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1. Introduction. If we define g(k) to be the order of the set {1k, 2k, . . .}
as an additive basis for the positive integers, then the ideal Waring problem
is to show that

(1) g(k) = 2k + [(3/2)k]− 2

for all k ∈ N ([x] is the integer part of x). By work of Mahler [9], this
holds for all but finitely many k, but the result is ineffective and does not
yield a bound upon these exceptional values. Computations by Kubina and
Wunderlich [8], however, have shown (1) to obtain for all k ≤ 471 600 000.

We consider representations of positive integers as sums of elements of

S
(k)
N = {1k, Nk, (N + 1)k, . . .}

where N ≥ 2 is an integer. A theorem of Rieger [10] gives that S(k)
N forms

an additive basis for N for any natural number k. If we let gN (k) denote the
order of this basis (so that g2(k) = g(k)), then the aim of this paper is to
prove an analog of (1). To be precise, we have

Theorem 1.1. If 4 ≤ N ≤ (k + 1)(k−1)/k − 1, then

gN (k) = Nk +
[(

N + 1
N

)k]
− 2 .

This follows from two results of the author, namely

Theorem 1.2 (Bennett [2]). Suppose k ≥ 6 and M ≥ e446k6
are positive

integers. Then there exist s integers x1, x2, . . . , xs, where s < 6k log k +
(3 log 6 + 4)k, such that xi ≥M1/(8k3) for i = 1, 2, . . . , s and

M = xk1 + xk2 + . . .+ xks .
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Theorem 1.3 (Bennett [3]). Define ‖x‖ = minM∈Z |x−M |. If 4 ≤ N ≤
k · 3k, then ∥∥∥∥

(
N + 1
N

)k∥∥∥∥ > 3−k .

The first of these is essentially a slight generalization of Vinogradov’s
earliest upper bound for G(k) in the standard Waring problem (see [11]).
Since its proof entails making only minor modifications to a well known
argument (to compensate for the restriction to kth powers of integers ≥ N),
we will not duplicate it here. We use this rather old fashioned approach
instead of later versions of order 3k log k or 2k log k because these induce
a lower bound for M which is too large to be practical for our purposes
(though they increase the bound for xi). The difficulty chiefly arises from
the size of the implied constant in

η(a)� qε

where η(a) is the number of solutions to the congruence

vk ≡ a mod q

for v and a integers in [0, q − 1].
The second theorem we use is an effective sharpening of a result of Beuk-

ers [4] on fractional parts of powers of rationals. It utilizes Padé approxi-
mation to the polynomial (1 − z)k and some estimates on primes dividing
binomial coefficients.

2. Dickson’s ascent argument. We adopt the notation

α =
[(

N + 1
N

)k]
and β = (N + 1)k −Nk ·

[(
N + 1
N

)k]
.

Suppose N ≤ (k + 1)(k−1)/k − 1 and write [a, b] ∈ S
(k)
N (m) (or (a, b) ∈

S
(k)
N (m)) if every integer in [a, b] (respectively (a, b)) can be written as a

sum of at most m elements of S(k)
N (where we allow repetitions). Following

Dickson [6], we count the number of elements of SN (k) required for repre-
sentations of “small” integers before applying an ascent argument to enable
the use of Theorem 1.2.

Before we begin, we need a pair of preliminary lemmas.

Lemma 2.1. If N , k ≥ 2 and M are integers then

(N + 1)k −MNk = 1

has only the solutions N = 2 and k = 2 or 4.

P r o o f. Suppose that

(2) (N + 1)k = MNk + 1
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where N ≥ 2 and k ≥ 2 (but not N = k = 2). If k is even, then we may
write

(3) ((N + 1)k/2 − 1)((N + 1)k/2 + 1) = MNk

and so conclude if N is odd that Nk divides (N+1)k/2−1. Since this implies
N2 < N + 1, it contradicts N ≥ 2. If, however, N is even, then we have

(4) Nk | 2((N + 1)k/2 − 1) if N ≡ 0 mod 4

or

(5) Nk | 2k((N + 1)k/2 − 1) if N ≡ 2 mod 4 .

From (4), we have N2 < 2(N + 1), which contradicts N ≡ 0 mod 4 while
(5) implies that N = 2. Since 3 belongs to the exponent 2k−2 modulo 2k,
we must have 2k−2 dividing k, so that k ≤ 4.

It remains only to consider odd k. We can write, from (2),

(6)
k∑

i=1

(
k

i

)
N i = MNk

and proceed via induction, proving that ordN (k) → ∞, thus contradicting
any a priori upper bound for k. From (6), we clearly have N | k and if we
suppose that Na | k, then since

ordp

(
k

i

)
≥ ordp k − ordp i (p prime)

we have

ordN

(
k

i

)
≥ a− max

p|i
p odd

(ordp i) .

It follows that

ordN

((
k

i

)
N i

)
≥ a− max

p|i
p odd

(ordp i) + i

and so if i ≥ 2,

ordN

((
k

i

)
N i

)
≥ a+ 2 .

We conclude, then, that Na+1 | k as required and hence (6) has no solutions
for k odd.

We will also use

Lemma 2.2. If n and l are integers with n > l ≥ (N + 1)k, then there
is an element of S(k)

N , say ik, such that

(7) l ≤ n− ik < l + kn(k−1)/k .
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P r o o f. Suppose first that n ≥ l+Nk and choose i such that ik ≤ n−l <
(i+ 1)k. Then ik ∈ S(k)

N and since, by calculus,

n− l − ik ≤ k(n− l)(k−1)/k < kn(k−1)/k ,

we have (7). If, however, n < l + Nk, take i = 1 and write n = l + m (so
that 1 ≤ m < Nk). We conclude

k(l +m)(k−1)/k > k(N + 1)k−1 =
k

N + 1
(N + 1)k .

Since k ≥ N + 1, this is at least (N + 1)k and hence greater than m, as
desired.

Let us now begin to consider representations of comparatively small in-
tegers as sums of elements of S(k)

N . We have

Lemma 2.3. [1, αNk] ∈ S(k)
N (I(k)

N ) where I
(k)
N = Nk + α− 2.

P r o o f. If M ≤ αNk − 1, then we can write M = Nkx + y with 0 ≤
y ≤ Nk − 1 and x < α. It follows that M is a sum of x + y ≤ Nk + α − 2
elements of S(k)

N . If, however, M = αNk, clearly M ∈ S(k)
N (α).

Lemma 2.4. (αNk, (α + 1)Nk) ∈ S
(k)
N (E) where E = max{α + β − 1,

Nk − β}.
P r o o f. The integers αNk, αNk+1, . . . , αNk+β−1 are in S(k)

N (α+β−1)
while αNk+β = (N+1)k, . . . , αNk+Nk−1 = (N+1)k−β+Nk−1 belong
to S(k)

N (Nk − β). Since (α+ 1)Nk ∈ S(k)
N (α+ 1) and β ≥ 2 via Lemma 2.1,

we are done.

The beginning of our ascent argument, following Dickson [6], lies in

Lemma 2.5. If p and L are positive integers with p ≥ N and (L,L +
pk) ∈ S(k)

N (m), then (L,L+ 2pk) ∈ S(k)
N (m+ 1).

P r o o f. Let M be an integer satisfying

L+ pk ≤M < L+ 2pk .

Then M − pk ∈ S(k)
N (m) and so M ∈ S(k)

N (m + 1). If M ∈ (L,L + pk), the
result is trivial.

By induction on n, we readily obtain

Lemma 2.6. If p, n and L are positive integers with p ≥ N and (L,L+
pk) ∈ S(k)

N (m), then (L,L+ pk(n+ 1)) ∈ S(k)
N (m+ n).

Taking L = αNk, p = N , n = α + 1 and applying Lemmas 2.4 and 2.6
we conclude, from nNk > (N + 1)k,

Lemma 2.7. (αNk, αNk + (N + 1)k) ∈ S(k)
N (E + α).
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If we now successively apply Lemma 2.7 and Lemma 2.6 with p = N +1,
N + 2, . . . , k and

n =
[(

N + 2
N + 1

)k]
,

[(
N + 3
N + 2

)k]
, . . . ,

[(
k + 1
k

)k]
,

it follows that

Lemma 2.8.

(αNk, αNk + (k+ 1)k) ∈ S(k)
N

(
E+α+

[(
N + 2
N + 1

)k]
+ . . .+

[(
k + 1
k

)k])
.

Our main ascent relies upon the following result, which is essentially a
variant of a theorem of Dickson [5, Theorem 12].

Proposition 2.9. Let l and L0 be integers with

L0 > l ≥ (N + 1)k, v = (1− l/L0)/k and vkL0 ≥ 1 .

If for t ∈ N we define Lt by

(8) logLt =
(

k

k − 1

)t
(logL0 + k log v)− k log v

and if (l, L0) ∈ S(k)
N (m), then (l, Lt) ∈ S(k)

N (m+ t).

P r o o f. We suppose (l, L0) ∈ S
(k)
N (m) and that n ∈ (l, L1). Now for

t = 1, (8) is equivalent to

L1 = (vL0)k/(k−1)

and hence we may use Lemma 2.2 to find ik ∈ S(k)
N such that

l ≤ n− ik < l + kn(k−1)/k < l + kvL0 .

Since v = (1−l/L0)/k, we have l ≤ n−ik < L0, whence (l, L1) ∈ S(k)
N (m+1).

In general, (8) yields

Lt+1 = (vLt)k/(k−1)

and the result obtains by induction upon t.

3. Proof of Theorem 1.1. Assume N ≥ 4. To apply the preceding
proposition, we let l = (N + 1)k and L0 = (k + 1)k. The condition that
vkL0 ≥ 1 is then equivalent to

N ≤ (k + 1)(k−1)/k − 1 .

If we choose t large enough that

(9) Lt > max{N8k3
, e446k6} = e446k6
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then Theorem 1.2 gives [Lt,∞) ∈ S(k)
N (6k log k + (3 log 6 + 4)k). Now from

v = (1− l/L0)/k, we may write

logLt =
(

k

k − 1

)t
(k log(k + 1)− k log v)− k log v

>

(
k

k − 1

)t(
k log

(
k + 1
k

))
.

Since

log
(
k + 1
k

)
>

1
k
− 1

2k2 ≥
11
12k

for k ≥ 6 ,

this implies

logLt >
11
12

(
k

k − 1

)t
.

If we note that

log
(

k

k − 1

)
>

1
k − 1

− 1
2(k − 1)2 >

1
k
,

we obtain (9) provided

t > k

(
6 log k + log

(
5352
11

))
.

Taking t = [6k log k+7k], then, yields the desired conclusion. By Lemma 2.3,
it remains to show for this choice of t that (αNk, Lt) ∈ S(k)

N (I(k)
N ) (we have

[Lt,∞) ∈ S
(k)
N (I(k)

N ) because 6k log k + (3 log 6 + 4)k < I
(k)
N for 4 ≤ N ≤

(k + 1)(k−1)/k − 1).
By Lemma 2.8 and Proposition 2.9, we have

(αNk, Lt) ∈ S(k)
N

(
E + α+ t+ (k −N)

[(
N + 2
N + 1

)k])

and this follows from

(10) E + α+ t+ (k −N)
[(

N + 2
N + 1

)k]
≤ I(k)

N = Nk + α− 2 .

If E = α+ β − 1, then (10) becomes

(11) α+ β + t+ (k −N)
[(

N + 2
N + 1

)k]
−Nk ≤ −1

while E = Nk − β implies the inequality

(12) t+ (k −N)
[(

N + 2
N + 1

)k]
− β ≤ −2 .
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To prove that (11) and (12) obtain for all N and k satisfying

4 ≤ N ≤ (k + 1)(k−1)/k − 1

we employ Theorem 1.3 to deduce

3−k < β/Nk < 1− 3−k .

The left hand side of (11) is then bounded above by
(
N + 1
N

)k
−
(
N

3

)k
+ 6k log k + 7k + (k −N)

(
N + 2
N + 1

)k

and hence is ≤ −1 for N and k unless

(i) N = 4, 6 ≤ k ≤ 34, or
(ii) N = 5, 8 ≤ k ≤ 11.

Additionally, we bound the left hand side of (12) by

6k log k + 7k + (k −N)
(
N + 2
N + 1

)k
−
(
N

3

)k
,

which is ≤ −2 for all values of N and k under consideration except

(iii) N = 4, 6 ≤ k ≤ 32, and
(iv) N = 5, 8 ≤ k ≤ 11.

Checking that (11) and (12) hold for the cases (i), (ii) and (iii), (iv)
respectively, we conclude the proof of the theorem by noting that M =
αNk − 1 6∈ S(k)

N (Nk + α− 3) and thus

Nk +
[(

N + 1
N

)k]
− 2 ≤ gN (k) ≤ Nk +

[(
N + 1
N

)k]
− 2 .

4. Concluding remarks. If N = 3 and k ≥ 6, we can show that

g3(k) = 3k + [(4/3)k]− 2

provided

(13) ‖(4/3)k‖ > (9/4)−k

(in general, we require only
∥∥∥∥
(
N + 1
N

)k∥∥∥∥ >
(

N2

N + 1

)−k
,

which is rather weaker than Theorem 1.3). Though we have (13) for all
but finitely many k by Mahler’s result, it seems difficult to prove effective
bounds approaching the above in strength (see Baker and Coates [1] for the
only known nontrivial bound in this situation). As mentioned previously,
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the case N = 2 (the ideal Waring problem) also remains open. The best
effective result for ‖(3/2)k‖ is due to Dubitskas, who proved

Theorem 4.1 (Dubitskas [7]). There is an effectively computable k0

such that if k ≥ k0, then

‖(3/2)k‖ > (1.734)−k .

Unfortunately, this falls rather short of the desired lower bound of
(4/3)−k.
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