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GLOBAL POINTWISE A PRIORI BOUNDS AND
LARGE TIME BEHAVIOUR FOR A NONLINEAR SYSTEM
DESCRIBING THE SPREAD OF INFECTIOUS DISEASE

Abstract. This paper considers a reaction-diffusion system with biatic
diffusion. Existence of a globally bounded solution is proved and its large
time behaviour is given.

1. Introduction. Our purpose is to analyse the following quasilinear
system of reaction-diffusion equations:

(1) ∂u(t, x)/∂t = ∇•(a(u)∇u)− uh(u)v

(2) ∂v(t, x)/∂t = ∇•(b(v)∇v) + uh(u)v − λv

}
in (0,∞)×Ω ,

(3) u(0, x) = ϕ(x), v(0, x) = ψ(x), x ∈ Ω ⊂ Rn

(n = 1, 2 or 3 in practice), considered with the Neumann or Dirichlet bound-
ary conditions:

(4′) ∂u(t, x)/∂ν = ∂v(t, x)/∂ν = 0 on (0,∞)× ∂Ω

or

(4′′) u(t, x) = v(t, x) = 0 on (0,∞)× ∂Ω

where Ω is a bounded smooth domain (∂Ω ∈ C2+β with some β ∈ (0, 1)),
t ≥ 0 and ν denotes the outward normal vector to ∂Ω.

The diffusivities a(·) and b(·) are assumed to be smooth, nondegener-
ate, strictly positive, and uniformly bounded. Namely, there are positive
constants C0 and C1 such that

0 < C0 ≤ min(a(u), b(u)) < max(a(u), b(u)) ≤ C1 <∞ for all u ∈ R .

Also it is assumed that h ∈ C1(R,R+) and λ > 0.
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The main motivation for studying the system (1)–(2) comes from the
well known Kermack–McKendrick system which represents a basic model
for the description of epidemics obeying the susceptibles-infectives-removed
(S-I-R) scheme [2]:

(5)

S′(t) = µS(t)I(t),
I ′(t) = µS(t)I(t)− λI(t) for t ≥ 0, µ, λ > 0,
R′(t) = λI(t),

where S(t), I(t) and R(t) are the number of susceptibles (individuals not
infected but capable of becoming infected), the number of infectives (indi-
viduals capable of transmitting the disease to members of the susceptibles
class), and the number of removed (individuals who have died or who have
recovered and have permanent immunity), respectively.

The proposed model (1)–(2) is clearly an extension of (5). In (1)–(2),
u and v denote respectively the density of susceptible individuals, and the
density of the infective individuals at time t ≥ 0, and at point x of the
habitat Ω. When a and b are constants, the system (1)–(2) was studied by
Capasso [3] and by Haraux and Kirane [4].

2. Global existence. In the sequel, arbitrary initial functions ϕ,ψ ∈
C2+β(Ω) satisfying suitable compatibility conditions:

(c) ∂ϕ/∂ν = ∂ψ/∂ν = 0 on ∂Ω in the case of the Neumann conditions
(4′), or ∇•(a(ϕ)∇ϕ) = ϕh(ϕ)ψ, ∇•(b(ψ)∇ψ) = −ϕh(ϕ)ψ + λψ and
ϕ = ψ = 0 on ∂Ω in the case of the Dirichlet conditions (4′′)

will be considered.
Now, a priori L∞(Ω)-bounds are derived following the iterative method

of Moser as in [1].

Theorem. For arbitrary initial functions ϕ,ψ ∈ C2+β(Ω), ϕ ≥ 0, ψ ≥ 0,
satisfying the compatibility condition (c), there exists a unique, nonnegative,
globally bounded solution (u, v), u, v ∈ C1+α/4,2+α/2([0,∞) × Ω) to (1)–(4)
(α = min(β, 1/2)). In particular , the orbit Γ (u0, v0) = {(u(t, ·), v(t, ·)) :
t ≥ 0} is relatively compact in C2(Ω,R2).

P r o o f. For fixed u and v, the operators ∇•(a(u)∇u) and ∇•(b(v)∇v)
generate analytic semigroups on Lp(Ω), so the system (1)–(4) has a unique,
noncontinuable, classical solution (u, v) on [0, Tmax)×Ω for some Tmax <∞.
Moreover, u, v ∈ L∞([0, T )×Ω) for 0 < T < Tmax and

lim
t↑Tmax

{Tmax + ‖u(t, ·)‖∞ + ‖v(t, ·)‖∞} = ∞ .
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Now we derive a priori bounds for (u, v) in L∞(Ω). Multiplying (1) by
pup−1, p integer, and integrating over Ω, we get

(6)
d

dt

( ∫
Ω

up
)

+ p(p− 1)
∫
Ω

a(u)|∇u|2up−2 = −p
∫
Ω

h(u)upv ≤ 0 ,

from which we infer, for all 1 ≤ p ≤ ∞,

(7) ‖u(t)‖p ≤ ‖ϕ‖p ≤ C ,

where ‖ · ‖p is the usual norm in Lp(Ω).
On the other hand,

(8)
d

dt

( ∫
Ω

vp
)

+ p(p− 1)
∫
Ω

b(v)|∇v|2vp−2 = p
∫
Ω

(h(u)uvp − λvp) .

Now using the hypothesis on b(·) and the estimate (7) with p = ∞, we
obtain

(9)
d

dt

( ∫
Ω

vp
)

+ 4C0

∫
Ω

|∇vp/2|2 ≤Mp
∫
Ω

vp ,

where M = ‖uh(u)‖∞.
Now, fix θ with n(n+ 2)−1 < θ < 1 arbitrarily. Then by the Gagliardo–

Nirenberg inequality

‖f‖22 ≤ C‖f‖2θ
1,p‖f‖

2(1−θ)
1 ≤ ε‖f‖21 + Cεθ(θ−1)−1

‖f‖21 ,
for ε > 0 and f ∈W 1,p(Ω) with norm ‖f‖1,p. Thus,

‖∇f‖22 ≥ (1− ε)ε−1‖f‖22 + Cε(θ−1)−1
‖f‖21

for 0 < ε < 1. By inserting this inequality with f = vp/2 in (9) we obtain

(d/dt)(p−1‖vp/2‖22) + 4p−1C0(1− ε)ε−1‖vp/2‖22
−4C0Cε

(θ−1)−1
‖vp/2‖21 ≤Mp‖vp/2‖22 .

Choosing ε = 4C0/(Mp+ 4C + 4C0), we infer

(d/dt)(‖vp/2‖22) ≤ 4C(−‖vp/2‖22 + C0‖vp/2‖21) .
We thus have (d/dt)(‖vp/2‖22) ≤ 0 whenever ‖vp/2‖22 ≥ C0‖vp/2‖21, and so
‖vp/2‖22 ≤ ‖ψp/2‖22. Hence

(10) ‖vp‖1 ≤ max(‖ψp‖1, C0‖vp/2‖21) .
Now, let M(k; t) = max ‖v(t)‖l (l = 2k) for t ∈ I = [0, Tmax), k =

0, 1, 2, . . . Then, letting p = l in (10) and taking the l-root, it follows that

M(k; t) ≤ max(M(k; 0),M(k − 1; t)) .

Since ‖ · ‖l → ‖ · ‖∞ as k →∞, we see that M(k; 0) ≤ C for all k ≥ 0, and
thus M(k; t) ≤ max(C,M(k − 1; t)), from which we infer

M(k; t) ≤ max(C,M(0; t)) .
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As (d/dt)(
∫

Ω
u + v) = −λ

∫
Ω
v ≤ 0, it follows that maxt∈I ‖v‖1 ≤ C, and

hence M(k; t) ≤ C. Letting k →∞ shows that for any t ∈ I,
(11) ‖v(t)‖∞ ≤ C .

The a priori estimates (7) and (11) lead to the existence of a global and
bounded solution to (1)–(4). The positivity of (u, v) whenever ϕ ≥ 0 and
ψ ≥ 0 is a consequence of the Gronwall lemma.

3. Large time behaviour of the time-dependent solutions. First
of all, we show that the trajectories are relatively compact in C2(Ω). For
the functions u and v solve the equations

(12) u′ = A(t)u+ f(u, v)

(13) v′ = B(t)v + g(u, v)

}
for t > 0 ,

u(0) = ϕ, v(0) = ψ ,

with operators A(t), B(t) : D(A) ⊂ Lp(Ω) → Lp(Ω) for t > 0, given by

D = D(A) = D(B) = {w ∈W 2,p(Ω) : ∂w/∂ν = 0 on ∂Ω}
for Neumann boundary conditions, and

D = D(A) = D(B) = {w ∈W 2,p(Ω) ∩W 1,p(Ω) : w = 0 on ∂Ω}
for Dirichlet boundary conditions,

A(t)w(x) = ∇•(a(w(t, x))∇w(t, x))− kw(t, x)
B(t)w(x) = ∇•(b(w(t, x))∇w(t, x))− kw(t, x)

for w ∈ D ,

for w ∈ D ,

where k is a constant, and

f(u, v) = −h(u)uv + ku, g(u, v) = h(u)uv − λu+ kv .

For any t ≥ 0, the operators A(t) and B(t) generate analytic semigroups
in Lp(Ω) and the families (A(t)) and (B(t)) generate evolution systems
(U(t, s) : 0 ≤ s ≤ t < ∞) and (V (t, s) : 0 ≤ s ≤ t < ∞) in Lp(Ω),
respectively. Moreover, if k > 0 is chosen sufficiently large, then there are
constants C and σ > 0 such that

(14) ‖Aα(t)A−β(s)‖ ≤ C(α, β) for all t, s ≥ 0 ,
(15) ‖Aα(t)U(t, s)A−β(s)‖ ≤ C(t− s)β−αe−σ(t−s)

for all 0 ≤ s ≤ t < ∞, 0 ≤ α < 1, and some σ > 0, with constant C
independent of t and s.

Solutions to (12) and (13) may be represented in the forms

u(t) = U(t, 0)ϕ+
t∫

0

U(t, s)[f(u(s), v(s))] ds ,(16)
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v(t) = V (t, 0)ψ +
t∫

0

V (t, s)[g(u(s), v(s))] ds .(17)

By (16) and (17) we may write

Aα(0)u(t) = Aα(0)U(t, 0)ϕ+
t∫

0

Aα(0)U(t, s)[f(u(s), v(s))] ds ,

Bα(0)v(t) = Bα(0)V (t, 0)ψ +
t∫

0

Bα(0)V (t, s)[g(u(s), v(s))] ds .

Now we have the estimate

(18) ‖u(t)‖α ≤ ‖Aα(0)U(t, 0)ϕ‖p +
t∫

0

‖Aα(0)U(t, s)[f(u(s), v(s))]‖p ds

where ‖ · ‖0,α = ‖Aα(0) · ‖p.
The first term of the right-hand side of the above inequality can be

estimated as follows:

‖Aα(0)U(t, 0)ϕ‖p = ‖Aα(0)A−1(t)A(t)U(t, 0)A−1(0)A(0)ϕ‖p(19)
≤ ‖Aα(0)A−1(t)‖ ‖A(t)U(t, 0)A−1(0)‖ ‖ϕ‖p

≤ C‖ϕ‖p (by (14), (15)) .

Also

‖Aα(0)U(t, s)‖ = ‖Aα(0)A−α(t)Aα(t)U(t, s)‖(20)
≤ ‖Aα(0)A−α(t)‖ ‖Aα(t)U(t, s)‖
≤ C(t− s)−α e−σ(t−s) .

Hence, using (18)–(20) yields

‖u(t)‖0,α ≤ C + C
t∫

0

(t− s)−α e−σ(t−s) ds ,

so that
‖u(t)‖0,α ≤ C for all t > 0 .

Using the same analysis, we can obtain

‖v(t)‖0,α ≤ C for all t > 0 .

Now, using a result of Redlinger [5, Theorem 5, p. 144] we obtain

u′(t), v′(t) ∈ Aα(0)(Lp(Ω)) ,

and, for any δ > 0,

‖u′(t)‖0,α, ‖v′(t)‖0,α ≤ C(α, δ) for all t > δ ,

with constant C(α, δ) independent of t.
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Now taking p > n we have D(Aα) ⊂ C%(Ω) (% = 1 − n/p). Hence,
writing (1)–(2) as an uncoupled system of linear elliptic equations (t ≥ 0),

−∇•(a(t, x)∇u) = f̄(t, x)− ∂u(t, x)/∂t
u = 0 or ∂u/∂ν = 0

in Ω ,

on ∂Ω ,

where

a(t, x) = a(u(t, x)), f̄(t, x) = −u(t, x)h(u(t, x))v(t, x) ,
and

−∇•(b̄(t, x)∇v) = ḡ(t, x)− ∂v(t, x)/∂t
v = 0 or ∂v/∂ν = 0

in Ω ,

on ∂Ω ,

where

b̄(t, x) = b(v(t, x)) ,
ḡ(t, x) = u(t, x)h(u(t, x))v(t, x)− λv(t, x) .

Now, it follows from the Schauder estimates that

u(t, ·), v(t, ·) ∈ C2+%(Ω) for all t ≥ δ .

This result enables us to treat the large time behaviour question in the
same manner as in our previous work with Haraux [4]. The results are:

Case of the Dirichlet boundary conditions

Theorem 3.1. For all t > 0 and 1 ≤ p ≤ ∞,

(i) ‖u(t)‖p ≤ Ce−λpt‖ϕ‖p,
(ii) ‖v(t)‖p ≤ Ce−λ̃pt‖ψ‖p,

where λp, λ̃p > 0 for p <∞ and λ∞ = λ̃∞ = 0.

P r o o f. We can multiply the u-equation by pup−1, integrate over Qt =
(0, t)×Ω, and obtain∫

Ω

up ≤
∫
Ω

ϕp − C0p(p− 1)
∫

Qt

up−2|∇u|2

=
∫
Ω

ϕp − 4C0(p− 1)
p

∫
Qt

|∇up/2|2 ≤
∫
Ω

ϕp − C
∫

Qt

up

by the Poincaré inequality, and C is independent of p. Now (i) follows by
Gronwall’s lemma where λp = C/p; (ii) can be obtained by the same scheme.

Case of the Neumann boundary conditions

Proposition. Let (u, v) be the solution of (1)–(3) with (4′). Then there
exists a constant C such that for all t > 0,

‖∇u‖2 ≤ C and ‖∇v‖2 ≤ C .
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P r o o f. As the two proofs are similar, we only give the one concerning u.
To begin with, integrating (1) over Qt yields

‖u(t)‖1 +
∫

Qt

uh(u)v dx dt = ‖ϕ‖1 ,

hence

(21)
∫

Qt

uh(u)v dx dt ≤ C .

Now, multiplying (1) by a(u)ut and integrating over Qt we obtain

(22)
∫

Qt

a(u)u2
t dx dt+

∫
Ω

|a(u)∇u|2 dx

≤
∫

Qt

|a(u)ut|uh(u)v dx dt+
∫
Ω

|a(ϕ)∇ϕ|2 dx .

Applying the Young inequality yields

|a(u)ut|uh(u)v ≤ ε|a(u)ut|2 + (1/4ε)|uh(u)v|2 for ε > 0 .

Taking εC ≤ 1 and using (7), (11) and (21) yields

‖∇u‖2 ≤ C .

Now, integrating (1) over Ω, we see that the function t →
∫

Ω
u(t, x) dx

is decreasing, and hence goes to a limit as t goes to infinity:

(23) lim
t→∞

µ
∫
Ω

u(t, x) dx = ū

where µ = (meas(Ω))−1.
Also adding the left-hand side and the right-hand side of (1) and (2), then

integrating the results over Ω and using the Gauss theorem to transform the
terms ∇•(a(u)∇u) and ∇•(b(v)∇v) in the light of the boundary conditions
we obtain

(24)
d

dt

( ∫
Ω

(u(t, x) + v(t, x)) dx
)

+ λ
∫
Ω

v(t, x) dx = 0 ,

from which we deduce that t→
∫

Ω
(u+ v) dx is decreasing, hence goes to a

limit as t→∞. Combining this result with (23) leads to

(25) lim
t→∞

∫
Ω

v(t, x) dx = l ≥ 0.

Integrating (24) over (0, t) yields

(26) λ
∫

Qt

v(t, x) dx dt ≤
∫
Ω

(ϕ+ ψ) dx for any t ≥ 0 .
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From (25) and (26) we deduce that l = 0, so

lim
t→∞

∫
Ω

v(t, x)dx = 0 .

On the other hand, since
⋃

t≥0{u(t)} and
⋃

t≥0{v(t)} are precompact in
C2(Ω), there exists a sequence {tn}n≥0 with tn →∞ such that

lim
n→∞

u(tn) = u∗ and lim
n→∞

v(tn) = v∗ in C2(Ω) ,

and since v ≥ 0, we then deduce limn→∞ v(tn) = 0 in C2(Ω).
As a consequence of (22), we have∫

Qt

|ut|2 dx dt ≤ C .

In the same manner, we can get∫
Qt

|vt|2 dx dt ≤ C .

Therefore there exists a sequence tk → ∞ for which limk→∞ ut(tk, x) = 0
a.e. on Ω or in L2(Ω), and the same is true for vt(tk, x).

Since limk→∞ u(tk) = u∗, limk→∞ v(tk) = 0 in C2(Ω), we have

u(tk, x)h(u(tk, x))v(tk, x) → 0 as tk →∞ ,

u(tk, x)h(u(tk, x))v(tk, x)− λv(tk, x) → 0 as tk →∞ ,

uniformly in Ω. Passing to the limit as t→∞ through the sequence tk in (1)
in the sense of L2(Ω) and using the closedness of the operator ∇•(a(·)∇•)
in L2(Ω), we find the equation

(27) −∇(a(u∗)∇u∗) = 0 in L2(Ω) ;

furthermore,

(28) ∂u∗/∂ν = 0 on ∂Ω .

Now, solving equation (27) subject to the constraint (28) yields u∗ = m,
and by (23) we infer that m ≡ ū.

We can check as in [4] that if ϕ 6≡ 0 then ū > 0.
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INTERNATIONAL CENTRE DÉPARTEMENT DE MATHÉMATIQUES

FOR THEORETICAL PHYSICS UNIVERSITÉ DE ANNABA
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