An ideal Waring problem with restricted summands

by

MICHAEL A. BENNETT (Waterloo, Ont.)

1. Introduction. If we define g(k) to be the order of the set $\{1^k, 2^k, \ldots\}$ as an additive basis for the positive integers, then the ideal Waring problem is to show that

(1)
$$g(k) = 2^k + \left[(3/2)^k \right] - 2$$

for all $k \in N$ ([x] is the integer part of x). By work of Mahler [9], this holds for all but finitely many k, but the result is ineffective and does not yield a bound upon these exceptional values. Computations by Kubina and Wunderlich [8], however, have shown (1) to obtain for all $k \leq 471\,600\,000$.

We consider representations of positive integers as sums of elements of

$$S_N^{(k)} = \{1^k, N^k, (N+1)^k, \ldots\}$$

where $N \geq 2$ is an integer. A theorem of Rieger [10] gives that $S_N^{(k)}$ forms an additive basis for \mathbb{N} for any natural number k. If we let $g_N(k)$ denote the order of this basis (so that $g_2(k) = g(k)$), then the aim of this paper is to prove an analog of (1). To be precise, we have

THEOREM 1.1. If $4 \le N \le (k+1)^{(k-1)/k} - 1$, then

$$g_N(k) = N^k + \left[\left(\frac{N+1}{N}\right)^k\right] - 2.$$

This follows from two results of the author, namely

THEOREM 1.2 (Bennett [2]). Suppose $k \ge 6$ and $M \ge e^{446k^6}$ are positive integers. Then there exist s integers x_1, x_2, \ldots, x_s , where $s < 6k \log k + (3 \log 6 + 4)k$, such that $x_i \ge M^{1/(8k^3)}$ for $i = 1, 2, \ldots, s$ and

$$M = x_1^k + x_2^k + \ldots + x_s^k.$$

THEOREM 1.3 (Bennett [3]). Define $||x|| = \min_{M \in \mathbb{Z}} |x - M|$. If $4 \le N \le k \cdot 3^k$, then

$$\left\| \left(\frac{N+1}{N} \right)^k \right\| > 3^{-k}.$$

The first of these is essentially a slight generalization of Vinogradov's earliest upper bound for G(k) in the standard Waring problem (see [11]). Since its proof entails making only minor modifications to a well known argument (to compensate for the restriction to kth powers of integers $\geq N$), we will not duplicate it here. We use this rather old fashioned approach instead of later versions of order $3k \log k$ or $2k \log k$ because these induce a lower bound for M which is too large to be practical for our purposes (though they increase the bound for x_i). The difficulty chiefly arises from the size of the implied constant in

$$\eta(a) \ll q^{\varepsilon}$$

where $\eta(a)$ is the number of solutions to the congruence

 $v^k \equiv a \bmod q$

for v and a integers in [0, q - 1].

The second theorem we use is an effective sharpening of a result of Beukers [4] on fractional parts of powers of rationals. It utilizes Padé approximation to the polynomial $(1-z)^k$ and some estimates on primes dividing binomial coefficients.

2. Dickson's ascent argument. We adopt the notation

$$\alpha = \left[\left(\frac{N+1}{N} \right)^k \right]$$
 and $\beta = (N+1)^k - N^k \cdot \left[\left(\frac{N+1}{N} \right)^k \right].$

Suppose $N \leq (k+1)^{(k-1)/k} - 1$ and write $[a,b] \in S_N^{(k)}(m)$ (or $(a,b) \in S_N^{(k)}(m)$) if every integer in [a,b] (respectively (a,b)) can be written as a sum of at most m elements of $S_N^{(k)}$ (where we allow repetitions). Following Dickson [6], we count the number of elements of $S_N(k)$ required for representations of "small" integers before applying an ascent argument to enable the use of Theorem 1.2.

Before we begin, we need a pair of preliminary lemmas.

LEMMA 2.1. If $N, k \geq 2$ and M are integers then

$$(N+1)^k - MN^k = 1$$

has only the solutions N = 2 and k = 2 or 4.

Proof. Suppose that

(2)
$$(N+1)^k = MN^k + 1$$

where $N \ge 2$ and $k \ge 2$ (but not N = k = 2). If k is even, then we may write

(3)
$$((N+1)^{k/2} - 1)((N+1)^{k/2} + 1) = MN^k$$

and so conclude if N is odd that N^k divides $(N+1)^{k/2}-1$. Since this implies $N^2 < N+1$, it contradicts $N \ge 2$. If, however, N is even, then we have

(4)
$$N^k | 2((N+1)^{k/2} - 1)$$
 if $N \equiv 0 \mod 4$

or

(5)
$$N^k | 2^k ((N+1)^{k/2} - 1)$$
 if $N \equiv 2 \mod 4$.

From (4), we have $N^2 < 2(N+1)$, which contradicts $N \equiv 0 \mod 4$ while (5) implies that N = 2. Since 3 belongs to the exponent $2^{k-2} \mod 2^k$, we must have 2^{k-2} dividing k, so that $k \leq 4$.

It remains only to consider odd k. We can write, from (2),

(6)
$$\sum_{i=1}^{k} \binom{k}{i} N^{i} = M N^{k}$$

and proceed via induction, proving that $\operatorname{ord}_N(k) \to \infty$, thus contradicting any a priori upper bound for k. From (6), we clearly have $N \mid k$ and if we suppose that $N^a \mid k$, then since

$$\operatorname{ord}_{p}\binom{k}{i} \ge \operatorname{ord}_{p} k - \operatorname{ord}_{p} i \quad (p \text{ prime})$$

we have

$$\operatorname{ord}_{N}\binom{k}{i} \ge a - \max_{\substack{p \mid i \\ p \text{ odd}}} \left(\operatorname{ord}_{p} i \right).$$

It follows that

$$\operatorname{ord}_N\left(\binom{k}{i}N^i\right) \ge a - \max_{\substack{p \mid i \\ p \text{ odd}}} \left(\operatorname{ord}_p i\right) + i$$

and so if $i \geq 2$,

$$\operatorname{ord}_N\left(\binom{k}{i}N^i\right) \ge a+2.$$

We conclude, then, that $N^{a+1} \mid k$ as required and hence (6) has no solutions for k odd.

We will also use

LEMMA 2.2. If n and l are integers with $n > l \ge (N+1)^k$, then there is an element of $S_N^{(k)}$, say i^k , such that

(7)
$$l \le n - i^k < l + k n^{(k-1)/k} \,.$$

Proof. Suppose first that $n \ge l + N^k$ and choose *i* such that $i^k \le n - l < (i+1)^k$. Then $i^k \in S_N^{(k)}$ and since, by calculus,

$$n - l - i^k \le k(n - l)^{(k-1)/k} < kn^{(k-1)/k}$$

we have (7). If, however, $n < l + N^k$, take i = 1 and write n = l + m (so that $1 \le m < N^k$). We conclude

$$k(l+m)^{(k-1)/k} > k(N+1)^{k-1} = \frac{k}{N+1}(N+1)^k$$

Since $k \ge N+1$, this is at least $(N+1)^k$ and hence greater than m, as desired.

Let us now begin to consider representations of comparatively small integers as sums of elements of $S_N^{(k)}$. We have

LEMMA 2.3. $[1, \alpha N^k] \in S_N^{(k)}(I_N^{(k)})$ where $I_N^{(k)} = N^k + \alpha - 2$.

Proof. If $M \leq \alpha N^k - 1$, then we can write $M = N^k x + y$ with $0 \leq y \leq N^k - 1$ and $x < \alpha$. It follows that M is a sum of $x + y \leq N^k + \alpha - 2$ elements of $S_N^{(k)}$. If, however, $M = \alpha N^k$, clearly $M \in S_N^{(k)}(\alpha)$.

LEMMA 2.4. $(\alpha N^k, (\alpha + 1)N^k) \in S_N^{(k)}(E)$ where $E = \max\{\alpha + \beta - 1, N^k - \beta\}.$

Proof. The integers αN^k , $\alpha N^k + 1, \ldots, \alpha N^k + \beta - 1$ are in $S_N^{(k)}(\alpha + \beta - 1)$ while $\alpha N^k + \beta = (N+1)^k, \ldots, \alpha N^k + N^k - 1 = (N+1)^k - \beta + N^k - 1$ belong to $S_N^{(k)}(N^k - \beta)$. Since $(\alpha + 1)N^k \in S_N^{(k)}(\alpha + 1)$ and $\beta \ge 2$ via Lemma 2.1, we are done.

The beginning of our ascent argument, following Dickson [6], lies in

LEMMA 2.5. If p and L are positive integers with $p \ge N$ and $(L, L + p^k) \in S_N^{(k)}(m)$, then $(L, L + 2p^k) \in S_N^{(k)}(m+1)$.

 $\operatorname{Proof.}$ Let M be an integer satisfying

$$L + p^k \le M < L + 2p^k \,.$$

Then $M - p^k \in S_N^{(k)}(m)$ and so $M \in S_N^{(k)}(m+1)$. If $M \in (L, L + p^k)$, the result is trivial.

By induction on n, we readily obtain

LEMMA 2.6. If p, n and L are positive integers with $p \ge N$ and $(L, L + p^k) \in S_N^{(k)}(m)$, then $(L, L + p^k(n+1)) \in S_N^{(k)}(m+n)$.

Taking $L = \alpha N^k$, p = N, $n = \alpha + 1$ and applying Lemmas 2.4 and 2.6 we conclude, from $nN^k > (N+1)^k$,

LEMMA 2.7. $(\alpha N^k, \alpha N^k + (N+1)^k) \in S_N^{(k)}(E+\alpha).$

If we now successively apply Lemma 2.7 and Lemma 2.6 with p = N+1, $N+2, \ldots, k$ and

$$n = \left[\left(\frac{N+2}{N+1} \right)^k \right], \left[\left(\frac{N+3}{N+2} \right)^k \right], \dots, \left[\left(\frac{k+1}{k} \right)^k \right],$$

it follows that

LEMMA 2.8.

$$(\alpha N^k, \alpha N^k + (k+1)^k) \in S_N^{(k)} \left(E + \alpha + \left[\left(\frac{N+2}{N+1} \right)^k \right] + \ldots + \left[\left(\frac{k+1}{k} \right)^k \right] \right).$$

Our main ascent relies upon the following result, which is essentially a variant of a theorem of Dickson [5, Theorem 12].

PROPOSITION 2.9. Let l and L_0 be integers with

$$L_0 > l \ge (N+1)^k$$
, $v = (1-l/L_0)/k$ and $v^k L_0 \ge 1$.

If for $t \in \mathbb{N}$ we define L_t by

(8)
$$\log L_t = \left(\frac{k}{k-1}\right)^t (\log L_0 + k \log v) - k \log v$$

and if $(l, L_0) \in S_N^{(k)}(m)$, then $(l, L_t) \in S_N^{(k)}(m+t)$.

Proof. We suppose $(l, L_0) \in S_N^{(k)}(m)$ and that $n \in (l, L_1)$. Now for t = 1, (8) is equivalent to

$$L_1 = (vL_0)^{k/(k-1)}$$

and hence we may use Lemma 2.2 to find $i^k \in S_N^{(k)}$ such that

$$l \le n - i^k < l + kn^{(k-1)/k} < l + kvL_0$$
.

Since $v = (1-l/L_0)/k$, we have $l \le n-i^k < L_0$, whence $(l, L_1) \in S_N^{(k)}(m+1)$. In general, (8) yields

$$L_{t+1} = (vL_t)^{k/(k-1)}$$

and the result obtains by induction upon t.

3. Proof of Theorem 1.1. Assume $N \ge 4$. To apply the preceding proposition, we let $l = (N+1)^k$ and $L_0 = (k+1)^k$. The condition that $v^k L_0 \ge 1$ is then equivalent to

$$N \le (k+1)^{(k-1)/k} - 1.$$

If we choose t large enough that

(9) $L_t > \max\{N^{8k^3}, e^{446k^6}\} = e^{446k^6}$

then Theorem 1.2 gives $[L_t, \infty) \in S_N^{(k)}(6k \log k + (3 \log 6 + 4)k)$. Now from $v = (1 - l/L_0)/k$, we may write

$$\log L_t = \left(\frac{k}{k-1}\right)^t \left(k\log(k+1) - k\log v\right) - k\log v$$
$$> \left(\frac{k}{k-1}\right)^t \left(k\log\left(\frac{k+1}{k}\right)\right).$$

Since

$$\log\left(\frac{k+1}{k}\right) > \frac{1}{k} - \frac{1}{2k^2} \ge \frac{11}{12k} \quad \text{for } k \ge 6,$$

this implies

$$\log L_t > \frac{11}{12} \left(\frac{k}{k-1}\right)^t.$$

If we note that

$$\log\left(\frac{k}{k-1}\right) > \frac{1}{k-1} - \frac{1}{2(k-1)^2} > \frac{1}{k},$$

we obtain (9) provided

$$t > k \left(6 \log k + \log \left(\frac{5352}{11} \right) \right).$$

Taking $t = [6k \log k + 7k]$, then, yields the desired conclusion. By Lemma 2.3, it remains to show for this choice of t that $(\alpha N^k, L_t) \in S_N^{(k)}(I_N^{(k)})$ (we have $[L_t, \infty) \in S_N^{(k)}(I_N^{(k)})$ because $6k \log k + (3 \log 6 + 4)k < I_N^{(k)}$ for $4 \le N \le (k+1)^{(k-1)/k} - 1$).

By Lemma 2.8 and Proposition 2.9, we have

$$(\alpha N^k, L_t) \in S_N^{(k)} \left(E + \alpha + t + (k - N) \left[\left(\frac{N+2}{N+1} \right)^k \right] \right)$$

and this follows from

(10)
$$E + \alpha + t + (k - N) \left[\left(\frac{N+2}{N+1} \right)^k \right] \le I_N^{(k)} = N^k + \alpha - 2$$

If $E = \alpha + \beta - 1$, then (10) becomes

(11)
$$\alpha + \beta + t + (k - N) \left[\left(\frac{N+2}{N+1} \right)^k \right] - N^k \le -1$$

while $E = N^k - \beta$ implies the inequality

(12)
$$t + (k - N) \left[\left(\frac{N+2}{N+1} \right)^k \right] - \beta \le -2.$$

130

To prove that (11) and (12) obtain for all N and k satisfying

$$4 \le N \le (k+1)^{(k-1)/k} - 1$$

we employ Theorem 1.3 to deduce

$$3^{-k} < \beta/N^k < 1 - 3^{-k}$$
.

The left hand side of (11) is then bounded above by

$$\left(\frac{N+1}{N}\right)^k - \left(\frac{N}{3}\right)^k + 6k\log k + 7k + (k-N)\left(\frac{N+2}{N+1}\right)^k$$

and hence is ≤ -1 for N and k unless

- (i) $N = 4, 6 \le k \le 34$, or
- (ii) $N = 5, 8 \le k \le 11$.

Additionally, we bound the left hand side of (12) by

$$6k \log k + 7k + (k - N) \left(\frac{N+2}{N+1}\right)^k - \left(\frac{N}{3}\right)^k,$$

which is ≤ -2 for all values of N and k under consideration except

- (iii) $N = 4, \, 6 \le k \le 32$, and
- (iv) $N = 5, 8 \le k \le 11$.

Checking that (11) and (12) hold for the cases (i), (ii) and (iii), (iv) respectively, we conclude the proof of the theorem by noting that $M = \alpha N^k - 1 \notin S_N^{(k)}(N^k + \alpha - 3)$ and thus

$$N^{k} + \left[\left(\frac{N+1}{N}\right)^{k}\right] - 2 \le g_{N}(k) \le N^{k} + \left[\left(\frac{N+1}{N}\right)^{k}\right] - 2.$$

4. Concluding remarks. If N = 3 and $k \ge 6$, we can show that

$$g_3(k) = 3^k + [(4/3)^k] - 2$$

provided

(13)
$$||(4/3)^k|| > (9/4)^{-k}$$

(in general, we require only

$$\left\| \left(\frac{N+1}{N}\right)^k \right\| > \left(\frac{N^2}{N+1}\right)^{-k}$$

which is rather weaker than Theorem 1.3). Though we have (13) for all but finitely many k by Mahler's result, it seems difficult to prove effective bounds approaching the above in strength (see Baker and Coates [1] for the only known nontrivial bound in this situation). As mentioned previously, the case N = 2 (the ideal Waring problem) also remains open. The best effective result for $||(3/2)^k||$ is due to Dubitskas, who proved

THEOREM 4.1 (Dubitskas [7]). There is an effectively computable k_0 such that if $k \geq k_0$, then

$$||(3/2)^k|| > (1.734)^{-k}$$
.

Unfortunately, this falls rather short of the desired lower bound of $(4/3)^{-k}$.

References

- [1] A. Baker and J. Coates, *Fractional parts of powers of rationals*, Math. Proc. Cambridge Philos. Soc. 77 (1975), 269–279.
- M. Bennett, Fractional parts of powers and related topics, Ph.D. thesis, University of British Columbia, 1993.
- [3] —, Fractional parts of powers of rational numbers, Math. Proc. Cambridge Philos. Soc. 114 (1993), 191–201.
- [4] F. Beukers, Fractional parts of powers of rationals, ibid. 90 (1981), 13-20.
- [5] L. E. Dickson, Recent progress on Waring's theorem and its generalizations, Bull. Amer. Math. Soc. 39 (1933), 701–702.
- [6] —, Proof of the ideal Waring's theorem for exponents 7–180, Amer. J. Math. 58 (1936), 521–529.
- [7] A. K. Dubitskas, A lower bound for the quantity $||(3/2)^k||$, Russian Math. Surveys 45 (1990), 163–164.
- [8] J. M. Kubina and M. C. Wunderlich, Extending Waring's conjecture to 471,600,000, Math. Comp. 55 (1990), 815–820.
- [9] K. Mahler, On the fractional parts of the powers of a rational number: II, Mathematika 4 (1957), 122–124.
- [10] G. J. Rieger, Über eine Verallgemeinerung des Waringschen Problems, Math. Z. 58 (1953), 281–283.
- [11] I. M. Vinogradov, On Waring's problem, Ann. of Math. 36 (1935), 395-405.

DEPARTMENT OF PURE MATHEMATICS UNIVERSITY OF WATERLOO WATERLOO, ONTARIO CANADA N2L 3G1 E-mail: MABENNETT@JEEVES.UWATERLOO.CA

> Received on 13.1.1993 and in revised form on 30.11.1993

(2365)