F; : N — {0, 1} defined by

filn) =0 forn>m;,

Fin) =Y filn+ks)

gu=()

satisfy Fy(n) = 1lforn <0, i =i+ 1, and F;(l, + 1) =0for i =0,1,...,4.
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. Now take ML = 1M +ki+l+1, ki1 =my+ky, and fia(n) = f3(n)
for n < mypi, freo(myrn) =1 fiei(n) =0 for n > myy;. Let
i+l
Fier(n) =Y fipa(n+ks).
4==()
Since fip(n - kyp1) = Lonly for n=1; + 1, it is clear that

7
Fipr(ly + )= 1 and Figi(n) = Z Fipr{n+ky) formsti;+1.
=0
For n < mg, n # U+ 1, we have fip(n+ ko) = fi(n + k), therefore
Fipi(n) = Fi(n). Let n > my, then fiq(n) 5% 0 only for n = mj4.. Since
for m > my; we have n+ k, > my, it follows that n + k, = m;;1 at most
for one s, and thus, only one of the numbers f;13(n+ k) may be 1. So the
induction step is made,
Finally, we define f{z) = f;([z]) if [z] € [1,m,]. Obviously, f is of the
form (19) and satisfies (18). =
LumMma 9. For each p > 0 there exists an Orlicz function M,, which does
not satisfy the AL-condition, such that
(e ]
Z%M,g(bkt) =t for0<¢<1/2,
ks L
where {ag}is, and {bi}52, ore two suitable sequences of positive numbers
with ay > 1. Moreover, if p > 1 then the function M, is conver.

Proof. Let f be the function of Lemma 8. Define a function g on (0, 1/2]
by g(t) = f(—logyt). Then

o (=]
) = > Xgayt) wad Y oglbt) =1 forte (0,1/2],
im0 i=0)
where
1

1
(_‘:imww, dimfaﬂ,',, b.,;"-—‘j—’;:.

2
Let ¢ > ~1 and consider the increasing function Gy defined by

Gylz) = [ t1g(t)at. |
0

Using the Beppo Levi Theorem, we get
et

o @ xr oC
ST [eg)at= Y t0g(bat) dt = Pl

=0 () 0 =0
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which implies that

(20) Z q%lG (b7

zOl

L0t

Now, consider the convex function H, (z) = fu ) dit. Using the above

equality and Beppo Levi Theorem again, we get

> Gq(b 1) a0t2
ISP Z; / Eaal ek
=0 "t =0 0

Finally, let us show that G, and H, do not satisly the Af-condition.
Indeed,

s
j £9 dt
Qy2e) _ Gyld) o &

_ S glatD(mipi=mi=1)
Golai)  Goldips) — % -

so, by (17), we get the result for G4. Now, as
da
s¢) > [ Gyt)dt 2 Gy(2)w
2z

and H,(x) < Gy(z)z, we have
Hq(?)cr,;) > Gq(.‘lcé)
Holci) = Gola)
which shows that H, also fails the Aj-condition, m

Proof of Proposition 7. Given ¢ > —1, we consider the function

= f.tqg(t)dt
0

as defined in Lemma 9. Hence
oo

1 Fa 1 1
ZobeG(bm):q“l“l J'or0<:r<2cm<“lb,,m§-m.
Denote by {&}}2, the sequence
[gko(fl Fl)] [2‘*‘1(@-“)}
e
(bﬂa'”:b(): bl:"-abla'”)'
Then
o0 o0 1 o
PNACEIESY f;a“ﬁaq(b*“) <2 Gy(Ha)
i=0 i=0 ¢ §=0
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Hence, by Proposition 5§, it remains to prove that {Bi}2, € he,,.
First, let ng prove !

[&.4]
(22) > g2 u) S (s +2% < oo for 276 g1,
=0
Indeed, for (s -+ 1) <8 <0,
% =~ oo oo
S22 = Y flhy s —0) = Xioms.my oty (B = 8 = ) -
r':«.:() g0 j=0 i=0 o

Itky~my = 94+0 2 s~(g-+1) = —1, we have k; > m;—1, s0, by the definitions
of my and k. (Lemma 8), we get § > 4. Now from k; — (m; +1) < s+8 < 3,
we deduce

8> k- (mi +1)

Z mi—1>5—-2.

[=0,l5h4
Hence 4 < j§ < 8 4+ 2, anc we have
>3] gL s+41
Z (652" " 6 szlmnmmﬂ)(k ~0) = Z(S +2)
gm0 Jeal g =0
= (54+2)2 for0>60>—(s+1).

Now let us show
o0

ZGQ(M;?H) < oo forevery seN.
()
We have

LW CH(b;2%) Z f_j(b 259 ud250 ) gy
f=al) 7 i={) ()
g (a1} i oo
( f 4 ' ) q(bi23u)u‘12"(q+l)du
0 gty im0
gt 1

< f 9o gy f (8 + 2)?u92°@ ) du < 00
) PRACRREY
since g % -1, (22) holds and Tie g(bit) =1 for ¢ € (0,1/2].
Finally, for the convex function Hy we take the sequence {br}52, defined
by
[p‘“-’fn(wll?)] [2"-h1(f1~?~2)]

NS A
(buy -+ B0> braeenrblio)
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Then for z > 0,

o o0
ZH (byw) Z T 2Hrz(bi-”3) < QZHG(YJ;“&:),
=0 Vi §=0
and
=01 -S| o0
Z pate Hqlbiw) = Z f WGQ(b@t) dt = Tz'r:) bﬁrcq(bim) < 00,
=0 i=0 0 o e

Hence, by (21) and Proposition 5, we conclude that, for p == ¢-+2 > 1, f#(A)
is isomorphic to a subspace of Ay, (A). =

Remark. Notice that Proposition 7 in the special case of p = 1 showy
that, unlike for Banach spaces, there exist nonconvex F-gpaces X with an

uncountable symmetric basis {es}aeca containing an isomorphic copy of
NI for Card I > Ry and X # £1(A).

PROBLEM. A natural question arises of whether there exists an F-space
Y, with a symmetric basis, different from ¢(I"), with the same property as
co{I") in Corollary 4.

Let 0 < p < oo and w = {w; }52; be a nonincreasing sequence of positive
scalars such that lim; w; = 0 and

oo
E w; = o9
i=1

We denote by d(w,p, A) the Lorentz space of all real functions a = z(a)
defined on the set A for which

o) 1/:[)’
(23) 2| = sup{ z'wjia:(amp} < oo

g==1
where the Supremum is taken over all sequences {o;}72., of different elements
of 4, and p’ = max(1,p). From (23) we deduce that there exists a sequence
{oi}72; such that [m(a1)] > Jz(en)| 2 ..., lime e 2(ay) = 0, 2{c) = 0 if
oaF oy i=1,2,..., and

= 1/
el = { > wilaegz} .
im=l

As in the sequence case (cf. [LT]), the space d(w,p, A) is a Banach space (in

the case 0 < p < 1, a p-Banach space) and the canonical basis {ea}asa is a

symmetric basis in d{w,p, A). If A is countable we just write d(w, p).
Unlike in the countable case, it turns out that the Lorentz spaces

d(w, p, A) cannot contain isomorphic copies of £7 (I"}-spaces for uncountable
setg I
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PROPOSITION 10, Let 0 < p < oo, The Lorentz space d{w, p, A) contains
an tsomorphic copy of I 4ff Card I < Ry,

Proof, The sufficiency part is well known ([ACL], and [P] for the non-
convex Crlh(‘-).

Counversely, assume that Card [" > Ryg. Let {u, }yep be a symmetric basic
sot in d(w, p, 4) equivalent 1o the natural basis of £2(I"). It follows from. the
Main Theoremn thal there exists a sequence {a;}5S, of reals and a sequence
{%(4)}7, of different elements of A such that {uy},er and {v,}yer are
equivalent, where

o0 )
- 1/p
Uy 7= E :@i Exli) -
i1

Tn particular, the block basic sequence {vj }72, generated by the vector

o]
1/
:ZI:Z&i/IE-i

i=1
in d{w,p) is equivalent to the natural basis of £7. But this is not possible
because

(24) T D S

e O 1 / P'

Indeed, we can assume w.l.o.g. that {a;}32,; is a nonincreasing positive
sequence. It is easy to see that :

HZ’URH - Zwk-l-'i. Lﬂ.a"l

b=l =1

Now, given & > 0 take a natural number N such that

Z Wity < %

i Ne
Then, for each 1 < k < n,
e Ny
“'f,Uk.h(i:. Db S (wkal -t Zw(.jm.l)na,,; <+ Z w;,_ula.@-q) .
il 2 > Ne

Since 1wy, — 0, there exists a natural number no(s) such that for n > no(e)
we have 2?;:2 wyaq < &/2 Hence for n > no(s),
<Zw;,m+t ( wk)a1+ns.

2ol 2

Fros L fes

il




304 F. L. Hernandez and 3. L. Troyanski

But this implies (24) since

1 3
i ——E = 0.
niingﬂﬂk_lwk ¥
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Montel and reflexive preduals of spaces of
holomorphic functions on Fréchet spaces

by

CHRISTOPHER BOYD (Dublin)

Abstract. Tor U open in a locally convex space F it is shown in [31] that there is a
complote locally convex space G(U) such that G(U)} = (H(U), 7). Here, we assume U is
balanced open in a Fréchei space and give necessary and sufficient conditions for G(U) to
he Montel and reflexive. These results give an insight into the relationship between the
and 7, topologies on H(L).

1. Introduction. Let U be an open subset of a locally convex space E.
We denote by H(U) the space of holomorphic functions from U to C. We
shall say thal a seminorm » on H(U) is 7g-continuous if for each countable
nereasing open cover {{/, }y of U there is a positive integer ng and €' > 0
such that p(f) < C||f|uv,, for every f € H(U). In [31}, G(U) is defined
to be the space of lincar forms on H(U) which are mg-continuous when re-
stricted to the locally bounded sets. We give G(U) the topology of uniform
convergence on locally bounded subsets of H(U'). Mujica and Nachbin prove
that G(U) = (H(U),7s) and then proceed to show that the topological
properties of G/({J) are useful in characterizing the topological properties of
H(U). This result is a topological generalization of a result of Mazet [27]
who had previously shown that G(U)" = H(U). In [14], the author further
investigated the space G(U) and obtained necessary and sufficient conditions
for the inductive dual of G(U) to be equal to its strong dual and thus for
(H(L), 1) to be equal to G(U),. One of the conditions for this to happen is
that CX(U) be distinguished. We investigate necessary and sufficient concli-
tions for G(U) to be Montel and reflexive. Among the conditions for G(U)
to be Montel is that the 7o and 7, topologies coincide on () while among
the conditions for reflexivity is thas the 7y and 7, topologies are compatible
on H(U7). This imaplies that for U7 balanced open in Tsirelson’s space we have
(H(U), 70) == (H(U),7.,) while 75 # 7. In the final section we give further
examples of Fréchet spaces with 7y 5 7, but with both of these topologies
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