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ON LEAST SQUARES ESTIMATION OF FOURIER
COEFFICIENTS AND OF THE REGRESSION FUNCTION

Abstract. The problem of nonparametric function fitting with the ob-
servation model y; = f(x;) +n;, i = 1,...,n, is considered, where n; are
independent random variables with zero mean value and finite variance, and
x; € [a,b) C RY, i = 1,...,n, form a random sample from a distribution
with density ¢ € L'[a,b] and are independent of the errors n;, i = 1,...,n.
The asymptotic properties of the estimator fN(n) (z) = Ziv:(?) crer(x) for
f € L?[a,b] and eV = (51,...,EN(n))T obtained by the least squares
method as well as the limits in probability of the estimators ¢, k =1,..., N,
for fixed N, are studied in the case when the functions ez, kK = 1,2,...,
forming a complete orthonormal system in L?[a,b] are analytic.

1. Introduction. Let y;, i = 1,...,n, be observations at points x; €
[a,b] C R, according to the model y; = f(x;)+n;, where f : [a,b] — R is an
unknown square integrable function (f € L?[a,b]) and n;, i = 1,...,n, are
independent identically distributed random variables with zero mean value
and finite variance 0,27 > 0. Let furthermore the points z;, ¢ = 1,...,n, form

a random sample from a distribution with density o (0 > 0, f: o(z)dx =1),
independent of the observation errors n;, ¢ = 1,...,n. If the functions eg,
k =1,2,..., constitute a complete orthonormal system in L?[a,b], then f
has the representation

b
[ f@er(z)do, k=1,2,...

oo
f= g cre, where ¢, =
b—a
k=1 a

We assume that e, k = 1,2,. .., are analytic in (a, b) and continuous in [a, b].
Examples of orthonormal systems satisfying these requirements are [6] the
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trigonometric functions in L?[0, 2] and Legendre polynomials in L?[—1,1].
As an estimator of the vector of coefficients ¢V = (cy,...,cn)7, for fixed
N, we take the vector ¢V obtained by the least squares method:

n

AN _ - U N N )2
¢" =arg_min i:1(yz (@, e (z:)))",
where ¢ = (¢1,...,en)T, eV (z) = (e1(),...,en(x))T.
To such estimators of the Fourier coefficients ¢, k = 1,..., N, there

corresponds an estimator of the regression function f of the form

R N
In(@) = erex(x),
k=1

called a projection type estimator [4].

The vector ¢V can be obtained as a solution of the normal equations
where
1< 1< o
G, = - ZGN(%‘)QN(%)T, Gn = Zyie (i) -
i=1 i=1

The asymptotic properties of the least squares estimators of the regres-
sion function obtained in the same way as described above but for the fixed
point design case were examined in [5]. The problem of choosing the regres-
sion order for least squares estimators in the case of equidistant observation
points was investigated in [4].

In order to investigate the asymptotic properties of the estimators ¢y,
k=1,...,N, we introduce the probability space ({2, F, P), where

Q:X[aab]v F:XF“ P:XPl’
i=1 =1 i=1

where each F;, i = 1,2,..., is the o-field of Borel subsets of [a,b], and P is
a probability measure with the property
o
P(A1 X ..o x Ay X X [a,b]) =(Pyx...xPp)(A1 x...x A,)
1=n—+1

for A; € F;, i =1,...,n, with P;, for ¢ = 1,2,..., being the probability
measure defined on F; and having density ¢ with respect to the Lebesgue
measure p. The construction and properties of such a probability measure
P are described in [2]. The elements of 2 are denoted by w = (z1,x2,...),
x; € la,b], i=1,2,...

If the distribution of the observation errors 7;, i = 1,2,... (defined on
a certain probability space (¥, 0, v)), is known, a similar probability space
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can be constructed, with elements of the form 7 = (91,72,...). From the
two above described probability spaces we can of course construct in the
usual way the corresponding product space with elements (w,n) [2].

In the following section we examine the uniqueness of the estimators
cp(w,m), k =1,...,N, for fixed N, and determine their limits in proba-
bility, depending on the density . In the third section we prove that the
estimator fy () of the regression function corresponding to the Fourier coef-
ficient estimators ¢, k = 1,..., N(n), is consistent in the sense of the mean
square prediction error

1 " —~
Dnm) = ngEn Z(f(xz) - fN(n)(ﬂfz‘))2
i=1
(i.e. limy, 300 Dy(n)y = 0), on the condition that the density ¢ is bounded

and the sequence N (n) is properly chosen.

2. Uniqueness and consistency of Fourier coefficient estimators.
First we check whether the Fourier coefficient estimators ¢, k = 1,..., N,
are uniquely determined. In order to do this we need the following two
lemmas.

n

LEMMA 2.1. Let vy, ..., v, € R". The matriz G, =) _,_, viv!l is singu-

(]
lar (det Gy, = 0) if and only if vy,...,v, are linearly dependent.

Proof. Suppose that GG, is singular and vy, ..., v, are linearly indepen-
dent. Then there exists a vector x # 0 for which G,z = 0 so that

n n
Zvi(vf:n) = Z(Ui,l‘>vi =0.
i=1 i=1
Since vy, ..., v, are linearly independent, (v;,z) = 0 for i = 1,...,n. But
span{vy,...,v,} = R™ and consequently z must be zero, contrary to our
assumption.

Conversely, if vy, . . . ,v,, are linearly dependent, then dim span{vy, ..., v,}
< n and we can choose z # 0 such that (v;,x) =0 for i = 1,...,n. Conse-
quently, G,z = Y., (v;, z)v; = 0, which means that G,, is singular.

By the way, observe that a matrix of the form G, = >, v;vl, where
m < n, is always singular since dimspan{vy,...,v,,} < m and there exist
nonzero vectors orthogonal to span{vi,..., v, }. =

LEMMA 2.2. If o € LY|a,b] is a density (i.e. o0 >0, f: o(x)dxr = 1), then
for n > N the matrices

Gp(w) == ZeN(;vi)eN(xi)T, w=(z1,x2,...),
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of the normal equations (1) are positive-definite with probability one (in the
probability space (2, F, P)).

Proof. From the definition of G,, it follows that

n 1
Gry1(w) = "+ 1Gn(w) + n+ 1€N($n+1)€N(xn+1>T'

So for € RN we have the inequality
(Gry1(w)z, )

n 1

B E TR A

n 1 N 9 n

= 1<Gn(w)x,x> + . 1<6 (Tpa1),x)° > ]

Hence 2,41 = {w : det Gp41(w) = 0} C {w : det G, (w) = 0} = £2, since

the matrices G, (w) are nonnegative-definite for n = 1,2,... Thus in order

to prove that P(f2,) = 0 for n > N it suffices to prove P(f2y) = 0. (For

n < N we have P({2,) = 1, which is a simple consequence of our remark
after the proof of Lemma 2.1.) By Lemma 2.1,

(e (@ns1)e™ (2n41) @, 2)

(Gp(w)z, x) .

det Gn(w) =0 < eN(xy),...,eN(zy) are linearly dependent,

where w = (z1, 22, . ..), and consequently,

() oy -
N
U{w el (x;) € span{el (21),...,eN(zj1),eN(xj11), ... N (zn)}} -
Moreover,
P({w: eV (x;) € span{e™N (v1),...,eN (zj_1), ™ (xj41),. .., e (zn)}})

=P({w: N (zy) € span{e” (z1),...,eN(xn_1)}}) forj=1,...,N,
by the properties of the product measure P; x ... x Py. Further,
P({w:eN(zy) € span{e” (z1),...,eN (zn_1)}})

b b
= [ ... [ Pn(AN)dPy...dPy_,,

where Ay = (eN) !(span{eM(x1),...,eN(zn_1)}) C [a,b], for fixed
r1,T2,...,TN_1, 18 the counter-image of the closed linear subspace
span{eN(z1),...,eN(xx_1)} by the continuous mapping [a,b] > zny +

eN(xxn) € RY (the continuity follows from the continuity of ex, k = 1,2, ...).
Assume now that Py(Ay) > 0 for fixed x1,...,2x5_1. This means that the
Lebesgue measure u(Ay) is positive. For xny € Ay we have

eN(xN) € Span{eN(xl), e eN(:L’N_l)} ,
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and dimspan{e™(z1),...,eY(zy_1)} < N — 1. On the other hand,
span{e” (zx): oy € Ay} =RY
since for any v = (vq,...,vny)T € RY orthogonal to the left-hand side

v) = kaek(fn) =0 forxe Ay,

and the condition u(Ax) > 0 and the analyticity of eg, k = 1,2,..., imply
immediately that v; = ... = vy = 0.

Thus we obtain a contradiction. Consequently, Py(Ay) = 0 for all
T1,...,TN—1. LThis implies that

P({w: eN(zy) € span{e™ (z1),...,eN(zn_1)}}) =0
and, by (2), P(2y)=0. =

Lemma 2.2 assures that the estimators ¢, ..., ¢y obtained from the nor-
mal equations (1) are uniquely determined with probability one in the prob-
ability space ({2, F, P), provided n > N.

Observe now that the elements of the matrix G,,(w) in (1) have the form

1 .
Gnij(w) = — Zei(xk)ej(xk), w=(z1,29,...), 1,7=1,..., N,
nk:l

and we easily obtain

n

n b
(3)  Eugnij(w) = %ZEwei(xk)ej(xk) = f ei(x)ej(x)o(x) de = gij -
k=1

a

The expected value exists because e, k = 1,2, ..., are continuous in [a, b].
Further, since x1, z2, ... are chosen independently,

By (gnij(w) — gij)° = % Z By (ei(zr)ej(zr) — gij)°
k=1

b
f (ei(x)e;(x) — gi)*o(x) da

S|

and we see that the elements of G, (w) converge in L? to g;; as n — oc.
Similarly, for the elements of the right-hand side vector of the normal
equations, g,(w,n), we obtain

(4) Egni(w,n) =— Z:EykeZ (k) ZE E,(f(zr) + nx)ei(zr)

b

k=1

a
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for i = 1,..., N, because the observation errors ng, k = 1,2, ..., have zero
mean values; moreover,

1 n
E(gni(w,n) — g:)* = 3 ZE (zr)ei(zr) — 9:)° + e > BuEmie; (wr)
k=1

b
== f —g)%o(x )d:n—f—%a% fef(:r)g(w) dx.

This implies that the elements of g, (w,n) converge in L? to g; as n — oo,
provided

ff2 x)dr < 00o.

In that case we can determlne the limits in probability of the estimators
C1,...,cn by applying the following lemma.

LEMMA 2.3. Let (£2, F, P) be a probability space. Let Ap(w), n=1,2,...,
be a sequence of random matrices of fired dimension k, nonsingular with
probability one, and let y,(w) be a sequence of random vectors of dimension

k. If
1) limy, o0 Ap(w) £ A (in probability), where A is a nonsingular matriz,
2) limy, 00 Yn (W) = Y,
then the sequence of random vectors x,(w) defined with probability one by
the equations

Ap(W)zn(w) =yn(w), n=1,2,...,
converges in probability to the vector x which is the unique solution of the
equation Ax = y.
Proof. Apply the fact that the elements of the inverse matrix A~! are
continuous functions of the elements of the matrix A. m

In order to use Lemma 2.3 in the case of the normal equations (1) it
is enough to show that the matrix G with elements g;; defined in (3) is
positive-definite. Clearly, for any v = (vl, RN )T e RV,

(Go.v) = DD gijuiv; = ZZW f z)e;(x)e() da

i=1 j=1 i=1 j=1

= I(Zmez ) x)dx >0.

a

Suppose that (Gv,v) = 0. Since g is positive on some set with positive
Lebesgue measure, vazl viei(x) =0 for x € A, p(A) > 0, and then vy =
.= vy = 0 as already remarked in the proof of Lemma 2.2.
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We can now formulate the result concerning the convergence in proba-

bility of the estimators ¢i, ..., ¢y for fixed N.

THEOREM 2.1. If the density o0 € L'[a,b] satisfies f: f?(z)o(x) dx
< 00, then the estimators ¢1,...,cn, N being fized, are for n > N uniquely
determined with probability one and
(5) lim ¢V £ G 1g,

n—oo
where eN = (¢1,...,en)T, G is the matriz with elements

b
gij = fei(x)ej(m)g(fc) dx

a

and g € RN is the vector with components

b
9= [ f@ei(x)olz) dx,

i,j=1,...,N.

Proof. The assertion follows from earlier considerations and from Lem-
mas 2.2 and 2.3. =

The vector G~'g can be characterized more precisely. Namely, consider
the functional defined for z € RY by the formula
b

J(z) = f (f(x) — Zziei(x)>29(x) de, z=(z1,...,2n)".

a

In order to find the points of extrema of J(z) we set its partial derivatives
with respect to z;, ¢ = 1,..., N, to be zero and we obtain the system of
linear equations Gz = g, with G positive-definite. So the components of
¢V converge in probability to the components of the vector G~'g which
minimizes the value of J(z).

In the case of constant density (0 =1/(b — a)) we obtain, by (5),

. AN P N N T
lim ¢¥ =¢%, ¢ =(c1,...,¢N)
n—oo
and so ¢1,...,cy are then consistent estimators of the Fourier coefficients

of f € L?[a,b].

3. Mean square prediction error and choice of the order of
regression. Now we deal with the asymptotic properties of the projection
type estimator of the regression function f:

N
fn(z) = cke(z)
k=1
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where the vector of Fourier coefficient estimators ¢ = (ci,...,cn)" is
obtained from the normal equations (1),

& ) = G @) = 61 ) (5 3 (F ) e () )

=1

From the above equality and the decomposition

chek +ry(x) = (N (x),cN) + ry(z),

o0
where 7y = E CLEL
k=N+1

we obtain

) = 4 G

n

e @) )+ Gt Zm 5).

S|~

1=

Set a™ = (1/n) 31 rn(wi)eN (z;). In view of the equalities
RS N ) .
;Ze o Ey(ning) = 03065, 4,7=1,...,n,
i=1

f(@) = Fn(@) = (N =2V, eN () + ry(2)
it is easy to show that
Ey(f(2) — fn(2))?
E,r%(z) + 2ry (2)Ep (e — eV, eN(z)) + By (N -2V, el (2))?
=i (2) = 2rn(2)(G, ta® e (2))

G, N @)+ e (@), GV (@)

and further,
- ZE — (@)’
Tllzn:r]zvxz —2(G e, aV) + <G;1aN,aN>+U2ﬁ.
Finally, we obtain the formula

(6) %Z En(f(fz) - fN($z))2 =
i=1
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Since G,, is a.s. positive-definite for n > NV,
1< 1< N
I 2 2 2
(7) 0< n;En(f(ﬂ?i)—fN(%)) < n;TN($i)+0nn-

In the case of constant density ¢ = 1/(b — a), this inequality yields

Z(f(l‘i)— ZE iy (z:) + o) E

i=1

E

S|

b
o N
fr dx—l—az

“b—a
a
and since
b )
1 2 1 2
r)dr =
7 [ @de=— 37 &
k=N+1
we can rewrite the last inequality in the form
DN_Enz;( DS+,
1=
oo
where py = Z cr.
k=N+1

Since the series Y ;- ; c2 is convergent (f € L?[a,b]) we conclude from the
above inequality that in the case ¢ = 1/(b — a) we have lim, oo Dy () =0
provided lim,, ,, N(n) = oo and lim,,_,o, N(n)/n = 0. The estimator fN(n)
is then consistent in the sense of the mean square prediction error Dy ).
A similar result holds for the case of bounded density ¢ as one can see from
inequality (7).
If we define the prediction error by
1< ~
dN(n) = n Z(f(ﬂfz) — Nm) (l‘z))g )
i=1
then the condition limy, . Dy () = limy 00 Edy () = 0 implies of course

limy, 00 A (n) 2. Consequently, the previously proved facts concerning
the convergence of the mean square prediction error Dy, allow us to for-
mulate the following theorem.

THEOREM 3.1. If the density o € L'[a,b] is bounded and the sequence of

natural numbers N(n), n=1,2,..., satisfies

lim N(n) = oo, limM:m

n—»00 n—oo N
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then the estimator of the regression function
N(n)

Py = Crex
k=1

is consistent in the sense of the prediction error dy ) (i-e. limy, o0 dy(n) L
0 in (12, F, P)).

Proof. The assertion follows from Lemma 2.2 and from earlier consid-
erations of Section 3. =m

Now we consider the problem of choosing the regression order N. If we

know the values of py, N =1,2,..., and of 0727, we can choose N according
to the criterion
(8) N* = arg min PN 025 .
1<N<n \b—a Tn
Then

bN 2N* . PN 2N
*< = E— .
Dn b—a+ann 1?11\}r<ln(b—a+gnn>

If we only know some estimates p’y > pny we can replace py by p/y in (8).
If the sequence |cx|, k = 1,2,..., is decreasing, then py is a convex function
(of N) and so is Ay = pN/(b - a) + O'QN/TL which cannot then have local
minima; we thus have N* = max{N : ¢§ > (b—a)o7/n} [4].

The values of py, N = 1,2,..., can of course be unknown, but we can
define the statistic

for which

Eysy = —ZE Fr(@) +m)?
= 3 S Es(a) ~ Fue)f = 23 Bl 4
:fZE ——ZE (@, eN(@i))mi + o
- ;En(f(xi) — Fn(@:))?
_ % ZZ:;ET;<GEI (:z Zn: yjeN(xj)> : eN(xi)>m +o,
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_ ;ZE( fxi) = Fn(@:)?
- % zn: En<G;1 (:L zn: njeN(xg)> : eN(%)>’7i +o,
i=1 =1
- ;imﬂm F(@))? - 202 4:<Gn @), et @) + o
_ iiEn(f(:vi) — fv(zi))? - 2‘772;% +oy,.

Hence, remembering the definition of Dy, we obtain
9 Bsy = EuEysy = Dy — 2022 4+ o2
() SN = LylbinSN = UN — Ung—i_an’
which can be rewritten in the form
N
E(SN —|-20'727> =Dy —|—J%.
n
So if we choose N (the order of regression) according to the criterion
N
N* = arg min (sN + 203,)
1<N<n n

we can assert that in the mean we obtain those values of N which minimize
Dy [4]. This kind of criterion for the choice of N is known in the literature
as the Mallows—Akaike criterion [1], [3].

4. Conclusions. It is worth remarking that we can obtain a better
lower bound for the mean square prediction error than the obvious one
Dy > 0. We apply the following lemma proved in [5].

LEMMA 4.1. Let h = (hy,...,h,)T € R". Then
1 DN hihieN ()G eN (a) < 1 zn:h?.
‘ J n J/) = ni:1 )

Since a¥ = (1/n) Y1 rn(z;)eM (z;) and G, > 0 as. for n > N,
putting h; = ry(x;), i =1,...,n, by Lemma 4.1 we obtain

1 n
< (G~ 1N Ny < = )2
0<(G,a",a >_n;17“N($z)

almost surely for n > N. Now, taking into account (6) we easily obtain the
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lower and upper bounds for Dy, valid for n > N:

N N
(10) 03]— <Dy < Mypn + 0727—, where M, = sup o(z).
n n a<z<b
From (9) and (10) it follows immediately that in the case when p is bounded
and the conditions lim, . N(n) = oo and lim, o, N(n)/n = 0 are satis-
fied, sy(n) is an asymptotically unbiased estimator of 0,27.
The lower and upper bounds for Dy, also allow us to estimate the bias
of sy () for n > N(n), namely
2 N(n

= n) S Esnm) — 0,27 < MypN@m) — 0

2 N(n) .

n

n
The results presented in the two preceding sections can be easily proved

in the case of regression functions f € L%(A), A C R™, m > 1, u(A4) < oo,

and certain complete orthonormal systems of functions (like the functions

exp(ikx +ily) /2w, 0<ax,y<2m k,1=0,+£1,£2 ...,

forming a complete orthonormal system in L?([0, 27| x [0, 27])).
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