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1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple x0, x1, . . .
. . . , xk−1 of distinct elements of R is called a cycle of f if

f(xi) = xi+1 for i = 0, 1, . . . , k − 2 and f(xk−1) = x0 .

The number k is called the length of the cycle. A tuple is a cycle in R if it
is a cycle for some f ∈ R[X].

It has been shown in [1] that if R is the ring of all algebraic integers
in a finite extension K of the rationals, then the possible lengths of cycles
of R-polynomials are bounded by the number 77·2N , depending only on the
degree N of K. In this note we consider the case when R is a discrete
valuation domain of zero characteristic with finite residue field.

We shall obtain an upper bound for the possible lengths of cycles in R
and in the particular case R = Zp (the ring of p-adic integers) we describe
all possible cycle lengths. As a corollary we get an upper bound for cycle
lengths in the ring of integers in an algebraic number field, which improves
the bound given in [1].

The author is grateful to the referee for his suggestions, which essentially
simplified the proof in Subsection 6 and improved the bound for C(p) in
Theorem 1 in the case p = 2, 3.

2. Let R be a discrete valuation domain of zero characteristic with fi-
nite residue field having cardinality N(P ) = pf . Fix a generator π of the
prime ideal P of R and denote by v the norm (multiplicative valuation) of
R, normalized so that v(π) = 1/p. Moreover, put v(p) = p− ord p. A cycle
x0, x1, . . . , xk−1 will be called a (∗)-cycle if v(xi − xj) < 1 for i 6= j.

We shall prove the following results:
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Theorem 1. (i) The length of a (∗)-cycle in R does not exceed
(N(P )− 1)pC(p), where

C(p) = 1 +
log(ord p)

log 2
.

(ii) The length of a cycle in R does not exceed N(P )(N(P ) − 1)pC(p),
where C(p) is given in (i).

In case of R = Zp we can be more precise:

Theorem 2. (i) A (∗)-cycle of length n exists in Zp if and only if n is
a divisor of p− 1 except for p = 2, 3 in which case n can be any integer not
exceeding p.

(ii) If p > 3 then a cycle of length n exists in Zp if and only if n = ab,
where a is a divisor of p− 1 and b ≤ p. The set of possible cycle lengths in
Z2 is {1, 2, 4}, and in Z3 it is {1, 2, 3, 4, 6, 9}.

Corollary 1. Let R be the ring of all integers in an algebraic number
field of degree N over the rationals. The cycle lengths in R are bounded by
(2N − 1)2N+1.

Corollary 2. If k is the length of a cycle in R then

k ≤ min(N(P1)(N(P1)− 1)N(P2)(N(P2)− 1)) ,

the minimum being taken over all pairs P1, P2 of prime ideals with

char(R/P1) 6= char(R/P2) .

For cyclotomic fields K the bound given in Corollary 1 can be essentially
improved:

Corollary 3. Let KM be the M -th cyclotomic field and R its ring of
integers. The cycle lengths in R do not exceed c4(ε)M2L+ε for every ε > 0,
where L denotes the Linnik constant.

Note that N = [KM : Q] = ϕ(M) � M/ log logM , and thus the cycle
lengths in this case do not exceed c5(ε)N2L+ε for every ε > 0, which is a
much better bound than that resulting from Corollary 1.

3. We list first certain simple properties of cycles in arbitrary domains.
We use the following convention: if x0, x1, . . . , xk−1 is a cycle, then for n ≡
r (mod k), 0 ≤ r < k ≤ n we put xn = xr. For a, b ∈ R we write a ∼ b if a,
b are associated, i.e. differ by an invertible factor.

Lemma 1. Let R be a domain and let x0, . . . , xk−1 be a cycle in R for
the polynomial F (X) = anX

n + . . .+ a1X + a0. Then

(i) this cycle is a cycle for some polynomial G of degree not exceeding
k − 1,
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(ii) if a, b ∈ R, a is a unit in R and yi = axi + b (i = 0, . . . , k− 1), then
y0, . . . , yk−1 is a cycle for some polynomial over R,

(iii) if k = rs then x0, x1·r, . . . , x(s−1)r is a cycle for some polynomial ,
(iv) for 0 < r < k one has (xi+r − xi) ∼ (xj+r − xj),
(v) if (i− j, k) = 1 then (xi − xj) ∼ (x1 − x0),
(vi) if xi = ayi, a, yi ∈ R, then y0, . . . , yk−1 is a cycle for some polyno-

mial.

P r o o f. (i) Take for G the remainder of the division of F by (X−x0) . . .
. . . (X − xk−1).

(ii) The polynomial G(X) = aF ((X − b)a−1) + b ∈ R[X] will do.
(iii) The sequence x0, xr, . . . , x(s−1)r is a cycle for the rth iteration of F .
(iv) Notice that

F (X)− F (Y )
X − Y = an(Xn−1 + . . .+ Y n−1) + . . .+ a2(X + Y ) + a1 ∈ R[X,Y ]

and thus xr − x0 |xr+1 − x1 | . . . |xk+r−1 − xk−1 |xr − x0.
(v) In view of (iv) it suffices to deal with the case j = 0. If t > 0 is

defined by t · i ≡ 1 (mod k) then xi − x0 |x2i − xi | . . . |xti − x(t−1)i, hence
xi − x0 | (xi − x0) + (x2i − xi) + . . .+ (xti − x(t−1)i) = xti − x0 = x1 − x0,
but of course x1 − x0 | (x1 − x0) + . . .+ (xi − xi−1) = xi − x0.

(vi) The yi’s form a cycle for G(X) = a−1F (aX) ∈ R[X].

PROOF OF THEOREM 1

4. From now on we assume that R satisfies the conditions stated at the
beginning of Subsection 2.

Lemma 2. The length of any cycle in R is a product of primes not ex-
ceeding N(P ).

P r o o f. In view of Lemma 1(iii) it suffices to show that if q is a prime ex-
ceeding N(P ) then there cannot be a cycle of length q in R. Let x0, . . . , xq−1

be such a cycle. In view of Lemma 1(v) one has v(xi−xj) = v(x1−x0) = p−r

for xi 6= xj . Thus we can write xi = x0 + πrwi (1 ≤ i < q) where wi 6∈ P
and wi − wj 6∈ P for 1 ≤ i < j < q, a contradiction.

Lemma 3. If k is a cycle length in R then k = ab, where a is the length
of some (∗)-cycle in R and b ≤ N(P ).

P r o o f. Let x0, . . . , xk−1 be a cycle. Assume first that for some i > 0 we
have v(xi−x0) < 1, and denote by b the smallest integer with this property.
Then b | k. In fact, if k = qb+ r, 0 < r < b, then by Lemma 1(iv)

v(xb−r−x0) = v(x(q+1)b−x0) ≤ max{v(x(q+1)b−xqb), . . . , v(xb−x0)} < 1 ,

contradicting the choice of b.
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It is obvious that either there exists a pair 1 ≤ r < s < b with xr −x0 ≡
xs − x0 (mod P ), and then v(xs−r − x0) = v(xs − xr) < 1, which is
impossible, or all differences xr−x0 (r = 1, . . . , b−1) are distinct (mod P )
and since they cannot lie in P we get b ≤ N(P ), as asserted. The numbers
x0, xb, . . . , x(a−1)b form a (∗)-cycle.

5. Now we shall consider the lengths of (∗)-cycles.

Lemma 4. Let y0, y1, . . . , yq−1 be a (∗)-cycle of F (X) = anX
n + . . . +

a1X + a0, q prime, y0 = 0. Then either q |N(P ) − 1, or q = p and a1

≡ 1 (mod P ).

P r o o f. Clearly

yk+2 − yk+1

yk+1 − yk =
F (yk+1)− F (yk)

yk+1 − yk
= an(yn−1

k+1 + . . .+ yn−1
k ) + . . .+ a2(yk+1 + yk) + a1

≡ a1 (mod P ) ,

and thus

1 =
q∏

k=1

yk+2 − yk+1

yk+1 − yk ≡ aq1 (mod P ) .

This implies

a
(q,N(P )−1)
1 ≡ 1 (mod P )

and hence q |N(P )− 1 or a1 ≡ 1 (mod P ).
Consider a1 ≡ 1 (mod P ) and write v(y1 − y0) = p−d. Then

y2 − y1

y1 − y0
≡ F ′(0) ≡ 1 (mod P ) ,

whence y2 − y1 ≡ y1 − y0 (mod P d+1), and similarly we get yk+2 − yk+1 ≡
yk+1 − yk ≡ . . . ≡ y1 − y0 (mod P d+1). But then

0 =
q∑

k=1

(yk+1 − yk) ≡ q(y1 − y0) (mod P d+1)

and q = p follows.

Lemma 5. Let F ∈ R[X], g = F ′(0) and ak = F k(0) with v(a1) = p−d,
d > 0. Then

ak ≡ (1 + g + . . .+ gk−1)a1 (mod P 2d) .

P r o o f. Easy recurrence.

Lemma 6. If m is the length of a (∗)-cycle in R and p -m, then m|N(P )−1.



Polynomial cycles 15

P r o o f. Let y0, . . . , ym−1 be such a cycle realized by F . In view of
Lemma 1(ii), (vi) we can assume without loss of generality that y0 = 0
and y1 = π. If we put g = (y2 − y1)/(y1 − y0), then

yk+1 − yk
yk − yk−1

≡ g (mod P )

and by Lemma 5,

(1) yk ≡ (1 + g + . . .+ gk−1)π (mod P 2) .

Suppose that for some 0 < r < m we have

(2) yr ∈ P 2

and let M be the smallest such r. Then gM ≡ 1 (mod P ) and M |m since
ym = 0 ∈ P 2. Let v(yM ) = p−d (d ≥ 2) and write

F ◦ . . . ◦ F︸ ︷︷ ︸
M times

(X) = FM (X) = btX
t + . . .+ b1X + b0 .

Since
b1 ≡ F ′(0)M ≡ gM ≡ 1 (mod P )

we get
y(k+2)M − y(k+1)M ≡ y(k+1)M − ykM (mod P d+1)

and

0 =
m/M∑

k=1

(y(k+1)M − ykM ) ≡ m

M
(yM − y0) (mod P d+1)

gives a contradiction.
Thus (2) does not hold and y1, . . . , ym−1 6∈ P 2. If m -N(P ) − 1, then

gm ≡ 1 (mod P ), gN(P )−1 ≡ 1 (mod P ), g(m,N(P )−1) ≡ 1 (mod P ) and
using (1) and remembering that g 6≡ 1 (mod P ) we get y(m,N(P )−1) ∈ P 2,
which contradicts the last statement.

6. By Lemmas 3 and 6 it remains to consider (∗)-cycles of lengths pα.

Proposition. If there is a (∗)-cycle of length pα, then α ≤ C(p), where
C(p) is defined in Theorem 1.

P r o o f. Let x0, x1, . . . , xpα−1 be a (∗)-cycle. By Lemma 1 we can assume
that x0 = 0 and v(x1) = p−1. For 0 ≤ k ≤ α − 1, put v(xpk) = p−dk (so in
particular d0 = 1), and λk = (F p

k

)′(0). So for k ≤ α− 1 one has

1 =
pα−k∏

l=1

x(l+1)pk − xl·pk
xl·pk − x(l−1)pk

≡ (λk)p
α−k

(mod P ) and λk ≡ 1 (mod P ) .

Write λk = 1 + ukπ
wk , where uk 6∈ P , wk ≥ 1, putting wk = ∞ in case

λk = 1.
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Lemma 5 gives

xp·pk ≡ (1 + λk + . . .+ λp−1
k )xpk (mod P 2dk) .

If λk = 1 then for dk+1 < 2dk one has dk+1 = dk + ord p, and if λk 6= 1 then

xp·pk ≡
(1 + ukπ

wk)p − 1
ukπwk

xpk (mod P 2dk) ,

leading to

xp·pk ≡
(
p+

(
p

2

)
ukπ

wk + . . .

. . .+
(

p

p− 1

)
(ukπwk)p−2 + (ukπwk)p−1

)
xpk (mod P 2dk) .

Hence if dk+1 < 2dk then dk+1 ≥ min(dk + ord p, dk + (p − 1)wk) and we
arrive at

(3) dk+1 ≥ min(2dk, dk + ord p, dk + (p− 1)wk) .

By putting k = α− 1 we get

p+
(
p

2

)
(uα−1π

wα−1) + . . .+
(

p

p− 1

)
(uα−1π

wα−1)p−2

+(uα−1π
wα−1)p−1 ∈ P dα−1 .

If wα−1(p− 1) 6= ord p then

(4) dα−1 ≤ ord p .

Otherwise

(5) wα−1(p− 1) = ord p .

For k ≤ α− 2 one has

λk+1 = (F p
k+1

)′(0) =
p−1∏

j=0

(F p
k

)′(xj·pk) ≡ λpk (mod P dk) ,

and thus we obtain

(6) wk+1 ≥ min(dk, wk + ord p, pwk) .

In the case p = 2 we need stronger inequalities. Since

λk+1 ≡ λk(λk + (F p
k

)′′(0)xpk) (mod P 2dk) ,

and 2 | (F pk)′′(0) the inequality

(7) wk+1 ≥ min(2dk, wk + ord 2, 2wk, dk + ord 2)

results.

Lemma 7. For k = 0, 1, . . . , α− 1 one has min(dk, wk) ≤ ord p.
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P r o o f. If the assertion failed for some k, then (3) and (6) would imply

wα−1, dα−1 > ord p ,

contradicting (4) and (5).

Lemma 8. For every prime p and for k = 0, 1, . . . , α− 1 one has

(i) dk ≥ 2k in case dk ≤ ord p,
(ii) wk ≥ 2k−1 if p is odd ,

(iii) wk ≥ 2k if p = 2.

P r o o f. First consider the case of p 6= 2. For k = 0 the assertion is
obvious, and if it holds for some k, and dk ≤ ord p, then by (3) and (6) we
obtain dk+1 ≥ 2k+1 and wk+1 ≥ 2k, and if dk > ord p, then the preceding
lemma implies wk+1 ≤ ord p and (6) gives wk+1 ≥ 3 · 2k−1 > 2k.

In case p = 2 the argument is the same, except that one uses (7) instead
of (6).

Using (4), (5) and Lemma 8 one immediately obtains the assertion of
the Proposition.

By the Proposition, Lemma 3 and Lemma 6 we get Theorem 1.

7. P r o o f o f C o r o l l a r y 1. Let P be a prime ideal over 2ZK , let f
be its degree, e its ramification index, and R = (ZK)P the corresponding
localization. Clearly the cycle lengths in ZK cannot exceed the maximal
cycle length in R. So in particular N(P ) = 2f , ord 2 = e and f · e ≤ N =
[K : Q]. By using Theorem 1(i) one deduces α ≤ e; and as e ≤ N we
conclude that the cycle lengths are bounded by

2f (2f − 1)2e ≤ 2N/e(2N/e − 1)2e ≤ 2N+1(2N − 1) .

8. P r o o f o f C o r o l l a r y 2. As we have seen in the proof of Theorem 1
we can write k = a1b1c1 = a2b2c2 where ai ≤ N(Pi), bi | (N(Pi)− 1), and ci
is a power of pi = charR/Pi. So

c1 | a2b2c2 ⇒ c1 | a2b2 ⇒ k ≤ a1b1a2b2 .

PROOF OF THEOREM 2

9. We start with the non-existence assertion.

Lemma 9. (i) If y0, . . . , yp−1 is a (∗)-cycle in Zp, and v(y1 − y0) = p−d

then (p− 2)d ≤ 1.
(ii) If p > 3 then there are no (∗)-cycles of length p in Zp. In Z3 there

are no (∗)-cycles of length 9 and in Z2 there are no (∗)-cycles of length 4.
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P r o o f. (i) Let y0, y1, . . . , yp−1 be a (∗)-cycle for F (X) = ap−1X
p−1 +

. . .+a0 and v(y1−y0) = p−d, d ≥ 1. In view of Lemma 1(ii) one can assume
yi = pdzi for i = 0, 1, . . . , p− 1, with z0 = 0, z1 = 1.

Consider the linear system

(S) =




a0 + a1 y0 + . . .+ ap−1 y

p−1
0 = y1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a0 + a1 yp−1 + . . .+ ap−1 y

p−1
p−1 = y0 .

If δ denotes its determinant, then v(δ) = p−dp(p−1)/2 by Lemma 1(v) and
we get

pdp(p−1)/2 |
∣∣∣∣∣∣

1 y0 . . . yp−2
0 y1

. . . . . . . . . . . . . . . . . . . . . . .
1 yp−1 . . . yp−2

p−1 y0

∣∣∣∣∣∣
and

pd(p−2) |
∣∣∣∣∣∣

1 z0 . . . zp−2
0 z1 − z0 − 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 zp−1 . . . zp−2

p−1 z0 − zp−1 − 1

∣∣∣∣∣∣
= ∆, say .

Since by Lemma 4, F ′(0) ≡ 1 (mod p), Lemma 5 gives zi ≡ i (mod p)
(i = 0, 1, . . .) and thus

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣

1 z0 . . . zp−2
0

. . . . . . . . . . . . . . . . . . .
1 zk−1 . . . zp−2

k−1

1 zk+1 . . . zp−2
k+1

. . . . . . . . . . . . . . . . . . .
1 zp−1 . . . zp−2

p−1

∣∣∣∣∣∣∣∣∣∣∣∣

≡ (−1)kc (mod p)

with

c =
1

(p− 1)!

∏

0≤i<j≤p−1

(j − i) 6≡ 0 (mod p) .

If we had (p− 2)d ≥ 2 then p2 |∆. But

∆ =
p−1∑

k=0

(−1)k(zk+1 − zk − 1)∆k ,

and since ∆k = (−1)kc+ pαk with a suitable αk ∈ Zp we get

∆ = c

p−1∑

k=0

(zk+1 − zk − 1) + p

p−1∑

k=0

(−1)k(zk+1 − zk − 1)αk

≡ −pc 6≡ 0 (mod p2) ,

since zk+1− zk − 1 ≡ 0 (mod p) for k = 0, 1, . . . , p− 1, and this is a contra-
diction.
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(ii) In case p = 2, 3 the assertion results from Theorem 1 and for p > 3
it is an immediate consequence of (i).

Lemma 10. There are no (∗)-cycles of length 6 in Z3.

P r o o f. The preceding lemma shows that if 0, z1, z2 is a (∗)-cycle in
Z3, then v(z1) = 1/3. Let 0, y1, . . . , y5 be a (∗)-cycle of length 6 in Z3

realized by the polynomial F (X) = a5X
5 + . . . + a0. Lemma 9(i) implies

v(y2) = v(y4) = 1/3. This implies v(y1) = 1/3 and v(y3) < 1/3 since there
are only three residue classes mod3. Now Lemma 1 shows that it suffices to
consider the cycle

0, 3, 6 + 9c, 9 · 3Du, 3 + 9 · 3Dv, 6 + 9c+ 3Dw ,

with D ≥ 0 and 3 -uvw.
Considering again the system (S) with determinant δ we get v(δ) =

3−18−3D. Put A = 2 + 3c + 31+Dw, B = 2 + 3c. Observe that a2 ∈ Z3

implies the divisibility of the determinant
∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0
1 1 2 + 3c 1 1 1
1 2 + 3c 31+Du (2 + 3c)3 (2 + 3c)4 (2 + 3c)5

0 31+Du 31+Dv (31+Du)3 (31+Du)4 (31+Du)5

0 31+Dv 31+Dw (1 + 31+Dv)3 − 1 (1 + 31+Dv)4 − 1 (1 + 31+Dv)5 − 1
0 31+Dw −31+Du A3 −B3 A4 −B4 A5 −B5

∣∣∣∣∣∣∣∣∣∣∣

by 34+3D. All elements of the last three lines of this determinant are divisible
by 31+D, hence

3 |

∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0
1 1 2 1 1 1
1 2 0 2 1 2
0 u v 0 0 0
0 v w 0 v 2v
0 w −u 0 2w 2w

∣∣∣∣∣∣∣∣∣∣∣

, 3 | vu+ w2 and 3 |uv + 1 .

Now a3 ∈ Z3 implies

35+3D |

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 1 0 0
1 1 1 2 + 3c 1 1
1 2 + 3c (2 + 3c)2 31+Du (2 + 3c)4 (2 + 3c)5

0 31+Du (31+Du)2 31+Dv (31+Du)4 (31+Du)5

0 31+Dv (1 + 31+Dv)2 − 1 31+Dw (1 + 31+Dv)4 − 1 (1 + 31+Dv)5 − 1
0 31+Dw A2 −B2 −31+Du A4 −B4 A5 −B5

∣∣∣∣∣∣∣∣∣∣∣

and here again all elements of the last three rows are divisible by 31+D,
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hence

3 |

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 1 0 0
1 1 1 2 1 1
1 2 1 0 1 2
0 u 0 v 0 0
0 v 2v w v 2v
0 w w −u 2w 2w

∣∣∣∣∣∣∣∣∣∣∣

,

3 |u(w2 − v(u+ w))− v · v · w ,
and

3 |u− v − w(1 + uv)

but since 3 |uv + 1 we get u ≡ v (mod 3), and 3 |u2 + 1, a contradiction.

10. Now we construct cycles with lengths listed in Theorem 2 and start
with (∗)-cycles. Obviously for any p the polynomial −X + p realizes the
(∗)-cycle 0, p of length 2 in Zp, and the polynomial − 1

2X(X − 3) + X + 3
realizes the (∗)-cycle 0, 3, 6 of length 3 in Z3, and this settles the exceptional
cases in Theorem 2(i). The remaining cases of (i) are covered by the following
lemma, which gives slightly more than needed:

Lemma 11. If R is a complete discrete valuation domain of zero charac-
teristic with prime ideal P = πR and finite residue field of N(P ) elements,
then there exists a (∗)-cycle of any length dividing N(P )− 1.

P r o o f. In view of Lemma 1(iii) it suffices to find a cycle of length
N(P ) − 1. Clearly we may assume N(P ) > 2. Denote by g0 any primitive
root modP and put

(8) W (X) = 1 +X +X2 + . . .+XN(P )−2 .

Clearly W (g0) ≡ 0 (mod P ), and Hensel’s lemma shows the existence of a
root g ∈ R of W . The polynomial gX + π realizes the cycle

0, π, (1 + g)π, . . . , (1 + g + g2 + . . .+ gN(P )−3)π

of length N(P )− 1.

The proof of part (ii) of Theorem 2 in the exceptional cases p = 2, 3
follows from the following examples of cycles:

(a) F (X) = − 2
3X(X − 1)(X − 2) + X + 1 has the cycle 0, 1, 2, 3 of 4

elements in Z2,
(b) F (X) = − 1

4X
3 + 1

2X
2 + 7

4X+ 1 has the cycle 0, 1, 3, 4 of 4 elements
in Z3,

(c) F (X) = − 1
20X(X − 1)(X − 2)(X − 3)(X − 4) +X + 1 has the cycle

0, 1, 2, 3, 4, 5 of 6 elements in Z3,
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(d) F (X) = − 9
8!X(X − 1)(X − 2)(X − 3)(X − 4)(X − 5)(X − 6)(X − 7)

+X + 1 has the cycle 0, 1, 2, 3, 4, 5, 6, 7, 8 of 9 elements in Z3.

In the remaining cases the assertion (ii) is a consequence of the following
lemma:

Lemma 12. If R is a complete discrete valuation domain of zero char-
acteristic with prime ideal P = πR and finite residue field of N(P ) ele-
ments, and there exists in R a (∗)-cycle of length m, then for each r =
0, 1, . . . , N(P )− 1 there exists in R a cycle of length (1 + r)m.

P r o o f. Let M = (1 + r)m and let a0 = 0, a1, . . . , ar be elements of R
lying in different cosets (mod P ). Moreover, let y0 = 0, y1, . . . , ym−1 be a
(∗)-cycle realized by a polynomial F . For n = 1, 2, . . . put

Wn(X) = (1− (X − ar)N(P )n(N(P )−1))F (X − ar)

+
r−1∑

j=0

((1− (X − aj)N(P )n(N(P )−1))(X + aj+1 − aj)) .

Thus W l(1+r)+j
n (y0) ≡ yl + aj (mod Pn+1) for j = 0, 1, . . . , r.

Let

Ln(X) =
M−1∑

i=0

a
(n)
i Xi

be the remainder of the division of Wn(X) by the polynomial

X

M−1∏

j=1

(X −W j
n(0)) .

A simple recurrence argument gives Ljn(0) = W j
n(0) (j = 1, 2, . . . ,M).

Choose now a subsequence n1, n2, . . . so that the limits

ci = lim
k→∞

a
(nk)
i

exist for each i = 0, 1, . . . ,M , and put

L(X) =
M−1∑

i=0

ciX
i .

Then

Ll(1+r)+j(y0) = lim
k→∞

Ll(1+r)+j
nk

(y0) = lim
k→∞

W l(1+r)+j
nk

(y0) = yl + aj

and thus the polynomial L realizes a cycle of M elements.

Note that the assertions of Lemmas 11 and 12 remain true also if R is not
complete. Indeed, let S be the completion of R and x0, x1, . . . , xm−1 a cycle
in S. Choose a sequence y0, y1, . . . , ym−1 with v(yi − xi) sufficiently small
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for all i. It follows from the Lagrange interpolation formula that the unique
polynomial F of degree not exceeding m−1 which satisfies F (yi) = yi+1 for
i = 0, 1, . . . ,m− 2 and F (ym−1) = y0 has its coefficients in R.

11. P r o o f o f C o r o l l a r y 3. It suffices to observe that every prime
congruent to 1 (mod M) splits in the Mth cyclotomic field and apply The-
orem 2.

Reference

[1] W. Nark iewicz, Polynomial cycles in algebraic number fields, Colloq. Math. 58
(1989), 151–155.

MATHEMATICAL INSTITUTE

UNIVERSITY OF WROCŁAW

PL. GRUNWALDZKI 2/4

50-384 WROCŁAW, POLAND

Received on 25.9.1992
and in revised form on 9.8.1993 (2307)


