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1. Introduction. Let FN = {xr : 1 ≤ r ≤ R} denote the Farey sequence
of order N , that is, the positive irreducible fractions ≤ 1, with denominators
≤ N , arranged in increasing order. We have

R = R(N) = ϕ(1) + . . .+ ϕ(N) =
3
π2N

2 +O(N logN)

where ϕ is Euler’s function. We set `r = xr − xr−1, 2 ≤ r ≤ R, `1 = x1,
`r+R = `r for all r.

In our previous paper [2] Tenenbaum and I gave an asymptotic formula
for the sum

(1) TN (α, β) :=
R∑
r=1

`αr `
β
r+1

for (α, β) belonging to the set D1 ∪D2 in the plane: D1 = {(α, β) : α, β, α+
β < 2}, D2 = {(α, β) : α > 0, β > 0, α+ β ≥ 2}. There is a threshold across
the line α+ β = 2. The term threshold was defined in our later paper [3]: it
applies to any asymptotic formula containing one or more parameters when

(i) the main term is a discontinuous function of the parameters, and
(ii) the main term has a simple shape in one domain and a much more

complicated shape in another domain.

In the case of TN (α, β) these domains are respectively D1 and D2. Our
weakest error term was on the boundary, α + β = 2. We showed that for
0 < α < 2,

(2) TN (α, 2− α) =
6
π2N

−2 logN +Oα(N−2) .

I now show that in the special case α = 1, this formula may be substan-
tially improved. I write TN := TN (1, 1).
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Theorem. We have

(3) TN =
6
π2N

−2 logN +AN−2 +O

(
logN

N2
√
N

)

where

(4) A =
6
π2

(
γ − ζ ′(2)

ζ(2)
+B

)
,

γ is Euler’s constant , and

(5) B =
1
2

+ log 2 + 2
∞∑

h=1

ζ(2h)− 1
2h− 1

= 2.546277 . . .

The method is elementary and depends on the particular choice of α and
β: I have not identified the second main term in (2) in the general case. Some
of the complications encountered in D2 remain, finally resolving themselves
into the constant B. The formula should be compared with one of those
given by Kanemitsu, Sita Rama Chandra Rao and Siva Rama Sarma [4],
viz.

TN (2, 0) =
R∑
r=1

`2r =
R∑
r=1

(xr+1 − xr)2(6)

=
12
π2N

−2
(

logN + γ − ζ ′(2)
ζ(2)

+
1
2

)

+Oε(N−3 log5/3N(log logN)1+ε) .

We may combine (3) and (6) to obtain

(7)
R∑
r=1

(`r+1 − `r)2

=
12
π2N

−2
(

logN + γ − ζ ′(2)
ζ(2)

+ 1−B
)

+O(N−5/2 logN)

and

(8)
R∑
r=1

(xr+2 − xr)2

=
12
π2N

−2
(

3 logN + 3γ − 3
ζ ′(2)
ζ(2)

+ 1 +B

)
+O(N−5/2 logN) .

These results suggest the conjecture that for each fixed h there exist con-
stants C(h) and D(h) such that as N →∞,

R∑
r=1

(xr+h − xr)2 = C(h)N−2 logN +D(h)N−2 + o(N−2) .



Consecutive Farey arcs II 3

I am grateful to the referee of an earlier version of this paper and to
Martin Huxley who each supplied a partial result in this direction. Huxley’s
is

(9)
R∑
r=1

(xr+h − xr)2 =
12
π2 (2h− 1)N−2 logN +O

(
h2 log h
N2

)

and the referee had the better error term O(h2N−2). The main terms must
change for large h: the sum on the left of (9) is clearly not less than h2/R(N)
and on the Riemann Hypothesis we obtain, via a result of Franel [1],

R∑
r=1

(xr+h − xr)2 = h2R−1 +Oε(N−1+ε)

uniformly for all h. We may deduce (9) from the following result.

Proposition. Uniformly for j ≥ 2, we have

Gj(N) =
∑

r (mod R)

`r`r+j � N−2 log j .

The sum in (9) is

hG0(N) + 2
h−1∑

j=1

(h− j)Gj(N)

and of course we know G0(N) and G1(N) from (6) and (3). I will just sketch
a proof of the proposition here.

First, if xs = a/c and xt = b/d are distinct elements of FN then we have

|s− t| � N2

(c+ d)2

because FN contains all the (distinct) intermediate fractions

x =
ua+ vb

uc+ vd
, (u, v) = 1, u, v ≤ N/(c+ d) .

If `i is large, one of its end-points has a small denominator. It follows that
provided j ≥ 2, we have

(10) min{`r, `r+j} �
√
j

N2 .

Uniformly for 0 ≤ α < 2 < β we have both
∑

r (mod R)

`αr � (2− α)−1N2−2α
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and
∑

r (mod R)
`r≤λ/N2

`βr �
(

β

β − 2

)
N2−2βλβ−2

and we estimate Gj(N) by applying (10) and Hölder’s inequality with ex-
ponents α and β = 2 + (log j)−1, choosing λ = c

√
j in the last sum with c

big enough for (10). This proves the proposition and Huxley’s formula (9)
is a corollary.

2. Proof of the theorem. Our starting point is Lemma 2 of [2] which
gives (for α = β = 1)

(11) TN =
N∑
s=1

s−2
N∑

r=N−s+1
(r,s)=1

r−1t−1

where

(12) t = t(r, s,N) = s

[
N + r

s

]
− r .

For k = 2, 3, . . . we set sk = (2N + 1)/k, and we split the sum (11) into two
parts UN and VN according as s ≤ sK = z or not. We choose

(13) K = [N1/4 log−1/2N ] .

We set

(14) k(s) =
[

2N + 1
s

]
, 2N + 1 = sk(s) + a(s) ,

so that k(s) = k for sk+1 < s ≤ sk. We have

(15)
[
N + r

s

]
=
{
k(s)− 1, N − s+ 1 ≤ r ≤ N − a(s) ,
k(s), N − a(s) < r ≤ N .

Notice that for each s, r + t takes just two values (one value if s|(2N + 1)),
determined by (12) and (15). We consider the sum UN . Put r = N − r′,
t = N − t′ so that 0 ≤ r′, t′ < s ≤ z and

(16)
1
rt

=
1
N2 +

r′ + t′

N3 +O

(
s2

N4

)
.

Hence

(17) UN =
1
N2

∑

s≤z

ϕ(s)
s2 + EN +O

(
z2

N4

)
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where

EN =
1
N3

∑

s≤z

1
s2

∑

N−s+1≤r≤N
(r,s)=1

(r′ + t′) .

We have

(18)
∑

s≤z

ϕ(s)
s2 =

6
π2

(
log z + γ − ζ ′(2)

ζ(2)

)
+O

(
log z
z

)
.

Next, by (12) and (15),

(19) r′ + t′ = 2N − r − t = 2N − s
[
N + r

s

]
= 2N − sk(s) + s∗

where * denotes that this term counts if and only if N − s < r ≤ N − a(s).
Now

(20)
∑

x<r≤y
(r,s)=1

1 =
ϕ(s)
s

(y − x) +O(τ(s))

where τ is the divisor function. It follows that

(21)
∑

N−s+1≤r≤N
(r,s)=1

(2N − sk(s) + s∗)

= ϕ(s)(2N − sk(s)) + ϕ(s)(s− a(s)) +O(sτ(s)) = ϕ(s)s+O(sτ(s)) ,

by (14). Hence

(22) EN =
1
N3

∑

s≤z

(
ϕ(s)
s

+O

(
τ(s)
s

))
=

6
π2N

−3z +O(N−3 log2z) .

We combine (17), (18) and (22) to obtain

(23) UN =
6
π2N

−2
(

log z + γ − ζ ′(2)
ζ(2)

+
z

N

)
+O

(
z2

N4 +
log z
N2z

+
log2z

N3

)
.

The error terms on the right are within that appearing in (3).
We turn our attention to VN . We begin by writing the inner sum in (11)

as
N∑

r=N−s+1
(r,s)=1

r−1t−1 =
N∑

r=N−s+1
(r,s)=1

1
r + t

(
1
r

+
1
t

)
(24)

= 2s−1
N∑

r=N−s+1
(r,s)=1

[
N + r

s

]−1 1
r
,

noticing the symmetry in r and t, and using (12).
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We employ (15) and we obtain

(25) VN

=
∑

z<s≤N

2
s3

{
1

k(s)− 1

N∑

r=N−s+1
(r,s)=1

1
r
− 1
k(s)(k(s)− 1)

N∑

r=sk(s)−N
(r,s)=1

1
r

}
,

the right-hand inner sum being empty if s | (2N + 1). For positive integers
u, v (u ≤ v) we have

(26)
v∑
r=u

(r,s)=1

1
r

=
ϕ(s)
s

log
v

u
+O

(
τ(s)
u

)

and we apply this in (25). The error term is

�
∑

z<s≤N

τ(s)
s2N(N − s+ 1)

� N−2
∑
s>z

τ(s)
s2 +N−3

∑

N/2<s≤N

τ(s)
N − s+ 1

� N−2z−1 log z + c(ε)N−3+ε .

This is (substantially) smaller than the error term in (3). We therefore have
to consider the sum

(27)
∑

z<s≤N

2
s4

{
ϕ(s)

k(s)− 1
log
(

N

N − s+ 1

)

− ϕ(s)
k(s)(k(s)− 1)

log
(

N

sk(s)−N
)}

and we split this into ranges (sk+1, sk], 2 ≤ k < K, in which k(s) = k. We
employ the formula

(28)
∑

s≤x

ϕ(s)
s

=
6
π2x+O(log x)

and partial summation to obtain

(29)
∑

sk+1<s≤sk

ϕ(s)
s4 log

(
N

N − s+ 1

)

=
6
π2

sk∫
sk+1

log
(

N

N − s+ 1

)
ds

s3 +O

(
log2N

Ns2
k

)
,

(30)
∑

sk+1<s≤sk

ϕ(s)
s4 log

(
N

sk −N
)

=
6
π2

sk∫
sk+1

log
(

N

sk −N
)
ds

s3 +O

(
k log2N

Ns2
k

)
.
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Hence

(31) VN =
12
π2

N+1/2∫
sK

{
1

k(s)− 1
log
(

N

N − s+ 1

)

− 1
k(s)(k(s)− 1)

log
(

N

sk(s)−N
)}

ds

s3

+O(K2N−3 log2N) ,

the error term here absorbing the previous ones; it is contained in that given
in (3). Let us denote the first term on the right of (31) by IN . We substitute
s = (2N + 1)/x to obtain

(2N + 1)2IN =
12
π2

K∫
2

{
x

[x]− 1
log
(

Nx

(N + 1)x− 2N − 1

)
(32)

+
x

[x]([x]− 1)
log
(

(2N + 1)[x]−Nx
Nx

)}
dx .

We have

(33) log
(

Nx

(N + 1)x− 2N − 1

)
= log

(
x

x− 2

)
+O

(
1
Nx

)
(x ≥ 3)

and

(34) log
(

(2N + 1)[x]
Nx

− 1
)

= log
(

2
[x]
x
− 1
)

+O

(
1
N

)
(x ≥ 2) .

We insert (33) and (34) into the right-hand side of (32). There remains an
integral over the interval 2 ≤ x ≤ 3 which may be evaluated explicitly. This
yields

(35) IN =
3

π2N2

K∫
2

(
f(x) +

2
x

)
dx+O

(
logN
N3

)

in which

(36) f(x) = − 2
x

+
x

[x]− 1
log
(

x

x− 2

)
+

x

[x]([x]− 1)
log
(

2
[x]
x
− 1
)
.

Let us define

(37) B =
1
2

∞∫
2

f(x) dx, B(K) =
1
2

∞∫
K

f(x) dx .

We may put (31), (35) and (37) together to obtain

(38) VN =
6
π2N

−2
(

log
K

2
+B −B(K)

)
+O(N−5/2 logN)
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and it remains to simplify B (which we do in the next section) and to
estimate B(K). A calculation shows that if k ≥ 3 then

(39) f(x) =
4
x2 +

(
20
3

+ 4θ(1− θ)
)

1
x3 +O

(
1
x4

)
,

where θ = x − [x]. The Bernoulli function B2(x) = θ2 − θ + 1
6 has mean

value 0 and the second mean value theorem gives

(40)
∞∫
K

B2(x)
dx

x3 = O

(
1
K3

)
.

We may assume that K ≥ 3 by (13). From (39) and (40) we obtain

(41) B(K) =
2
K

+
11

6K2 +O

(
1
K3

)
.

We insert this into (38) (it is more precise than we need in the present
analysis) and add the result to (23). This gives (3), subject to a proof that
(5) and (37) are equivalent.

3. The formula for B. It remains to show that the rather awkward
expression for B given in (36) and (37) may be simplified. Let

(42) am =
1
2

m+1∫
m

f(x) dx

so that by (39), am � 1/m2, moreover

(43) B =
∞∑
m=2

am .

A computation gives

am =
(m− 1)2

4m
log(m+ 1)− m2 − 8m+ 4

4(m− 1)
logm(44)

− m2 + 6m+ 1
4m

log(m− 1)

+
m2 − 4

4(m− 1)
log(m− 2) (m ≥ 2)

(where it is understood that when m = 2 the last term on the right is
interpreted as O). We consider the partial sum a2 +a3 + . . .+an, bracketing
together the terms in this sum involving log l, for l = 2, 3, . . . , n + 1. After
some simplification we find that

(45) a2 + a3 + . . .+ an = 2
n∑

l=2

log l
l2 − 1

+ bn
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where

bn = − (n−1)(n+3)
4n

log(n−1)+
n+2
n+1

logn+
(n−1)2

4n
log(n+1)(46)

=
− log n
n(n+1)

− (n−1)(n+3)
4n

log
(

1− 1
n

)
+

(n−1)2

4n
log
(

1+
1
n

)

=
1
2

+O

(
1
n

)
.

It follows from (43), (45) and (46) that

B =
1
2

+ 2
∞∑

l=2

log l
l2 − 1

(47)

=
1
2

+ log 2 + 2
∞∑
n=2

1
n

log
(
n+ 1
n− 1

)

=
1
2

+ log 2 + 2
(
ζ(2)− 1 +

ζ(4)− 1
3

+ . . .

)

as required.
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