On consecutive Farey arcs II

by
R. R. Hall (York)

1. Introduction. Let $\mathcal{F}_{N}=\left\{x_{r}: 1 \leq r \leq R\right\}$ denote the Farey sequence of order N, that is, the positive irreducible fractions ≤ 1, with denominators $\leq N$, arranged in increasing order. We have

$$
R=R(N)=\varphi(1)+\ldots+\varphi(N)=\frac{3}{\pi^{2}} N^{2}+O(N \log N)
$$

where φ is Euler's function. We set $\ell_{r}=x_{r}-x_{r-1}, 2 \leq r \leq R, \ell_{1}=x_{1}$, $\ell_{r+R}=\ell_{r}$ for all r.

In our previous paper [2] Tenenbaum and I gave an asymptotic formula for the sum

$$
\begin{equation*}
T_{N}(\alpha, \beta):=\sum_{r=1}^{R} \ell_{r}^{\alpha} \ell_{r+1}^{\beta} \tag{1}
\end{equation*}
$$

for (α, β) belonging to the set $\mathcal{D}_{1} \cup \mathcal{D}_{2}$ in the plane: $\mathcal{D}_{1}=\{(\alpha, \beta): \alpha, \beta, \alpha+$ $\beta<2\}, \mathcal{D}_{2}=\{(\alpha, \beta): \alpha>0, \beta>0, \alpha+\beta \geq 2\}$. There is a threshold across the line $\alpha+\beta=2$. The term threshold was defined in our later paper [3]: it applies to any asymptotic formula containing one or more parameters when
(i) the main term is a discontinuous function of the parameters, and
(ii) the main term has a simple shape in one domain and a much more complicated shape in another domain.

In the case of $T_{N}(\alpha, \beta)$ these domains are respectively \mathcal{D}_{1} and \mathcal{D}_{2}. Our weakest error term was on the boundary, $\alpha+\beta=2$. We showed that for $0<\alpha<2$,

$$
\begin{equation*}
T_{N}(\alpha, 2-\alpha)=\frac{6}{\pi^{2}} N^{-2} \log N+O_{\alpha}\left(N^{-2}\right) \tag{2}
\end{equation*}
$$

I now show that in the special case $\alpha=1$, this formula may be substantially improved. I write $T_{N}:=T_{N}(1,1)$.

Theorem. We have

$$
\begin{equation*}
T_{N}=\frac{6}{\pi^{2}} N^{-2} \log N+A N^{-2}+O\left(\frac{\log N}{N^{2} \sqrt{N}}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\frac{6}{\pi^{2}}\left(\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+B\right) \tag{4}
\end{equation*}
$$

γ is Euler's constant, and

$$
\begin{equation*}
B=\frac{1}{2}+\log 2+2 \sum_{h=1}^{\infty} \frac{\zeta(2 h)-1}{2 h-1}=2.546277 \ldots \tag{5}
\end{equation*}
$$

The method is elementary and depends on the particular choice of α and β : I have not identified the second main term in (2) in the general case. Some of the complications encountered in \mathcal{D}_{2} remain, finally resolving themselves into the constant B. The formula should be compared with one of those given by Kanemitsu, Sita Rama Chandra Rao and Siva Rama Sarma [4], viz.

$$
\begin{align*}
T_{N}(2,0)= & \sum_{r=1}^{R} \ell_{r}^{2}=\sum_{r=1}^{R}\left(x_{r+1}-x_{r}\right)^{2} \tag{6}\\
= & \frac{12}{\pi^{2}} N^{-2}\left(\log N+\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{1}{2}\right) \\
& +O_{\varepsilon}\left(N^{-3} \log ^{5 / 3} N(\log \log N)^{1+\varepsilon}\right)
\end{align*}
$$

We may combine (3) and (6) to obtain

$$
\begin{align*}
& \sum_{r=1}^{R}\left(\ell_{r+1}-\ell_{r}\right)^{2} \tag{7}\\
& \quad=\frac{12}{\pi^{2}} N^{-2}\left(\log N+\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+1-B\right)+O\left(N^{-5 / 2} \log N\right)
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{r=1}^{R}\left(x_{r+2}-x_{r}\right)^{2} \tag{8}\\
& \quad=\frac{12}{\pi^{2}} N^{-2}\left(3 \log N+3 \gamma-3 \frac{\zeta^{\prime}(2)}{\zeta(2)}+1+B\right)+O\left(N^{-5 / 2} \log N\right)
\end{align*}
$$

These results suggest the conjecture that for each fixed h there exist constants $C(h)$ and $D(h)$ such that as $N \rightarrow \infty$,

$$
\sum_{r=1}^{R}\left(x_{r+h}-x_{r}\right)^{2}=C(h) N^{-2} \log N+D(h) N^{-2}+o\left(N^{-2}\right)
$$

I am grateful to the referee of an earlier version of this paper and to Martin Huxley who each supplied a partial result in this direction. Huxley's is

$$
\begin{equation*}
\sum_{r=1}^{R}\left(x_{r+h}-x_{r}\right)^{2}=\frac{12}{\pi^{2}}(2 h-1) N^{-2} \log N+O\left(\frac{h^{2} \log h}{N^{2}}\right) \tag{9}
\end{equation*}
$$

and the referee had the better error term $O\left(h^{2} N^{-2}\right)$. The main terms must change for large h : the sum on the left of (9) is clearly not less than $h^{2} / R(N)$ and on the Riemann Hypothesis we obtain, via a result of Franel [1],

$$
\sum_{r=1}^{R}\left(x_{r+h}-x_{r}\right)^{2}=h^{2} R^{-1}+O_{\varepsilon}\left(N^{-1+\varepsilon}\right)
$$

uniformly for all h. We may deduce (9) from the following result.
Proposition. Uniformly for $j \geq 2$, we have

$$
G_{j}(N)=\sum_{r(\bmod R)} \ell_{r} \ell_{r+j} \ll N^{-2} \log j .
$$

The sum in (9) is

$$
h G_{0}(N)+2 \sum_{j=1}^{h-1}(h-j) G_{j}(N)
$$

and of course we know $G_{0}(N)$ and $G_{1}(N)$ from (6) and (3). I will just sketch a proof of the proposition here.

First, if $x_{s}=a / c$ and $x_{t}=b / d$ are distinct elements of \mathcal{F}_{N} then we have

$$
|s-t| \gg \frac{N^{2}}{(c+d)^{2}}
$$

because \mathcal{F}_{N} contains all the (distinct) intermediate fractions

$$
x=\frac{u a+v b}{u c+v d}, \quad(u, v)=1, u, v \leq N /(c+d) .
$$

If ℓ_{i} is large, one of its end-points has a small denominator. It follows that provided $j \geq 2$, we have

$$
\begin{equation*}
\min \left\{\ell_{r}, \ell_{r+j}\right\} \ll \frac{\sqrt{j}}{N^{2}} \tag{10}
\end{equation*}
$$

Uniformly for $0 \leq \alpha<2<\beta$ we have both

$$
\sum_{r(\bmod R)} \ell_{r}^{\alpha} \ll(2-\alpha)^{-1} N^{2-2 \alpha}
$$

and

$$
\sum_{\substack{r(\bmod R) \\ \ell_{r} \leq \lambda / N^{2}}} \ell_{r}^{\beta} \ll\left(\frac{\beta}{\beta-2}\right) N^{2-2 \beta} \lambda^{\beta-2}
$$

and we estimate $G_{j}(N)$ by applying (10) and Hölder's inequality with exponents α and $\beta=2+(\log j)^{-1}$, choosing $\lambda=c \sqrt{j}$ in the last sum with c big enough for (10). This proves the proposition and Huxley's formula (9) is a corollary.
2. Proof of the theorem. Our starting point is Lemma 2 of [2] which gives (for $\alpha=\beta=1$)

$$
\begin{equation*}
T_{N}=\sum_{s=1}^{N} s^{-2} \sum_{\substack{r=N-s+1 \\(r, s)=1}}^{N} r^{-1} t^{-1} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
t=t(r, s, N)=s\left[\frac{N+r}{s}\right]-r \tag{12}
\end{equation*}
$$

For $k=2,3, \ldots$ we set $s_{k}=(2 N+1) / k$, and we split the sum (11) into two parts U_{N} and V_{N} according as $s \leq s_{K}=z$ or not. We choose

$$
\begin{equation*}
K=\left[N^{1 / 4} \log ^{-1 / 2} N\right] . \tag{13}
\end{equation*}
$$

We set

$$
\begin{equation*}
k(s)=\left[\frac{2 N+1}{s}\right], \quad 2 N+1=s k(s)+a(s) \tag{14}
\end{equation*}
$$

so that $k(s)=k$ for $s_{k+1}<s \leq s_{k}$. We have

$$
\left[\frac{N+r}{s}\right]= \begin{cases}k(s)-1, & N-s+1 \leq r \leq N-a(s), \tag{15}\\ k(s), & N-a(s)<r \leq N\end{cases}
$$

Notice that for each $s, r+t$ takes just two values (one value if $s \mid(2 N+1)$), determined by (12) and (15). We consider the sum U_{N}. Put $r=N-r^{\prime}$, $t=N-t^{\prime}$ so that $0 \leq r^{\prime}, t^{\prime}<s \leq z$ and

$$
\begin{equation*}
\frac{1}{r t}=\frac{1}{N^{2}}+\frac{r^{\prime}+t^{\prime}}{N^{3}}+O\left(\frac{s^{2}}{N^{4}}\right) . \tag{16}
\end{equation*}
$$

Hence

$$
\begin{equation*}
U_{N}=\frac{1}{N^{2}} \sum_{s \leq z} \frac{\varphi(s)}{s^{2}}+E_{N}+O\left(\frac{z^{2}}{N^{4}}\right) \tag{17}
\end{equation*}
$$

where

$$
E_{N}=\frac{1}{N^{3}} \sum_{s \leq z} \frac{1}{s^{2}} \sum_{\substack{N-s+1 \leq r \leq N \\(r, s)=1}}\left(r^{\prime}+t^{\prime}\right)
$$

We have

$$
\begin{equation*}
\sum_{s \leq z} \frac{\varphi(s)}{s^{2}}=\frac{6}{\pi^{2}}\left(\log z+\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}\right)+O\left(\frac{\log z}{z}\right) \tag{18}
\end{equation*}
$$

Next, by (12) and (15),

$$
\begin{equation*}
r^{\prime}+t^{\prime}=2 N-r-t=2 N-s\left[\frac{N+r}{s}\right]=2 N-s k(s)+s^{*} \tag{19}
\end{equation*}
$$

where ${ }^{*}$ denotes that this term counts if and only if $N-s<r \leq N-a(s)$.
Now

$$
\begin{equation*}
\sum_{\substack{x<r \leq y \\(r, s)=1}} 1=\frac{\varphi(s)}{s}(y-x)+O(\tau(s)) \tag{20}
\end{equation*}
$$

where τ is the divisor function. It follows that

$$
\begin{align*}
& \sum_{\substack{N-s+1 \leq r \leq N \\
(r, s)=1}}\left(2 N-s k(s)+s^{*}\right) \tag{21}\\
= & \varphi(s)(2 N-s k(s))+\varphi(s)(s-a(s))+O(s \tau(s))=\varphi(s) s+O(s \tau(s)),
\end{align*}
$$

by (14). Hence

$$
\begin{equation*}
E_{N}=\frac{1}{N^{3}} \sum_{s \leq z}\left(\frac{\varphi(s)}{s}+O\left(\frac{\tau(s)}{s}\right)\right)=\frac{6}{\pi^{2}} N^{-3} z+O\left(N^{-3} \log ^{2} z\right) \tag{22}
\end{equation*}
$$

We combine (17), (18) and (22) to obtain
(23) $U_{N}=\frac{6}{\pi^{2}} N^{-2}\left(\log z+\gamma-\frac{\zeta^{\prime}(2)}{\zeta(2)}+\frac{z}{N}\right)+O\left(\frac{z^{2}}{N^{4}}+\frac{\log z}{N^{2} z}+\frac{\log ^{2} z}{N^{3}}\right)$.

The error terms on the right are within that appearing in (3).
We turn our attention to V_{N}. We begin by writing the inner sum in (11) as

$$
\begin{align*}
\sum_{\substack{r=N-s+1 \\
(r, s)=1}}^{N} r^{-1} t^{-1} & =\sum_{\substack{r=N-s+1 \\
(r, s)=1}}^{N} \frac{1}{r+t}\left(\frac{1}{r}+\frac{1}{t}\right) \tag{24}\\
& =2 s^{-1} \sum_{\substack{r=N-s+1 \\
(r, s)=1}}^{N}\left[\frac{N+r}{s}\right]^{-1} \frac{1}{r},
\end{align*}
$$

noticing the symmetry in r and t, and using (12).

We employ (15) and we obtain

$$
\begin{equation*}
=\sum_{z<s \leq N} \frac{2}{s^{3}}\left\{\frac{1}{k(s)-1} \sum_{\substack{r=N-s+1 \\(r, s)=1}}^{N} \frac{1}{r}-\frac{1}{k(s)(k(s)-1)} \sum_{\substack{r=s k(s)-N \\(r, s)=1}}^{N} \frac{1}{r}\right\}, \tag{25}
\end{equation*}
$$

the right-hand inner sum being empty if $s \mid(2 N+1)$. For positive integers $u, v(u \leq v)$ we have

$$
\begin{equation*}
\sum_{\substack{r=u \\(r, s)=1}}^{v} \frac{1}{r}=\frac{\varphi(s)}{s} \log \frac{v}{u}+O\left(\frac{\tau(s)}{u}\right) \tag{26}
\end{equation*}
$$

and we apply this in (25). The error term is

$$
\begin{aligned}
& \ll \sum_{z<s \leq N} \frac{\tau(s)}{s^{2} N(N-s+1)} \ll N^{-2} \sum_{s>z} \frac{\tau(s)}{s^{2}}+N^{-3} \sum_{N / 2<s \leq N} \frac{\tau(s)}{N-s+1} \\
& \ll N^{-2} z^{-1} \log z+c(\varepsilon) N^{-3+\varepsilon} .
\end{aligned}
$$

This is (substantially) smaller than the error term in (3). We therefore have to consider the sum

$$
\begin{align*}
& \sum_{z<s \leq N} \frac{2}{s^{4}}\left\{\frac{\varphi(s)}{k(s)-1} \log \left(\frac{N}{N-s+1}\right)\right. \tag{27}\\
&\left.-\frac{\varphi(s)}{k(s)(k(s)-1)} \log \left(\frac{N}{s k(s)-N}\right)\right\}
\end{align*}
$$

and we split this into ranges $\left(s_{k+1}, s_{k}\right], 2 \leq k<K$, in which $k(s)=k$. We employ the formula

$$
\begin{equation*}
\sum_{s \leq x} \frac{\varphi(s)}{s}=\frac{6}{\pi^{2}} x+O(\log x) \tag{28}
\end{equation*}
$$

and partial summation to obtain

$$
\begin{align*}
\sum_{s_{k+1}<s \leq s_{k}} \frac{\varphi(s)}{s^{4}} \log & \left(\frac{N}{N-s+1}\right) \tag{29}\\
& =\frac{6}{\pi^{2}} \int_{s_{k+1}}^{s_{k}} \log \left(\frac{N}{N-s+1}\right) \frac{d s}{s^{3}}+O\left(\frac{\log ^{2} N}{N s_{k}^{2}}\right),
\end{align*}
$$

$$
\begin{align*}
\sum_{s_{k+1}<s \leq s_{k}} \frac{\varphi(s)}{s^{4}} \log & \left(\frac{N}{s k-N}\right) \tag{30}\\
& =\frac{6}{\pi^{2}} \int_{s_{k+1}}^{s_{k}} \log \left(\frac{N}{s k-N}\right) \frac{d s}{s^{3}}+O\left(\frac{k \log ^{2} N}{N s_{k}^{2}}\right)
\end{align*}
$$

Hence

$$
\begin{align*}
V_{N}= & \frac{12}{\pi^{2}} \int_{s_{K}}^{N+1 / 2}\left\{\frac{1}{k(s)-1} \log \left(\frac{N}{N-s+1}\right)\right. \tag{31}\\
& \left.-\frac{1}{k(s)(k(s)-1)} \log \left(\frac{N}{s k(s)-N}\right)\right\} \frac{d s}{s^{3}} \\
& +O\left(K^{2} N^{-3} \log ^{2} N\right)
\end{align*}
$$

the error term here absorbing the previous ones; it is contained in that given in (3). Let us denote the first term on the right of (31) by I_{N}. We substitute $s=(2 N+1) / x$ to obtain

$$
\begin{align*}
(2 N+1)^{2} I_{N}= & \frac{12}{\pi^{2}} \int_{2}^{K}\left\{\frac{x}{[x]-1} \log \left(\frac{N x}{(N+1) x-2 N-1}\right)\right. \tag{32}\\
& \left.+\frac{x}{[x]([x]-1)} \log \left(\frac{(2 N+1)[x]-N x}{N x}\right)\right\} d x
\end{align*}
$$

We have
(33) $\quad \log \left(\frac{N x}{(N+1) x-2 N-1}\right)=\log \left(\frac{x}{x-2}\right)+O\left(\frac{1}{N x}\right) \quad(x \geq 3)$
and

$$
\begin{equation*}
\log \left(\frac{(2 N+1)[x]}{N x}-1\right)=\log \left(2 \frac{[x]}{x}-1\right)+O\left(\frac{1}{N}\right) \quad(x \geq 2) \tag{34}
\end{equation*}
$$

We insert (33) and (34) into the right-hand side of (32). There remains an integral over the interval $2 \leq x \leq 3$ which may be evaluated explicitly. This yields

$$
\begin{equation*}
I_{N}=\frac{3}{\pi^{2} N^{2}} \int_{2}^{K}\left(f(x)+\frac{2}{x}\right) d x+O\left(\frac{\log N}{N^{3}}\right) \tag{35}
\end{equation*}
$$

in which

$$
\begin{equation*}
f(x)=-\frac{2}{x}+\frac{x}{[x]-1} \log \left(\frac{x}{x-2}\right)+\frac{x}{[x]([x]-1)} \log \left(2 \frac{[x]}{x}-1\right) \tag{36}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
B=\frac{1}{2} \int_{2}^{\infty} f(x) d x, \quad B(K)=\frac{1}{2} \int_{K}^{\infty} f(x) d x \tag{37}
\end{equation*}
$$

We may put (31), (35) and (37) together to obtain

$$
\begin{equation*}
V_{N}=\frac{6}{\pi^{2}} N^{-2}\left(\log \frac{K}{2}+B-B(K)\right)+O\left(N^{-5 / 2} \log N\right) \tag{38}
\end{equation*}
$$

and it remains to simplify B (which we do in the next section) and to estimate $B(K)$. A calculation shows that if $k \geq 3$ then

$$
\begin{equation*}
f(x)=\frac{4}{x^{2}}+\left(\frac{20}{3}+4 \theta(1-\theta)\right) \frac{1}{x^{3}}+O\left(\frac{1}{x^{4}}\right) \tag{39}
\end{equation*}
$$

where $\theta=x-[x]$. The Bernoulli function $B_{2}(x)=\theta^{2}-\theta+\frac{1}{6}$ has mean value 0 and the second mean value theorem gives

$$
\begin{equation*}
\int_{K}^{\infty} B_{2}(x) \frac{d x}{x^{3}}=O\left(\frac{1}{K^{3}}\right) \tag{40}
\end{equation*}
$$

We may assume that $K \geq 3$ by (13). From (39) and (40) we obtain

$$
\begin{equation*}
B(K)=\frac{2}{K}+\frac{11}{6 K^{2}}+O\left(\frac{1}{K^{3}}\right) \tag{41}
\end{equation*}
$$

We insert this into (38) (it is more precise than we need in the present analysis) and add the result to (23). This gives (3), subject to a proof that (5) and (37) are equivalent.
3. The formula for B. It remains to show that the rather awkward expression for B given in (36) and (37) may be simplified. Let

$$
\begin{equation*}
a_{m}=\frac{1}{2} \int_{m}^{m+1} f(x) d x \tag{42}
\end{equation*}
$$

so that by (39), $a_{m} \ll 1 / m^{2}$, moreover

$$
\begin{equation*}
B=\sum_{m=2}^{\infty} a_{m} \tag{43}
\end{equation*}
$$

A computation gives

$$
\begin{align*}
a_{m}= & \frac{(m-1)^{2}}{4 m} \log (m+1)-\frac{m^{2}-8 m+4}{4(m-1)} \log m \tag{44}\\
& -\frac{m^{2}+6 m+1}{4 m} \log (m-1) \\
& +\frac{m^{2}-4}{4(m-1)} \log (m-2) \quad(m \geq 2)
\end{align*}
$$

(where it is understood that when $m=2$ the last term on the right is interpreted as O). We consider the partial sum $a_{2}+a_{3}+\ldots+a_{n}$, bracketing together the terms in this sum involving $\log l$, for $l=2,3, \ldots, n+1$. After some simplification we find that

$$
\begin{equation*}
a_{2}+a_{3}+\ldots+a_{n}=2 \sum_{l=2}^{n} \frac{\log l}{l^{2}-1}+b_{n} \tag{45}
\end{equation*}
$$

where
(46) $\quad b_{n}=-\frac{(n-1)(n+3)}{4 n} \log (n-1)+\frac{n+2}{n+1} \log n+\frac{(n-1)^{2}}{4 n} \log (n+1)$

$$
\begin{aligned}
& =\frac{-\log n}{n(n+1)}-\frac{(n-1)(n+3)}{4 n} \log \left(1-\frac{1}{n}\right)+\frac{(n-1)^{2}}{4 n} \log \left(1+\frac{1}{n}\right) \\
& =\frac{1}{2}+O\left(\frac{1}{n}\right)
\end{aligned}
$$

It follows from (43), (45) and (46) that

$$
\begin{align*}
B & =\frac{1}{2}+2 \sum_{l=2}^{\infty} \frac{\log l}{l^{2}-1} \tag{47}\\
& =\frac{1}{2}+\log 2+2 \sum_{n=2}^{\infty} \frac{1}{n} \log \left(\frac{n+1}{n-1}\right) \\
& =\frac{1}{2}+\log 2+2\left(\zeta(2)-1+\frac{\zeta(4)-1}{3}+\ldots\right)
\end{align*}
$$

as required.

References

[1] J. Franel, Les suites de Farey et le problème des nombres premiers, Göttinger Nachr. 1924, 198-201.
[2] R. R. Hall and G. Tenenbaum, On consecutive Farey arcs, Acta Arith. 44 (1984), 397-405.
[3] -, 一, The set of multiples of a short interval, in: Number Theory, New York Seminar 1989-90, D. V. Chudnovsky, G. V. Chudnovsky, H. Cohn and M. B. Nathanson (eds.), Springer, 1991, 119-128.
[4] S. Kanemitsu, R. Sita Rama Chandra Rao and A. Siva Rama Sarma, Some sums involving Farey fractions 1, J. Math. Soc. Japan 34 (1982), 125-142.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF YORK
YORK Y01 5DD
ENGLAND

