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Polynomial cycles in certain local domains
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1. Let R be a domain and f € R[X] a polynomial. A k-tuple zg,z1, ...
..., x,—1 of distinct elements of R is called a cycle of f if

flx)) =241 fori=0,1,...,k—2 and f(zrp_1)=20.

The number k is called the length of the cycle. A tuple is a cycle in R if it
is a cycle for some f € R[X].

It has been shown in [1] that if R is the ring of all algebraic integers
in a finite extension K of the rationals, then the possible lengths of cycles
of R-polynomials are bounded by the number 77'2N, depending only on the
degree N of K. In this note we consider the case when R is a discrete
valuation domain of zero characteristic with finite residue field.

We shall obtain an upper bound for the possible lengths of cycles in R
and in the particular case R = Z, (the ring of p-adic integers) we describe
all possible cycle lengths. As a corollary we get an upper bound for cycle
lengths in the ring of integers in an algebraic number field, which improves
the bound given in [1].

The author is grateful to the referee for his suggestions, which essentially
simplified the proof in Subsection 6 and improved the bound for C(p) in
Theorem 1 in the case p = 2, 3.

2. Let R be a discrete valuation domain of zero characteristic with fi-
nite residue field having cardinality N(P) = p/. Fix a generator 7 of the
prime ideal P of R and denote by v the norm (multiplicative valuation) of
R, normalized so that v(7) = 1/p. Moreover, put v(p) = p~°™4P. A cycle
Z0, 21, .., TEp—1 will be called a (x)-cycle if v(z; —x;) < 1 for i # j.

We shall prove the following results:
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THEOREM 1. (i) The length of a (x)-cycle in R does not exceed
(N(P) — 1)p¢®) | where

log(ord p)

Clp) =1+ log 2

(i) The length of a cycle in R does not exceed N(P)(N(P) — 1)p©®,
where C(p) is given in (i).

In case of R = 7Z, we can be more precise:

THEOREM 2. (i) A (x)-cycle of length n exists in Z, if and only if n is
a divisor of p — 1 except for p = 2,3 in which case n can be any integer not
exceeding p.

(ii) If p > 3 then a cycle of length n exists in Z, if and only if n = ab,
where a is a divisor of p — 1 and b < p. The set of possible cycle lengths in
Zs is {1,2,4}, and in Zs it is {1,2,3,4,6,9}.

COROLLARY 1. Let R be the ring of all integers in an algebraic number
field of degree N owver the rationals. The cycle lengths in R are bounded by
(2N _ 1)2N+1‘

COROLLARY 2. If k is the length of a cycle in R then
k < min(N(Py)(N(Py) — 1)N(R)(N(FP) - 1)),
the minimum being taken over all pairs Py, Py of prime ideals with
char(R/P;) # char(R/Ps) .
For cyclotomic fields K the bound given in Corollary 1 can be essentially
improved:

COROLLARY 3. Let Ky be the M-th cyclotomic field and R its ring of
integers. The cycle lengths in R do not exceed cy(e)M*=+e for every e > 0,
where L denotes the Linnik constant.

Note that N = [Ky : Q] = @(M) > M/loglog M, and thus the cycle
lengths in this case do not exceed c5(c) N2E+e for every e > 0, which is a
much better bound than that resulting from Corollary 1.

3. We list first certain simple properties of cycles in arbitrary domains.
We use the following convention: if xg,z1,...,25_1 is a cycle, then for n =
r (mod k), 0 <r <k <n we put z,, = z,. For a,b € R we write a ~ b if a,
b are associated, i.e. differ by an invertible factor.

LEMMA 1. Let R be a domain and let xg,...,xr_1 be a cycle in R for
the polynomial F(X) = a, X" + ...+ a1 X 4+ ag. Then

(i) this cycle is a cycle for some polynomial G of degree not exceeding
k—1,
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(ii) if a,b € R, a is a unit in R and y; = ax; +b (i =0,...,k—1), then
Yo, - -+, Yk—1 1S a cycle for some polynomial over R,

(iii) if k = rs then xo,T1.r,...,T(s—1)r is a cycle for some polynomial,

(iv) for 0 <r < k one has (xZM x;) ~ (Tjpr — ),

( ) Zf(Z_L )_1 then (wl_x]) (xl_xO)?

(Vi) if ©; = ay;, a,y; € R, then yo,...,yx—1 s a cycle for some polyno-
mial.

Proof. (i) Take for G the remainder of the division of F' by (X —zo)...
.. (X — xk,l).
(ii) The polynomial G(X) = aF((X —b)a™t) + b € R[X] will do.

(iii) The sequence xg, Ty, ..., Z(s—1)r is a cycle for the rth iteration of F.
(iv) Notice that
F(X)-F(Y
(X)—Y() =an( X" Y ) b 4 a(X 4+ Y) 4 ay € R[X,Y]
and thus z, — zo | Try1 — 21| oo | Thgr—1 — Tp—1 | Ty — 0.
(v) In view of (iv) it suffices to deal with the case j = 0. If ¢ > 0 is
defined by t-i =1 (mod k) then x; — xo |22 — 25| ... | T4 — T(4—1);, hence

z; — o | (2 — 0) + (T2i — @) + ...+ (Tes — T(—1)s) = Tt — To = T1 — To,
but of course x1 — zg | (x1 — zg) + ... + (i — xi—1) = ; — Xp.
(vi) The y;’s form a cycle for G(X) = a ' F(aX) € R[X]. =

PROOF OF THEOREM 1

4. From now on we assume that R satisfies the conditions stated at the
beginning of Subsection 2.

LEMMA 2. The length of any cycle in R is a product of primes not ex-
ceeding N (P).

Proof. In view of Lemma 1(iii) it suffices to show that if ¢ is a prime ex-
ceeding N (P) then there cannot be a cycle of length ¢ in R. Let xo, ..., 2q—1
be such a cycle. In view of Lemma 1(v) one has v(z; —x;) = v(x1—x¢) =p~"
for z; # x;. Thus we can write z; = xo + 7"w; (1 < i < ¢q) where w; ¢ P
and w; —w; € P for 1 <i < j <gq, a contradiction. m

LEMMA 3. If k is a cycle length in R then k = ab, where a is the length
of some (x)-cycle in R and b < N(P).

Proof. Let xg,...,zr_1 be a cycle. Assume first that for some i > 0 we
have v(z; —z¢) < 1, and denote by b the smallest integer with this property.
Then b| k. In fact, if k = ¢b+r, 0 < r < b, then by Lemma 1(iv)

V(Ty—r —20) = V(T(gr1)p — To) < max{v(Z(g41)p — Tqp),-- - V(Tp —20)} < 1,

contradicting the choice of b.
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It is obvious that either there exists a pair 1 <r < s < b with z,, —x¢ =
zs — x9 (mod P), and then wv(zs_, —x9) = v(xs — x,) < 1, which is
impossible, or all differences z, —xo (r = 1,...,b—1) are distinct (mod P)
and since they cannot lie in P we get b < N(P), as asserted. The numbers
Lo, T, ..., T(q—1)p form a (x)-cycle. m

5. Now we shall consider the lengths of (x)-cycles.

LEMMA 4. Let yo,y1,-..,Yqg—1 be a (x)-cycle of F(X) = a, X" + ... +
a1 X + ag, q prime, yo = 0. Then either ¢| N(P) — 1, or ¢ = p and ay
=1 (mod P).

Proof. Clearly
Ykt2 — Y1 F(yrs1) — F(yr)

Ye+1 — Yk Ye+1 — Yk
= an(y};‘;ll + ...+ yZ_l) + ...t ax(Yp+1 + yk) + ax
=a; (mod P),
and thus

q
1= HMEQ‘{ (mod P).
i1 Ykl T Uk

This implies
agq’N(P)_l) =1 (mod P)
and hence ¢ | N(P) —1ora; =1 (mod P).
Consider a1 =1 (mod P) and write v(y; — yo) = p~¢. Then

279 — F0)=1 (mod P),

Y1 — Yo
whence yo — y1 = y1 — %o (mod P4t1), and similarly we get yrio — ypi1 =
Ykt1 — Yk = ... =41 — Yo (mod P¥*1). But then

q
0= Z(yk—i—l — k) = q(y1 —yo) (mod P
k=1

and g = p follows. m

LEMMA 5. Let F € R[X], g = F'(0) and ay = F*(0) with v(a;) = p~¢,
d > 0. Then

ar=(1+g+...+¢"1a; (mod P??).
Proof. Easy recurrence. m

LEMMA 6. If m is the length of a (x)-cycle in R and ptm, then m|N (P)—1.
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Proof. Let yo,...,ym—1 be such a cycle realized by F. In view of
Lemma 1(ii), (vi) we can assume without loss of generality that yo = 0

and y; = 7. If we put g = (y2 — y1)/(y1 — o), then
Ye+1 — Yk — ¢ (mod P)

Ye — Yk—1
and by Lemma 5,
(1) yh=1+g+...+¢"H7 (mod P?).
Suppose that for some 0 < r < m we have
(2) y, € P?

and let M be the smallest such 7. Then ¢™ =1 (mod P) and M | m since
Ym =0 € P%. Let v(yy) = p~? (d > 2) and write

Fo. . oF(X)=FM(X)=bX'+...+ 0, X +by.

M times

Since
by = F'(0)M =¢™” =1 (mod P)
we get
Yek+2)M — Yk 1)M = Y(ht1)m — Year (mod PUHY)

and

m/M -

0= ; Yr1ym — Ynr) = M(?JM — o) (mod P4t1)

gives a contradiction.

Thus (2) does not hold and yi,...,ym—1 & P2 If m{N(P) — 1, then
g™ =1 (mod P), gV)=1 =1 (mod P), g NP)=1) =1 (mod P) and
using (1) and remembering that g # 1 (mod P) we get y(m n(p)—1) € P2,
which contradicts the last statement. m

6. By Lemmas 3 and 6 it remains to consider (x)-cycles of lengths p®.

PROPOSITION. If there is a (x)-cycle of length p, then o < C(p), where
C(p) is defined in Theorem 1.

Proof. Let g, x1,...,2pa_1 be a (x)-cycle. By Lemma 1 we can assume
that zo = 0 and v(z1) = p~'. For 0 < k < o — 1, put v(zpx) = p~% (so in
particular dgp = 1), and A\ = (Fpk)'(O). So for k < o — 1 one has

a—k

p a:' - .’IJ . o —
1= [ 2t et — (3 )P (mod P) and A, =1 (mod P).
—1 .’L'l,pk — x(l_l)pk

Write Ay = 1 + upm™*, where up € P, wi > 1, putting wy = oo in case
A = 1.
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Lemma 5 gives
Tppr = (L N+ o+ X Dz (mod P2
If A\x = 1 then for diy1 < 2dg one has dx11 = di +ord p, and if Ay # 1 then
(I +upmr)P —1

2d
B = U Tpk (mod P k),

T

pp

leading to

Tppk = <p+ <Z>ukﬂ'wk + ...

S+ ( P 1) (upme)P~2 4 (Ukﬂ'wk)p_1>l'pk (mod P?%) .
p —_—

Hence if di41 < 2dj then dyg41 > min(dy + ordp, di + (p — 1)wy) and we
arrive at

(3) di+1 > min(2dy, dy, + ord p, dy, + (p — 1)wy) .
By putting k = o — 1 we get

p+ (g) (ua_l,n_wa—l) 4+ ...+ (pf 1) (ua_l,ﬂ.wa—l)p—Q

—i—(ua_ﬁrwa*l)p*l g pda-1

If wo—1(p —1) # ord p then

(4) do—1 <ordp.
Otherwise
(5) We—1(p—1) =ordp.
For k < oo — 2 one has
k p_l k
Newr = (B (0) = [TV (2550) = X, (mod P,
§=0
and thus we obtain
(6) W41 > min(dy, wy + ord p, pwy,) .

In the case p = 2 we need stronger inequalities. Since
Mest = M + (F?)(0)z) (mod P2%),
and 2| (Fpk)”(()) the inequality
(7) Wk41 > min(2dy, wy + ord 2, 2wy, dy, + ord 2)
results.

LEMMA 7. For k=0,1,...,a —1 one has min(dy, wy) < ord p.
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Proof. If the assertion failed for some k, then (3) and (6) would imply
Wa_1,de_1 > ordp,
contradicting (4) and (5). m
LEMMA 8. For every prime p and for k=0,1,...,a—1 one has

(i) di > 2% in case dj, < ord p,

(i) wg > 281 if p is odd,

(iii) wg > 2F if p = 2.

Proof. First consider the case of p # 2. For £ = 0 the assertion is
obvious, and if it holds for some k, and dj, < ordp, then by (3) and (6) we
obtain djq > 2! and w4, > 2%, and if d;, > ord p, then the preceding
lemma implies w11 < ordp and (6) gives wg.q >3- 2871 > 2F,

In case p = 2 the argument is the same, except that one uses (7) instead
of (6). m

Using (4), (5) and Lemma 8 one immediately obtains the assertion of
the Proposition. =

By the Proposition, Lemma 3 and Lemma 6 we get Theorem 1. m

7. Proof of Corollary 1. Let P be a prime ideal over 2Zy, let f
be its degree, e its ramification index, and R = (Zk)p the corresponding
localization. Clearly the cycle lengths in Zx cannot exceed the maximal
cycle length in R. So in particular N(P) = 2/, ord2 = e and f-e < N =
[K : Q]. By using Theorem 1(i) one deduces a@ < e; and as e < N we
conclude that the cycle lengths are bounded by

2f (2 —1)2¢ < aN/e(aN/e —1)2° < 2N+1(2N —1) . u

8.Proof of Corollary 2. As we have seen in the proof of Theorem 1
we can write k = a1bic; = asbaco where a; < N(P;), b; | (N(FP;) — 1), and ¢;
is a power of p; = char R/P;. So

C1 ’angCQ = C1 ‘ asby = k < ai1biaszby . m

PROOF OF THEOREM 2

9. We start with the non-existence assertion.

LEMMA 9. (i) If yo, ..., yp—1 s a (x)-cycle in Zp, and v(y1 — yo) = p~¢

then (p — 2)d < 1.
(ii) If p > 3 then there are no (x)-cycles of length p in Z,. In Zs there
are no (x)-cycles of length 9 and in Zs there are no (x)-cycles of length 4.
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Proof. (i) Let yo,y1,...,Yp—1 be a (x)-cycle for F(X) = a,_1 XP~! +

...4agand v(y; —yo) = p~¢, d > 1. In view of Lemma 1(ii) one can assume
y; =plz fori=0,1,...,p—1, with 20 =0, 2 = 1.
Consider the linear system

ao—i-alyg—i—...—l—ap_lyg’l:yl,

ao+a1yp—1+-~-+@p—1y£j:Z/o-

If 6 denotes its determinant, then v(§) = p~@®=1/2 by Lemma 1(v) and
we get,

p—2
L wo o %~ W
pPe=D/2 e and
L yp Yp_1 Yo
1z ... zg_2 21— 20— 1
pdP=2) U STLRRTIRELIRRRRY =A, say.
1 zpq zg_l 20— 2p—1 — 1

Since by Lemma 4, F’(0) = 1 (mod p), Lemma 5 gives z; = ¢ (mod p)
(¢=0,1,...) and thus

1 2 Zb?
................. -
1 zp_1 2P
SRR S k
Ay = p—2| = (=1)"c (mod p)

L zpp k41
................ o
1 Zp—1 Zp—l

with
1 .
c:m H (j—1) #0 (mod p).
0<i<j<p—1
If we had (p — 2)d > 2 then p? | A. But

p—1

A = Z(_l)k(zk-H — Zk — 1)Ak N
k=0

and since Ay = (—1)kc + pay, with a suitable oy, € Z,, we get
p—1 p—1
A= CZ(ZkH -z —1) +p2(—1)k(zk+1 — 2z — Dag
k=0 k=0

= —pe# 0 (mod p?),
since zgy1 — 2 — 1 =0 (mod p) for k =0,1,...,p— 1, and this is a contra-
diction.
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(ii) In case p = 2,3 the assertion results from Theorem 1 and for p > 3
it is an immediate consequence of (i). m

LEMMA 10. There are no (x)-cycles of length 6 in Zs.

Proof. The preceding lemma shows that if 0, z1, 29 is a (x)-cycle in
Zs, then v(z1) = 1/3. Let 0,y1,...,y5 be a (x)-cycle of length 6 in Zs
realized by the polynomial F(X) = a5X® + ... + ag. Lemma 9(i) implies
v(y2) = v(ys) = 1/3. This implies v(y1) = 1/3 and v(y3) < 1/3 since there
are only three residue classes mod 3. Now Lemma 1 shows that it suffices to
consider the cycle

0,3,64+9¢,9-3u,3+9-3%0,6+49c + 3Pw,

with D > 0 and 3{uvw.

Considering again the system (S) with determinant § we get v(J) =
371830 Put A = 2+ 3¢ + 3" Pw, B = 2 + 3c. Observe that ay € Zs
implies the divisibility of the determinant

1 0 1 0 0 0
1 1 2+ 3¢ 1 1 1

1 243 310y (24 3¢)® (2 4 3¢)* (24 3¢)°

0 31+Du 31+D’U (31+DU)3 (31+Du)4 (31+Du)5

0 3Py 3Py (143103 -1 143" Pyt -1 143y —1
0 31+Dw 731+D’U, A3 _ B3 A4 _ B4 A5 _ B5

by 34130 All elements of the last three lines of this determinant are divisible
by 3P hence

1 0 1 0 0 0
1 1 2 1 1 1
3 (1) i S (2) (1) (2) , B\Uu—i—wz and 3|uv+1.
0O v w 0 v 2w
0 w —u 0 2w 2w
Now ag € Z3 implies
1 0 0 1 0 0
11 1 2+ 3¢
543D 1 2+3c (2 + 3¢)? 314Dy, (2 +3¢)* (24 3¢)®
0 31D, (31D )2 gl+D, (31D )4 (314 D)5
0 3Py (1431 Py)2 -1 3Py (1431 Pt -1 (1431 Py)5 —1
0 3Py A? - B? —31+Dy, At —B? AS —B°

and here again all elements of the last three rows are divisible by 3'*7,
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hence
1 0 O 1 0 0
1 1 1 2 1 1
3] 1 2 1 0 1 2
0 u O v 0 0|’
0 v voow v 2
0O w w —u 2w 2w
3u(w® —v(u+w)) —v-v-w,
and

3lu—v—w(l+uv)

but since 3 |uv + 1 we get u = v (mod 3), and 3| u? + 1, a contradiction. =

10. Now we construct cycles with lengths listed in Theorem 2 and start
with (x)-cycles. Obviously for any p the polynomial —X + p realizes the
(%)-cycle 0, p of length 2 in Z,, and the polynomial —%X(X -3)+X+3
realizes the (x)-cycle 0, 3, 6 of length 3 in Z3, and this settles the exceptional
cases in Theorem 2(i). The remaining cases of (i) are covered by the following
lemma, which gives slightly more than needed:

LEMMA 11. If R is a complete discrete valuation domain of zero charac-
teristic with prime ideal P = wR and finite residue field of N(P) elements,
then there exists a (x)-cycle of any length dividing N(P) — 1.

Proof. In view of Lemma 1(iii) it suffices to find a cycle of length
N(P) — 1. Clearly we may assume N(P) > 2. Denote by go any primitive
root mod P and put

(8) W(X):1+X+X2++XN(P)—2

Clearly W(go) =0 (mod P), and Hensel’s lemma shows the existence of a
root g € R of W. The polynomial gX + 7 realizes the cycle

0,7, (L+g)m,....,(L+g+g*+...+ gV )x
of length N(P) —1. m

The proof of part (ii) of Theorem 2 in the exceptional cases p = 2,3
follows from the following examples of cycles:

(a) F(X) = —2X(X —1)(X —2) + X + 1 has the cycle 0, 1, 2, 3 of 4
elements in Zs,

(b) F(X) = —3X*+1X%+ 2X +1 has the cycle 0, 1, 3, 4 of 4 elements
in Zg,

(c) F(X) = —5X(X —1)(X —2)(X —3)(X —4) + X + 1 has the cycle
0,1, 2, 3, 4, 5 of 6 elements in Zg,
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(d) F(X) = =g X (X = 1)(X = 2)(X = 3)(X —4)(X —5)(X - 6)(X —7)
+ X + 1 has the cycle 0, 1, 2, 3, 4, 5, 6, 7, 8 of 9 elements in Zgs.

In the remaining cases the assertion (ii) is a consequence of the following
lemma:

LEMMA 12. If R is a complete discrete valuation domain of zero char-
acteristic with prime ideal P = R and finite residue field of N(P) ele-
ments, and there exists in R a (x)-cycle of length m, then for each r =
0,1,...,N(P) — 1 there exists in R a cycle of length (14 r)m.

Proof. Let M = (14 r)m and let ap = 0,a4,...,a, be elements of R
lying in different cosets (mod P). Moreover, let yo = 0, y1,...,Ym—1 be a
(x)-cycle realized by a polynomial F'. For n =1,2,... put

Wo(X)=(1— (X —a,) N WNE=IYp(X —q,)
.
+ (1= (X —ap) NP NP (X paji —ay)).
0

Jj=

—_

Thus Wfl(lJrT)Jrj(yo) =y +a; (mod P") for j =0,1,...,r.

Let
M-1
LX) =Y a" X’
1=
be the remainder of the division of W,,(X) by the polynomial
M-1
X T (X - wi(0).
j=1
A simple recurrence argument gives L7 (0) = W7(0) (j = 1,2,...,M).
Choose now a subsequence ni,ns, ... so that the limits

exist for each ¢ =0,1,..., M, and put
M—1
LX)= Y X'
i=0
Then
LI () = lim LI (yo) = lim W (o) =y + a;
k—oo k—oo
and thus the polynomial L realizes a cycle of M elements. m

Note that the assertions of Lemmas 11 and 12 remain true also if R is not
complete. Indeed, let S be the completion of R and xg, x1,...,Zm_1 a cycle
in S. Choose a sequence o, Y1, - - ., Ym—1 With v(y; — x;) sufficiently small
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for all 4. It follows from the Lagrange interpolation formula that the unique
polynomial F' of degree not exceeding m — 1 which satisfies F'(y;) = y;41 for
i=0,1,...,m—2and F(ym—1) = yo has its coefficients in R.

11. Proof of Corollary 3. It suffices to observe that every prime
congruent to 1 (mod M) splits in the Mth cyclotomic field and apply The-
orem 2. m
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