Polynomial cycles in certain local domains

by

T. PEZDA (Wrocław)

1. Let R be a domain and $f \in R[X]$ a polynomial. A k-tuple $x_0, x_1, \ldots, x_{k-1}$ of distinct elements of R is called a *cycle* of f if

 $f(x_i) = x_{i+1}$ for $i = 0, 1, \dots, k-2$ and $f(x_{k-1}) = x_0$.

The number k is called the *length* of the cycle. A tuple is a cycle in R if it is a cycle for some $f \in R[X]$.

It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number $7^{7 \cdot 2^N}$, depending only on the degree N of K. In this note we consider the case when R is a discrete valuation domain of zero characteristic with finite residue field.

We shall obtain an upper bound for the possible lengths of cycles in Rand in the particular case $R = \mathbb{Z}_p$ (the ring of *p*-adic integers) we describe all possible cycle lengths. As a corollary we get an upper bound for cycle lengths in the ring of integers in an algebraic number field, which improves the bound given in [1].

The author is grateful to the referee for his suggestions, which essentially simplified the proof in Subsection 6 and improved the bound for C(p) in Theorem 1 in the case p = 2, 3.

2. Let *R* be a discrete valuation domain of zero characteristic with finite residue field having cardinality $N(P) = p^f$. Fix a generator π of the prime ideal *P* of *R* and denote by *v* the norm (multiplicative valuation) of *R*, normalized so that $v(\pi) = 1/p$. Moreover, put $v(p) = p^{-\operatorname{ord} p}$. A cycle $x_0, x_1, \ldots, x_{k-1}$ will be called a (*)-cycle if $v(x_i - x_j) < 1$ for $i \neq j$.

We shall prove the following results:

Supported by the KBN grant 2 1037 91 01.

THEOREM 1. (i) The length of a (*)-cycle in R does not exceed $(N(P) - 1)p^{C(p)}$, where

$$C(p) = 1 + \frac{\log(\operatorname{ord} p)}{\log 2}$$

(ii) The length of a cycle in R does not exceed $N(P)(N(P) - 1)p^{C(p)}$, where C(p) is given in (i).

In case of $R = \mathbb{Z}_p$ we can be more precise:

THEOREM 2. (i) A (*)-cycle of length n exists in \mathbb{Z}_p if and only if n is a divisor of p-1 except for p=2,3 in which case n can be any integer not exceeding p.

(ii) If p > 3 then a cycle of length n exists in \mathbb{Z}_p if and only if n = ab, where a is a divisor of p - 1 and $b \leq p$. The set of possible cycle lengths in \mathbb{Z}_2 is $\{1, 2, 4\}$, and in \mathbb{Z}_3 it is $\{1, 2, 3, 4, 6, 9\}$.

COROLLARY 1. Let R be the ring of all integers in an algebraic number field of degree N over the rationals. The cycle lengths in R are bounded by $(2^N - 1)2^{N+1}$.

COROLLARY 2. If k is the length of a cycle in R then

 $k \le \min(N(P_1)(N(P_1) - 1)N(P_2)(N(P_2) - 1)),$

the minimum being taken over all pairs P_1 , P_2 of prime ideals with

$$\operatorname{char}(R/P_1) \neq \operatorname{char}(R/P_2).$$

For cyclotomic fields K the bound given in Corollary 1 can be essentially improved:

COROLLARY 3. Let K_M be the *M*-th cyclotomic field and *R* its ring of integers. The cycle lengths in *R* do not exceed $c_4(\varepsilon)M^{2L+\varepsilon}$ for every $\varepsilon > 0$, where *L* denotes the Linnik constant.

Note that $N = [K_M : Q] = \varphi(M) \gg M/\log \log M$, and thus the cycle lengths in this case do not exceed $c_5(\varepsilon)N^{2L+\varepsilon}$ for every $\varepsilon > 0$, which is a much better bound than that resulting from Corollary 1.

3. We list first certain simple properties of cycles in arbitrary domains. We use the following convention: if $x_0, x_1, \ldots, x_{k-1}$ is a cycle, then for $n \equiv r \pmod{k}$, $0 \leq r < k \leq n$ we put $x_n = x_r$. For $a, b \in R$ we write $a \sim b$ if a, b are associated, i.e. differ by an invertible factor.

LEMMA 1. Let R be a domain and let x_0, \ldots, x_{k-1} be a cycle in R for the polynomial $F(X) = a_n X^n + \ldots + a_1 X + a_0$. Then

(i) this cycle is a cycle for some polynomial G of degree not exceeding k-1,

(ii) if $a, b \in R$, a is a unit in R and $y_i = ax_i + b$ (i = 0, ..., k - 1), then $y_0, ..., y_{k-1}$ is a cycle for some polynomial over R,

(iii) if k = rs then $x_0, x_{1 \cdot r}, \ldots, x_{(s-1)r}$ is a cycle for some polynomial,

(iv) for 0 < r < k one has $(x_{i+r} - x_i) \sim (x_{j+r} - x_j)$,

(v) if (i - j, k) = 1 then $(x_i - x_j) \sim (x_1 - x_0)$,

(vi) if $x_i = ay_i$, $a, y_i \in R$, then y_0, \ldots, y_{k-1} is a cycle for some polynomial.

Proof. (i) Take for G the remainder of the division of F by $(X - x_0) \dots (X - x_{k-1})$.

(ii) The polynomial $G(X) = aF((X - b)a^{-1}) + b \in R[X]$ will do.

(iii) The sequence $x_0, x_r, \ldots, x_{(s-1)r}$ is a cycle for the *r*th iteration of *F*. (iv) Notice that

$$\frac{F(X) - F(Y)}{X - Y} = a_n (X^{n-1} + \ldots + Y^{n-1}) + \ldots + a_2 (X + Y) + a_1 \in R[X, Y]$$

and thus $x_r - x_0 | x_{r+1} - x_1 | \dots | x_{k+r-1} - x_{k-1} | x_r - x_0$.

(v) In view of (iv) it suffices to deal with the case j = 0. If t > 0 is defined by $t \cdot i \equiv 1 \pmod{k}$ then $x_i - x_0 | x_{2i} - x_i | \dots | x_{ti} - x_{(t-1)i}$, hence $x_i - x_0 | (x_i - x_0) + (x_{2i} - x_i) + \dots + (x_{ti} - x_{(t-1)i}) = x_{ti} - x_0 = x_1 - x_0$, but of course $x_1 - x_0 | (x_1 - x_0) + \dots + (x_i - x_{i-1}) = x_i - x_0$.

(vi) The y_i 's form a cycle for $G(X) = a^{-1}F(aX) \in R[X]$.

PROOF OF THEOREM 1

4. From now on we assume that R satisfies the conditions stated at the beginning of Subsection 2.

LEMMA 2. The length of any cycle in R is a product of primes not exceeding N(P).

Proof. In view of Lemma 1(iii) it suffices to show that if q is a prime exceeding N(P) then there cannot be a cycle of length q in R. Let x_0, \ldots, x_{q-1} be such a cycle. In view of Lemma 1(v) one has $v(x_i - x_j) = v(x_1 - x_0) = p^{-r}$ for $x_i \neq x_j$. Thus we can write $x_i = x_0 + \pi^r w_i$ $(1 \le i < q)$ where $w_i \notin P$ and $w_i - w_j \notin P$ for $1 \le i < j < q$, a contradiction.

LEMMA 3. If k is a cycle length in R then k = ab, where a is the length of some (*)-cycle in R and $b \leq N(P)$.

Proof. Let x_0, \ldots, x_{k-1} be a cycle. Assume first that for some i > 0 we have $v(x_i - x_0) < 1$, and denote by b the smallest integer with this property. Then $b \mid k$. In fact, if k = qb + r, 0 < r < b, then by Lemma 1(iv)

 $v(x_{b-r} - x_0) = v(x_{(q+1)b} - x_0) \le \max\{v(x_{(q+1)b} - x_{qb}), \dots, v(x_b - x_0)\} < 1,$ contradicting the choice of b. It is obvious that either there exists a pair $1 \le r < s < b$ with $x_r - x_0 \equiv x_s - x_0 \pmod{P}$, and then $v(x_{s-r} - x_0) = v(x_s - x_r) < 1$, which is impossible, or all differences $x_r - x_0$ $(r = 1, \ldots, b-1)$ are distinct \pmod{P} and since they cannot lie in P we get $b \le N(P)$, as asserted. The numbers $x_0, x_b, \ldots, x_{(a-1)b}$ form a (*)-cycle.

5. Now we shall consider the lengths of (*)-cycles.

LEMMA 4. Let $y_0, y_1, \ldots, y_{q-1}$ be a (*)-cycle of $F(X) = a_n X^n + \ldots + a_1 X + a_0$, q prime, $y_0 = 0$. Then either q | N(P) - 1, or q = p and $a_1 \equiv 1 \pmod{P}$.

Proof. Clearly

$$\frac{y_{k+2} - y_{k+1}}{y_{k+1} - y_k} = \frac{F(y_{k+1}) - F(y_k)}{y_{k+1} - y_k}$$

= $a_n(y_{k+1}^{n-1} + \dots + y_k^{n-1}) + \dots + a_2(y_{k+1} + y_k) + a_1$
= $a_1 \pmod{P}$,

and thus

$$1 = \prod_{k=1}^{q} \frac{y_{k+2} - y_{k+1}}{y_{k+1} - y_k} \equiv a_1^q \pmod{P}.$$

This implies

$$a_1^{(q,N(P)-1)} \equiv 1 \pmod{P}$$

and hence $q \mid N(P) - 1$ or $a_1 \equiv 1 \pmod{P}$.

Consider $a_1 \equiv 1 \pmod{P}$ and write $v(y_1 - y_0) = p^{-d}$. Then

$$\frac{y_2 - y_1}{y_1 - y_0} \equiv F'(0) \equiv 1 \pmod{P},$$

whence $y_2 - y_1 \equiv y_1 - y_0 \pmod{P^{d+1}}$, and similarly we get $y_{k+2} - y_{k+1} \equiv y_{k+1} - y_k \equiv \ldots \equiv y_1 - y_0 \pmod{P^{d+1}}$. But then

$$0 = \sum_{k=1}^{q} (y_{k+1} - y_k) \equiv q(y_1 - y_0) \pmod{P^{d+1}}$$

and q = p follows.

LEMMA 5. Let $F \in R[X]$, g = F'(0) and $a_k = F^k(0)$ with $v(a_1) = p^{-d}$, d > 0. Then

$$a_k \equiv (1 + g + \ldots + g^{k-1})a_1 \pmod{P^{2d}}.$$

Proof. Easy recurrence. ■

LEMMA 6. If m is the length of a (*)-cycle in R and $p \nmid m$, then $m \mid N(P) - 1$.

Proof. Let y_0, \ldots, y_{m-1} be such a cycle realized by F. In view of Lemma 1(ii), (vi) we can assume without loss of generality that $y_0 = 0$ and $y_1 = \pi$. If we put $g = (y_2 - y_1)/(y_1 - y_0)$, then

$$\frac{y_{k+1} - y_k}{y_k - y_{k-1}} \equiv g \pmod{P}$$

and by Lemma 5,

(1)
$$y_k \equiv (1 + g + \ldots + g^{k-1})\pi \pmod{P^2}$$
.

Suppose that for some 0 < r < m we have

$$(2) y_r \in P^2$$

and let M be the smallest such r. Then $g^M \equiv 1 \pmod{P}$ and $M \mid m$ since $y_m = 0 \in P^2$. Let $v(y_M) = p^{-d} \ (d \ge 2)$ and write

$$\underbrace{F \circ \ldots \circ F}_{M \text{ times}}(X) = F^M(X) = b_t X^t + \ldots + b_1 X + b_0 \,.$$

Since

$$b_1 \equiv F'(0)^M \equiv g^M \equiv 1 \pmod{P}$$

we get

$$y_{(k+2)M} - y_{(k+1)M} \equiv y_{(k+1)M} - y_{kM} \pmod{P^{d+1}}$$

and

$$0 = \sum_{k=1}^{m/M} (y_{(k+1)M} - y_{kM}) \equiv \frac{m}{M} (y_M - y_0) \pmod{P^{d+1}}$$

gives a contradiction.

a h

Thus (2) does not hold and $y_1, \ldots, y_{m-1} \notin P^2$. If $m \nmid N(P) - 1$, then $g^m \equiv 1 \pmod{P}$, $g^{N(P)-1} \equiv 1 \pmod{P}$, $g^{(m,N(P)-1)} \equiv 1 \pmod{P}$ and using (1) and remembering that $g \not\equiv 1 \pmod{P}$ we get $y_{(m,N(P)-1)} \in P^2$, which contradicts the last statement.

6. By Lemmas 3 and 6 it remains to consider (*)-cycles of lengths p^{α} .

PROPOSITION. If there is a (*)-cycle of length p^{α} , then $\alpha \leq C(p)$, where C(p) is defined in Theorem 1.

Proof. Let $x_0, x_1, \ldots, x_{p^{\alpha}-1}$ be a (*)-cycle. By Lemma 1 we can assume that $x_0 = 0$ and $v(x_1) = p^{-1}$. For $0 \le k \le \alpha - 1$, put $v(x_{p^k}) = p^{-d_k}$ (so in particular $d_0 = 1$), and $\lambda_k = (F^{p^k})'(0)$. So for $k \le \alpha - 1$ one has

$$1 = \prod_{l=1}^{p^{\alpha-k}} \frac{x_{(l+1)p^k} - x_{l \cdot p^k}}{x_{l \cdot p^k} - x_{(l-1)p^k}} \equiv (\lambda_k)^{p^{\alpha-k}} \pmod{P} \quad \text{and} \quad \lambda_k \equiv 1 \pmod{P}.$$

Write $\lambda_k = 1 + u_k \pi^{w_k}$, where $u_k \notin P$, $w_k \ge 1$, putting $w_k = \infty$ in case $\lambda_k = 1$.

Lemma 5 gives

$$x_{p \cdot p^k} \equiv (1 + \lambda_k + \ldots + \lambda_k^{p-1}) x_{p^k} \pmod{P^{2d_k}}$$

If $\lambda_k = 1$ then for $d_{k+1} < 2d_k$ one has $d_{k+1} = d_k + \operatorname{ord} p$, and if $\lambda_k \neq 1$ then

$$x_{p \cdot p^k} \equiv \frac{(1 + u_k \pi^{w_k})^p - 1}{u_k \pi^{w_k}} x_{p^k} \pmod{P^{2d_k}}$$

leading to

$$x_{p \cdot p^{k}} \equiv \left(p + \binom{p}{2} u_{k} \pi^{w_{k}} + \dots + \binom{p}{p-1} (u_{k} \pi^{w_{k}})^{p-2} + (u_{k} \pi^{w_{k}})^{p-1} \right) x_{p^{k}} \pmod{P^{2d_{k}}}$$

Hence if $d_{k+1} < 2d_k$ then $d_{k+1} \ge \min(d_k + \operatorname{ord} p, d_k + (p-1)w_k)$ and we arrive at

(3)
$$d_{k+1} \ge \min(2d_k, d_k + \operatorname{ord} p, d_k + (p-1)w_k).$$

By putting $k = \alpha - 1$ we get

$$p + \binom{p}{2} (u_{\alpha-1}\pi^{w_{\alpha-1}}) + \dots + \binom{p}{p-1} (u_{\alpha-1}\pi^{w_{\alpha-1}})^{p-2} + (u_{\alpha-1}\pi^{w_{\alpha-1}})^{p-1} \in P^{d_{\alpha-1}}$$

If $w_{\alpha-1}(p-1) \neq \operatorname{ord} p$ then

(4)
$$d_{\alpha-1} \le \operatorname{ord} p \,.$$

Otherwise

(5)
$$w_{\alpha-1}(p-1) = \operatorname{ord} p.$$

For $k \leq \alpha - 2$ one has

$$\lambda_{k+1} = (F^{p^{k+1}})'(0) = \prod_{j=0}^{p-1} (F^{p^k})'(x_{j \cdot p^k}) \equiv \lambda_k^p \pmod{P^{d_k}},$$

and thus we obtain

$$w_{k+1} \ge \min(d_k, w_k + \operatorname{ord} p, pw_k).$$

In the case p = 2 we need stronger inequalities. Since

$$\lambda_{k+1} \equiv \lambda_k (\lambda_k + (F^{p^k})''(0)x_{p^k}) \pmod{P^{2d_k}},$$

and $2 | (F^{p^k})''(0)$ the inequality

(7)
$$w_{k+1} \ge \min(2d_k, w_k + \operatorname{ord} 2, 2w_k, d_k + \operatorname{ord} 2)$$

results.

(6)

LEMMA 7. For $k = 0, 1, \ldots, \alpha - 1$ one has $\min(d_k, w_k) \leq \operatorname{ord} p$.

Proof. If the assertion failed for some k, then (3) and (6) would imply

$$w_{\alpha-1}, d_{\alpha-1} > \operatorname{ord} p$$
,

contradicting (4) and (5). \blacksquare

LEMMA 8. For every prime p and for $k = 0, 1, ..., \alpha - 1$ one has

(i) $d_k \ge 2^k$ in case $d_k \le \operatorname{ord} p$,

(ii) $w_k \ge 2^{k-1}$ if p is odd,

(iii) $w_k \ge 2^k$ if p = 2.

Proof. First consider the case of $p \neq 2$. For k = 0 the assertion is obvious, and if it holds for some k, and $d_k \leq \operatorname{ord} p$, then by (3) and (6) we obtain $d_{k+1} \geq 2^{k+1}$ and $w_{k+1} \geq 2^k$, and if $d_k > \operatorname{ord} p$, then the preceding lemma implies $w_{k+1} \leq \operatorname{ord} p$ and (6) gives $w_{k+1} \geq 3 \cdot 2^{k-1} > 2^k$.

In case p = 2 the argument is the same, except that one uses (7) instead of (6). \bullet

Using (4), (5) and Lemma 8 one immediately obtains the assertion of the Proposition. \blacksquare

By the Proposition, Lemma 3 and Lemma 6 we get Theorem 1.

7. Proof of Corollary 1. Let P be a prime ideal over $2\mathbb{Z}_K$, let f be its degree, e its ramification index, and $R = (\mathbb{Z}_K)_P$ the corresponding localization. Clearly the cycle lengths in \mathbb{Z}_K cannot exceed the maximal cycle length in R. So in particular $N(P) = 2^f$, ord 2 = e and $f \cdot e \leq N = [K : Q]$. By using Theorem 1(i) one deduces $\alpha \leq e$; and as $e \leq N$ we conclude that the cycle lengths are bounded by

$$2^{f}(2^{f}-1)2^{e} \leq 2^{N/e}(2^{N/e}-1)2^{e} \leq 2^{N+1}(2^{N}-1)$$
.

8. Proof of Corollary 2. As we have seen in the proof of Theorem 1 we can write $k = a_1b_1c_1 = a_2b_2c_2$ where $a_i \leq N(P_i)$, $b_i \mid (N(P_i) - 1)$, and c_i is a power of $p_i = \operatorname{char} R/P_i$. So

 $c_1 \mid a_2 b_2 c_2 \Rightarrow c_1 \mid a_2 b_2 \Rightarrow k \le a_1 b_1 a_2 b_2 . \blacksquare$

PROOF OF THEOREM 2

9. We start with the non-existence assertion.

LEMMA 9. (i) If y_0, \ldots, y_{p-1} is a (*)-cycle in \mathbb{Z}_p , and $v(y_1 - y_0) = p^{-d}$ then $(p-2)d \leq 1$.

(ii) If p > 3 then there are no (*)-cycles of length p in \mathbb{Z}_p . In \mathbb{Z}_3 there are no (*)-cycles of length 9 and in \mathbb{Z}_2 there are no (*)-cycles of length 4.

T. Pezda

Proof. (i) Let $y_0, y_1, \ldots, y_{p-1}$ be a (*)-cycle for $F(X) = a_{p-1}X^{p-1} + \ldots + a_0$ and $v(y_1 - y_0) = p^{-d}, d \ge 1$. In view of Lemma 1(ii) one can assume $y_i = p^d z_i$ for $i = 0, 1, \ldots, p-1$, with $z_0 = 0, z_1 = 1$.

Consider the linear system

$$(S) = \begin{cases} a_0 + a_1 y_0 + \ldots + a_{p-1} y_0^{p-1} = y_1, \\ \ldots \\ a_0 + a_1 y_{p-1} + \ldots + a_{p-1} y_{p-1}^{p-1} = y_0. \end{cases}$$

If δ denotes its determinant, then $v(\delta) = p^{-dp(p-1)/2}$ by Lemma 1(v) and we get

$$p^{dp(p-1)/2} \begin{vmatrix} 1 & y_0 & \dots & y_0^{p-2} & y_1 \\ \dots & \dots & \dots & \dots \\ 1 & y_{p-1} & \dots & y_{p-1}^{p-2} & y_0 \end{vmatrix}$$
 and
$$p^{d(p-2)} \begin{vmatrix} 1 & z_0 & \dots & z_0^{p-2} & z_1 - z_0 - 1 \\ \dots & \dots & \dots & \dots \\ 1 & z_{p-1} & \dots & z_{p-1}^{p-2} & z_0 - z_{p-1} - 1 \end{vmatrix} = \Delta, \quad \text{say}.$$

Since by Lemma 4, $F'(0) \equiv 1 \pmod{p}$, Lemma 5 gives $z_i \equiv i \pmod{p}$ (i = 0, 1, ...) and thus

$$\Delta_k = \begin{vmatrix} 1 & z_0 & \dots & z_0^{p-2} \\ \dots & \dots & \dots \\ 1 & z_{k-1} & \dots & z_{k-1}^{p-2} \\ 1 & z_{k+1} & \dots & z_{k+1}^{p-2} \\ \dots & \dots & \dots & \dots \\ 1 & z_{p-1} & \dots & z_{p-1}^{p-2} \end{vmatrix} \equiv (-1)^k c \pmod{p}$$

with

$$c = \frac{1}{(p-1)!} \prod_{0 \le i < j \le p-1} (j-i) \not\equiv 0 \pmod{p}.$$

If we had $(p-2)d \ge 2$ then $p^2 \mid \Delta$. But

$$\Delta = \sum_{k=0}^{p-1} (-1)^k (z_{k+1} - z_k - 1) \Delta_k \,,$$

and since $\Delta_k = (-1)^k c + p \alpha_k$ with a suitable $\alpha_k \in \mathbb{Z}_p$ we get

$$\Delta = c \sum_{k=0}^{p-1} (z_{k+1} - z_k - 1) + p \sum_{k=0}^{p-1} (-1)^k (z_{k+1} - z_k - 1) \alpha_k$$

$$\equiv -pc \neq 0 \pmod{p^2},$$

since $z_{k+1} - z_k - 1 \equiv 0 \pmod{p}$ for $k = 0, 1, \dots, p-1$, and this is a contradiction.

(ii) In case p = 2, 3 the assertion results from Theorem 1 and for p > 3 it is an immediate consequence of (i).

LEMMA 10. There are no (*)-cycles of length 6 in \mathbb{Z}_3 .

Proof. The preceding lemma shows that if 0, z_1 , z_2 is a (*)-cycle in \mathbb{Z}_3 , then $v(z_1) = 1/3$. Let $0, y_1, \ldots, y_5$ be a (*)-cycle of length 6 in \mathbb{Z}_3 realized by the polynomial $F(X) = a_5 X^5 + \ldots + a_0$. Lemma 9(i) implies $v(y_2) = v(y_4) = 1/3$. This implies $v(y_1) = 1/3$ and $v(y_3) < 1/3$ since there are only three residue classes mod 3. Now Lemma 1 shows that it suffices to consider the cycle

$$0, 3, 6 + 9c, 9 \cdot 3^{D}u, 3 + 9 \cdot 3^{D}v, 6 + 9c + 3^{D}w,$$

with $D \ge 0$ and $3 \nmid uvw$.

Considering again the system (S) with determinant δ we get $v(\delta) = 3^{-18-3D}$. Put $\mathbf{A} = 2 + 3c + 3^{1+D}w$, $\mathbf{B} = 2 + 3c$. Observe that $a_2 \in \mathbb{Z}_3$ implies the divisibility of the determinant

1	0	1	0	0	0
1	1	2 + 3c	1	1	1
1	2 + 3c	$3^{1+D}u$	$(2+3c)^3$	$(2+3c)^4$	$(2+3c)^5$
0	$3^{1+D}u$	$3^{1+D}v$	$(3^{1+D}u)^3$	$(3^{1+D}u)^4$	$(3^{1+D}u)^5$
0	$3^{1+D}v$	$3^{1+D}w$	$(1+3^{1+D}v)^3 - 1$	$(1+3^{1+D}v)^4 - 1$	$(1+3^{1+D}v)^5-1$
0	$3^{1+D}w$	$-3^{1+D}u$	$A^3 - B^3$	$\mathbf{A}^4 - \mathbf{B}^4$	$A^5 - B^5$

by 3^{4+3D} . All elements of the last three lines of this determinant are divisible by 3^{1+D} , hence

$$3 \begin{vmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 2 & 0 & 2 & 1 & 2 \\ 0 & u & v & 0 & 0 & 0 \\ 0 & v & w & 0 & v & 2v \\ 0 & w & -u & 0 & 2w & 2w \end{vmatrix}, \quad 3 \mid vu + w^2 \quad \text{and} \quad 3 \mid uv + 1.$$

Now $a_3 \in \mathbb{Z}_3$ implies

$$3^{5+3D} \begin{vmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2+3c & 1 & 1 \\ 1 & 2+3c & (2+3c)^2 & 3^{1+D}u & (2+3c)^4 & (2+3c)^5 \\ 0 & 3^{1+D}u & (3^{1+D}u)^2 & 3^{1+D}v & (3^{1+D}u)^4 & (3^{1+D}u)^5 \\ 0 & 3^{1+D}v & (1+3^{1+D}v)^2 - 1 & 3^{1+D}w & (1+3^{1+D}v)^4 - 1 & (1+3^{1+D}v)^5 - 1 \\ 0 & 3^{1+D}w & \mathbf{A}^2 - \mathbf{B}^2 & -3^{1+D}u & \mathbf{A}^4 - \mathbf{B}^4 & \mathbf{A}^5 - \mathbf{B}^5 \end{vmatrix}$$

and here again all elements of the last three rows are divisible by 3^{1+D} ,

T. Pezda

hence

$$3 \mid \begin{vmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 2 & 1 & 1 \\ 1 & 2 & 1 & 0 & 1 & 2 \\ 0 & u & 0 & v & 0 & 0 \\ 0 & v & 2v & w & v & 2v \\ 0 & w & w & -u & 2w & 2w \end{vmatrix}$$

$$3 \mid u(w^2 - v(u+w)) - v \cdot v \cdot w$$

and

$$3 | u - v - w(1 + uv)$$

but since 3 | uv + 1 we get $u \equiv v \pmod{3}$, and $3 | u^2 + 1$, a contradiction.

10. Now we construct cycles with lengths listed in Theorem 2 and start with (*)-cycles. Obviously for any p the polynomial -X + p realizes the (*)-cycle 0, p of length 2 in \mathbb{Z}_p , and the polynomial $-\frac{1}{2}X(X-3) + X + 3$ realizes the (*)-cycle 0, 3, 6 of length 3 in \mathbb{Z}_3 , and this settles the exceptional cases in Theorem 2(i). The remaining cases of (i) are covered by the following lemma, which gives slightly more than needed:

LEMMA 11. If R is a complete discrete valuation domain of zero characteristic with prime ideal $P = \pi R$ and finite residue field of N(P) elements, then there exists a (*)-cycle of any length dividing N(P) - 1.

Proof. In view of Lemma 1(iii) it suffices to find a cycle of length N(P) - 1. Clearly we may assume N(P) > 2. Denote by g_0 any primitive root mod P and put

(8)
$$W(X) = 1 + X + X^2 + \ldots + X^{N(P)-2}$$

Clearly $W(g_0) \equiv 0 \pmod{P}$, and Hensel's lemma shows the existence of a root $g \in R$ of W. The polynomial $gX + \pi$ realizes the cycle

$$(0, \pi, (1+g)\pi, \dots, (1+g+g^2+\dots+g^{N(P)-3})\pi))$$

of length N(P) - 1.

The proof of part (ii) of Theorem 2 in the exceptional cases p = 2, 3 follows from the following examples of cycles:

(a) $F(X) = -\frac{2}{3}X(X-1)(X-2) + X + 1$ has the cycle 0, 1, 2, 3 of 4 elements in \mathbb{Z}_2 ,

(b) $F(X) = -\frac{1}{4}X^3 + \frac{1}{2}X^2 + \frac{7}{4}X + 1$ has the cycle 0, 1, 3, 4 of 4 elements in \mathbb{Z}_3 ,

(c) $F(X) = -\frac{1}{20}X(X-1)(X-2)(X-3)(X-4) + X + 1$ has the cycle 0, 1, 2, 3, 4, 5 of 6 elements in \mathbb{Z}_3 ,

(d) $F(X) = -\frac{9}{8!}X(X-1)(X-2)(X-3)(X-4)(X-5)(X-6)(X-7)$ + X + 1 has the cycle 0, 1, 2, 3, 4, 5, 6, 7, 8 of 9 elements in Z₃.

In the remaining cases the assertion (ii) is a consequence of the following lemma:

LEMMA 12. If R is a complete discrete valuation domain of zero characteristic with prime ideal $P = \pi R$ and finite residue field of N(P) elements, and there exists in R a (*)-cycle of length m, then for each $r = 0, 1, \ldots, N(P) - 1$ there exists in R a cycle of length (1 + r)m.

Proof. Let M = (1 + r)m and let $a_0 = 0, a_1, \ldots, a_r$ be elements of R lying in different cosets (mod P). Moreover, let $y_0 = 0, y_1, \ldots, y_{m-1}$ be a (*)-cycle realized by a polynomial F. For $n = 1, 2, \ldots$ put

$$W_n(X) = (1 - (X - a_r)^{N(P)^n(N(P) - 1)})F(X - a_r) + \sum_{j=0}^{r-1} ((1 - (X - a_j)^{N(P)^n(N(P) - 1)})(X + a_{j+1} - a_j)).$$

Thus $W_n^{l(1+r)+j}(y_0) \equiv y_l + a_j \pmod{P^{n+1}}$ for j = 0, 1, ..., r. Let

$$L_n(X) = \sum_{i=0}^{M-1} a_i^{(n)} X^i$$

be the remainder of the division of $W_n(X)$ by the polynomial

$$X \prod_{j=1}^{M-1} (X - W_n^j(0))$$

A simple recurrence argument gives $L_n^j(0) = W_n^j(0)$ (j = 1, 2, ..., M). Choose now a subsequence $n_1, n_2, ...$ so that the limits

$$c_i = \lim_{k \to \infty} a_i^{(n_k)}$$

exist for each $i = 0, 1, \ldots, M$, and put

$$L(X) = \sum_{i=0}^{M-1} c_i X^i.$$

Then

$$L^{l(1+r)+j}(y_0) = \lim_{k \to \infty} L^{l(1+r)+j}_{n_k}(y_0) = \lim_{k \to \infty} W^{l(1+r)+j}_{n_k}(y_0) = y_l + a_j$$

and thus the polynomial L realizes a cycle of M elements.

Note that the assertions of Lemmas 11 and 12 remain true also if R is not complete. Indeed, let S be the completion of R and $x_0, x_1, \ldots, x_{m-1}$ a cycle in S. Choose a sequence $y_0, y_1, \ldots, y_{m-1}$ with $v(y_i - x_i)$ sufficiently small

for all *i*. It follows from the Lagrange interpolation formula that the unique polynomial F of degree not exceeding m-1 which satisfies $F(y_i) = y_{i+1}$ for $i = 0, 1, \ldots, m-2$ and $F(y_{m-1}) = y_0$ has its coefficients in R.

11. Proof of Corollary 3. It suffices to observe that every prime congruent to 1 (mod M) splits in the Mth cyclotomic field and apply Theorem 2.

Reference

 W. Narkiewicz, Polynomial cycles in algebraic number fields, Colloq. Math. 58 (1989), 151-155.

MATHEMATICAL INSTITUTE UNIVERSITY OF WROCŁAW PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND

> Received on 25.9.1992 and in revised form on 9.8.1993

(2307)