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AN INCOMPLETE VORONOI TESSELLATION

Abstract. This paper presents distributional properties of a random cell
structure which results from a growth process. It starts at the points of
a Poisson point process. The growth is spherical with identical speed for
all points; it stops whenever the boundaries of different cells have contact.
The whole process finally stops after time t. So the space is not completely
filled with cells, and the cells have both planar and spherical boundaries.
Expressions are given for contact distribution functions, the specific bound-
ary length, the specific surface area, and the mean chord length of this cell
structure in R

2 and R
3.

1. Introduction. It is well-known that the Voronoi tessellation (see
[3]) can be interpreted as the result of a growth process. There is a point
process of so-called nuclei. Each nucleus grows in such a way that at time
t it occupies all the previously vacant region within the sphere of radius t
centred at its original point. The growth process stops if cells of other nuclei
are met. Fig. 1 shows some stages of this growth process. In the classical
Voronoi tessellation this process continues until the whole space is divided
into cells, which are convex polyhedra.

This paper considers the structure which is given at time t, the “incom-
plete tessellation”. It is assumed that the point process of growth of nuclei is
a stationary Poisson process of intensity λ. Clearly the random set of points
which are covered by the cells is a Boolean model (see [3], pp. 65–95) with
spherical grains. Formulae for it are well-known. More interesting is the
structure of the cells. They are random convex sets with boundaries which
consist partly of pieces of planes and of pieces of t-spheres. This structure
is used in material sciences to describe the nucleation process of metals.
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Fig. 1. The growth process which yields a Voronoi (Dirichlet) tessellation. It starts
with a Poisson process of nuclei at time t = 0. The nuclei grow circularly until contact with
the cells of other nuclei. The incomplete tessellations shown in (b) and (c) are studied in
this paper. Their cells have both linear and circular boundaries.

This paper gives integral formulae for the spherical and linear contact
distribution functions of the cells in the planar case and spatial case. Fur-
thermore, it provides expressions for the specific boundary length in the
planar case and the specific surface area in the spatial case. Finally, formu-
lae for the fraction of spherical boundaries and for the mean chord length
are given. The complete proofs can be found in [1].
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2. Fundamentals. Let Φ be a stationary Poisson process in R
d of

intensity λ. The cell Ci corresponding to the point zi ∈ Φ (i = 0, 1, 2, . . .)
can be defined in the following way:

Ci = {x ∈ R
d | ‖x− zi‖ < t and ‖x− zi‖ < ‖x− zj‖ for all i 6= j} .

The set Ψ is the union of the closures of all cells,

Ψ =

∞
⋃

i=0

Ccl
i =

∞
⋃

i=0

zi ⊕ b(o, t) .

It is a Boolean model with spherical grains (see [3], p. 66). Its volume

fraction is given by

P (o ∈ Ψ) = 1− exp(−λωdt
d) = P (o ∈ C0) = 1− p .

Here ωd is the volume of the unit sphere of Rd. The point z0 ∈ Φ is the
nearest neighbour of the origin o and C0 is the corresponding cell. The
distribution function of the distance between z0 and o is

D(r) = P (‖z0‖ ≤ r) = 1− exp(−λωdr
d) , r ≥ 0 .

The corresponding density function is denoted by d(r). Furthermore, let X
be the union of all cell boundaries,

X =

∞
⋃

i=0

∂(Ccl
i ) .

For a test set K with o ∈ K, the corresponding contact distribution function

is defined by

H(r) = P (rK ∩X 6= ∅ | o ∈ Ψ), r ≥ 0 .

An equivalent form is

(2.1) H(r) = 1− P (rK ⊂ C0)

P (o ∈ C0)
, r ≥ 0 .

The probability that a set A lies completely in C0 can be written as

(2.2) P (A ⊂ C0) =
1

dωd

∞∫

0

∫

Sd−1

PA(̺, σ)d(̺) dσ d̺ .

Here PA(̺, σ) is the probability that C0 contains A completely under the
condition that z0 = (̺, σ), where (̺, σ) is the point with polar coordinates
̺ > 0 and σ ∈ Sd−1. PA(̺, σ) is equal to the probability that a certain set
A̺,σ does not contain a point of Φ. If νd denotes the Lebesgue measure in
R

d, then

(2.3) PA(̺, σ) =

{

exp(−λνd(A̺,σ \ b(o, ̺))) if A ⊂ b(z0, t),
0 otherwise,
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with

(2.4) A̺,σ =
⋃

x∈A

b(x, ‖x − (̺, σ)‖) .

The subtraction of the ball b(o, ̺) in (2.3) is necessary, because it does not
contain points of Φ under the condition z0 = (̺, σ).

Fig. 2. The densities of the spherical contact distribution functions Hs(r) for different
times t in R2 (a) and in R3 (b). (The intensity of the generating Poisson process is λ = 1.)

3. The spherical contact distribution function. The spherical
contact distribution function corresponds to the case where K is the unit
ball of R

d. It can be determined by means of the formulae (2.1)–(2.4),
similarly to the case of the (complete) Voronoi tessellation in [2]. (For
details on the corresponding set A̺,σ and its Lebesgue measure νd see [1].)
This yields

(3.1) Hs(r) =

1− 2πλ

1− p























































t−r∫

r

̺ exp

(

− λ

(

2(2r2 + ̺2)

(

π − arccos
r

̺

)

+6r
√

̺2 − r2
))

d̺+
1

4πλ
exp(−4πλr2)− 1

4πλ
exp(−6πλr2),

0 ≤ r < t/2,
1

4πλ
exp(−4πλr2)− 1

4πλ
exp(−2πλ(3r2 − 2rt+ t2)) ,

0 ≤ r < t,
0, t ≤ r,
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in R
2 and

(3.2) Hs(r) =

1− 4πλ

1− p























































r∫

0

̺2 exp(− 32
3 πλr(r2 + ̺2)) d̺

+
t−r∫

r

̺2 exp

(

− 4π

3̺
λ(r + ̺)4

)

d̺, 0 ≤ r < t/2,

t−r∫

0

̺2 exp(− 32
3
πλr(r2 + ̺2)) d̺, t/2 ≤ r < t,

0, t ≤ r,

in R
3. The corresponding densities are plotted in Fig. 2.

4. The linear contact distribution function. More complicated is
the determination of the linear contact distribution function Hℓ(r). The test
set K is here a segment of unit length, rK = s(o, r). Since X is isotropic,
Hℓ(r) does not depend on the direction of the segment. Therefore the seg-
ment with endpoints at o and the point r with coordinate r on the x1-
axis may be used. A̺,α is here the union of two spheres with radii ̺ and
√

̺2 − 2̺r cosα+ r2 and with distance r of midpoints,

A̺,α =
⋃

x∈s(o,r)

b(x, ‖x − z0‖) = b(o, ‖z0‖) ∪ b(r, ‖r − z0‖) ,

where α is the angle between s(o, r) and the line connecting o and (̺, σ).
Since both radii have to be smaller than t, the integration with respect

to ̺ in (2.2) goes from ̺− = r cosα −
√

t2 − r2 sin2 α to ̺+ = r cosα +
√

t2 − r2 sin2 α . Then similarly to [2] the linear contact distribution func-
tion in R

d is obtained as

(4.1) Hℓ(r) =

1− Cdλ

1− p































































(

arccos(r/(2t))∫

0

t∫

0

+
π∫

arccos(r/(2t))

̺+∫

0

)

̺d−1 sind−2 α

× exp(−λνd(A̺,α)) d̺ dα, 0 ≤ r < t,

(

arccos(r/(2t))∫

0

t∫

̺
−

+

arcsin(t/r)∫

arccos(r/(2t))

̺+∫

̺
−

)

̺d−1 sind−2 α

× exp(−λνd(A̺,α)) d̺ dα, t ≤ r <
√
2t,
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(4.1 cont.) Hℓ(r) =

1− Cdλ

1− p































arccos(r/(2t))∫

0

t∫

̺
−

̺d−1 sind−2 α

× exp(−λνd(A̺,α)) d̺ dα,
√
2t ≤ r < 2t,

0, 2t ≤ r,

with Cd = 2π(d−1)/2/Γ (d−1
2 ). It can be shown that the corresponding den-

sity function is continuous in r.

5. Characteristics connected with the contact distribution func-

tions. When the spherical contact distribution function Hs(r) is known,
then the specific surface area can be determined. Clearly the random closed
set X consists of two parts, the spherical one, X1 = ∂Ψ, and the planar one,
X2 = X\X1. So

S
(d)
V = S

(d)
V,1 + S

(d)
V,2

with

S
(d)
V,1 = Eνd−1(X1 ∩ [0, 1]d) = λpνd−1(∂b(o, t))

(see [3], p. 79) and

S
(d)
V,2 = Eνd−1(X2 ∩ [0, 1]d) .

The spherical contact distribution function and the specific surface area are
connected by

d

dr
Hs(0)(1 − p) = S

(d)
V,1 + 2S

(d)
V,2

(see [3], p. 179). The duplication of S
(d)
V,2 is the result of the fact that planar

boundaries are almost surely boundaries of two cells. Using (3.1) and (3.2)
this yields

S
(2)
V = LA = 4λ

t∫

0

exp(−λπ̺2) d̺+ (2π − 4)λt exp(−λπt2)

for a cell structure in R
2 and

S
(3)
V = SV = 16

3 πλ
t∫

0

̺ exp(− 4
3πλ̺

3) d̺+ 4
3πλt

2 exp(− 4
3πλt

3)

for one in R
3. Fig. 3 shows LA and SV as functions of t.

Another important characteristic of the incomplete Voronoi tessellation
is the mean chord length. The term “mean typical chord length” is defined
as in [3], p. 180. It corresponds to the segments on a test line g which
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Fig. 3. The specific boundary length LA(t) and the specific surface area SV (t) of an
incomplete Voronoi tessellation in R

2 and R
3
. (The intensity of the generating Poisson

process is λ = 1.)

intersects the stationary and isotropic cell structure. There are chords in Ψ
and outside Ψ , and the corresponding mean lengths are denoted by lint and
lext. Obviously PL, the mean number of points xi ∈ X ∩ g per unit length,
is connected with the mean chord lengths by

(5.1) PL =
1

q

2
lext +

(

1− q

2

)

lint

,

where q is the fraction of spherical boundaries,

q = S
(d)
V,1/S

(d)
V .

Expressions for the mean chord length lext outside Ψ can be obtained using
the formulae for the Boolean model (see [3], p. 82). We have lext = 1/(2λt)
in R

2 and lext = 1/(πλt2) in R
3. With (5.1) and the stereological relations

PL = 2LA/π and PL = SV /2 in the two- and three-dimensional case, the
mean typical chord length inside a cell is given by

(5.2) lint =

π

2
(1− exp(−πλt2))

4λ
∫ t

0
exp(−πλ̺2) d̺− (4− π)λt exp(−πλt2)

in R
2 and
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(5.3) lint =
3(1− exp(− 4

3πλt
3))

πλ
(

8
∫ t

0
̺ exp(− 4

3
πλ̺3) d̺− t2 exp(− 4

3
πλt3)

)

in R
3 (see Fig. 4).

Fig. 4. The mean chord length lint inside a cell in the planar (d =2) and spatial
(d =3) case. The intensity of the generating Poisson process is λ =1. Note that lint does
not increase monotonically, but it takes a maximum value for t ≈ 2.045 in the planar case
and t ≈ 0.936 in the spatial case.

The mean chord length lint could be also obtained from the relation

Hℓ(r) =
1

lint

r∫

0

[1− L(l)] dl

between the linear contact distribution function Hℓ(r) and the chord length
distribution function L(r), which implies

d

dr
Hℓ(0) =

1

lint
.

Differentiation of (4.1) leads to (5.2) and (5.3).
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