ACTA ARITHMETICA
LXVL2 (1994)

An ideal Waring problem with restricted
summands

by

MicHAEL A. BENNETT (Waterloo, Ont.)

1. Introduction. If we define g(k) to be the order of the set {1%,2% ...}
as an additive basis for the positive integers, then the ideal Waring problem
is to show that

(1) g(k) = 2" +(3/2)"] -2

for all k € N ([z] is the integer part of z). By work of Mahler [9], this
holds for all but finitely many k, but the result is ineffective and does not

yield a bound upon these exceptional values. Computations by Kubina and
Wunderlich [8], however, have shown (1) to obtain for all £ < 471600 000.

We consider representations of positive integers as sums of elements of
k
S& = (1%, N* (N + 1)*,...}

where N > 2 is an integer. A theorem of Rieger [10] gives that S](\]f) forms
an additive basis for N for any natural number k. If we let gn (k) denote the
order of this basis (so that g2(k) = g(k)), then the aim of this paper is to
prove an analog of (1). To be precise, we have

THEOREM 1.1. If 4 < N < (k4 1)k=D/k _ 1, then

gn(k) = N* + K‘]\r;lﬂ -2.

This follows from two results of the author, namely

THEOREM 1.2 (Bennett [2]). Suppose k > 6 and M > ¢*6%° qre positive
integers. Then there exist s z'ntegers3 r1, To, ..., Ts, where s < 6klogk +
(3log 6 + 4)k, such that z; > MY ®*) for i =1,2, ..., s and
k

s -

M=af+25+. . +2
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THEOREM 1.3 (Bennett [3]). Define ||z|| = minyez |z —M|. If 4 < N <
k- 3% then
N+1\
N

The first of these is essentially a slight generalization of Vinogradov’s
earliest upper bound for G(k) in the standard Waring problem (see [11]).
Since its proof entails making only minor modifications to a well known
argument (to compensate for the restriction to kth powers of integers > N),
we will not duplicate it here. We use this rather old fashioned approach
instead of later versions of order 3klogk or 2klogk because these induce
a lower bound for M which is too large to be practical for our purposes
(though they increase the bound for z;). The difficulty chiefly arises from
the size of the implied constant in

n(a) < ¢°

> 37k,

where n(a) is the number of solutions to the congruence
v¥ = amod ¢

for v and a integers in [0,q — 1].

The second theorem we use is an effective sharpening of a result of Beuk-
ers [4] on fractional parts of powers of rationals. It utilizes Padé approxi-
mation to the polynomial (1 — 2)* and some estimates on primes dividing
binomial coefficients.

2. Dickson’s ascent argument. We adopt the notation

o= [(50)] s v [(REY]

Suppose N < (k + 1)*=D/F — 1 and write [a,b] € Sj(\f)(m) (or (a,b) €
S](\f) (m)) if every integer in [a,b] (respectively (a,b)) can be written as a
sum of at most m elements of SJ(\];) (where we allow repetitions). Following
Dickson [6], we count the number of elements of Sy (k) required for repre-
sentations of “small” integers before applying an ascent argument to enable
the use of Theorem 1.2.

Before we begin, we need a pair of preliminary lemmas.

LEMMA 2.1. If N, k> 2 and M are integers then
(N +1)* = MN* =1
has only the solutions N =2 and k=2 or 4.
Proof. Suppose that
(2) (N +1)*=MN* +1
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where N > 2 and k£ > 2 (but not N = k = 2). If k is even, then we may
write

(3) (N +1)*2 —1)((N + 12 +1) = MN*

and so conclude if N is odd that N* divides (N 41)*/2—1. Since this implies
N? < N + 1, it contradicts N > 2. If, however, N is even, then we have

(4) N¥[2((N 4+ 1)%2 1) if N=0mod4
or
(5) NF[2F(N+1)*2 —1) if N=2mod 4.

From (4), we have N? < 2(N + 1), which contradicts N = 0 mod 4 while
(5) implies that N = 2. Since 3 belongs to the exponent 2¥~2 modulo 2%,
we must have 2°~2 dividing k, so that k < 4.

It remains only to consider odd k. We can write, from (2),

(6) zk: <l;> N = MNF*

i=1
and proceed via induction, proving that ordy (k) — oo, thus contradicting
any a priori upper bound for k. From (6), we clearly have N |k and if we
suppose that N®|k, then since

ord, <k> >ord,k —ord,i (p prime)
i
we have

k
ordy < > >a— mz‘lx (ordp1).
i i
pI())dd

It follows that

k )
0TdN<<Z.>NZ> >a— max (ord, i) + 4
p:lZ)Zid

ordN<<];>Ni> >a+2.

We conclude, then, that N1 |k as required and hence (6) has no solutions
for k odd. m

We will also use

and so if i > 2,

LEMMA 2.2. If n and | are integers with n > 1 > (N + 1)* then there
is an element of S](\f), say i*, such that

(7) I <n—i* <l+knt=D/k,
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Proof. Suppose first that n > [+ N* and choose i such that i* <n—1 <
(i 4+ 1)%. Then i* € 5’](\’;) and since, by calculus,
n—1—i* <k(n—1)FD/k < ppk-1/k

we have (7). If, however, n < [ + N* take i = 1 and write n = [ +m (so
that 1 < m < N*¥). We conclude

k(L +m)F=D/F S (N 4 1)kt (N +1)F.

TNA+1L

Since k > N + 1, this is at least (N + 1)* and hence greater than m, as
desired. m

Let us now begin to consider representations of comparatively small in-
tegers as sums of elements of S](\';). We have
LEMMA 2.3. [1,aN*] € SJ(\I;)(I](\I;)) where I](\?) =NF+a-—2.

Proof If M < aN* — 1, then we can write M = N*z 4+ y with 0 <
y < N*¥ —1 and z < a. It follows that M is a sum of x +y < N*¥ +a — 2

elements of S](\I;). If, however, M = aN*, clearly M ¢ Sj(f)(a). n

LEMMA 2.4. (aN*, (a + 1)N¥) € S](\f)(E) where E = max{a +  — 1,
Nk — 3}.

Proof. The integers aN*, aN¥41, ..., aN*+3—1 arein S](\’f)(a—i—ﬂ—l)
while aN*+38 = (N+1)*, ..., aN*¥+N¥—1 = (N+1)¥ — 3+ N* —1 belong
to S’](\’;)(Nk — ). Since (o + 1)N* € S](\lf)(a +1) and 8 > 2 via Lemma 2.1,
we are done. m

The beginning of our ascent argument, following Dickson [6], lies in
LEMMA 2.5. If p and L are positive integers with p > N and (L, L +
k) e Sj(\l;)(m), then (L, L+ 2p*) € S](\?) (m+1).
Proof. Let M be an integer satisfying
L+p" <M< L+2p".

Then M —p* € S](\]f)(m) and so M € S](\];)(m +1). If M € (L, L + p*), the
result is trivial. m

By induction on n, we readily obtain
LEMMA 2.6. If p, n and L are positive integers with p > N and (L, L+
k) e S](\l;)(m), then (L, L+ p*(n+1)) € S](\?) (m+mn).

Taking L = aN*, p = N, n = a+ 1 and applying Lemmas 2.4 and 2.6
we conclude, from nN* > (N + 1),

LEMMA 2.7. (aN*,aN* + (N + 1)%) € S$(E + a).



Ideal Waring problem 129

If we now successively apply Lemma 2.7 and Lemma 2.6 with p = N +1,
N+2,..., kand

C[(N+2\T [N 3 k+1\"
"= N+1 "I\N+2 B k ’
it follows that

LEMMA 2.8.

(aN*, aN* + (k+1)%) € S (E—l—a+ [(Mﬂ o+ Kl{;zlﬂ) .

Our main ascent relies upon the following result, which is essentially a
variant of a theorem of Dickson [5, Theorem 12].

PROPOSITION 2.9. Let | and Ly be integers with
Lo>1>(N+1F  v=(01-1/Ly)/k and v*Lo>1.
If for t € N we define L; by

N
(8) loth—<k_1>(long—i—klogv)—klogv

and if (I,Lo) € SW(m), then (I, L;) € S\ (m +1).
Proof. We suppose (I, Lg) € S](\],c)(m) and that n € (I,L1). Now for
t =1, (8) is equivalent to
Ly = (vLo)*/ =1
and hence we may use Lemma 2.2 to find i* € S](\?) such that
I<n—i* <l+kn* Dk <4 koL,.

Since v = (1—1/Lg)/k, we have | < n—i* < Lo, whence (I, L;) € S](\I;)(mjtl).
In general, (8) yields
Liyy = (vLy)¥/ Y

and the result obtains by induction upon ¢. =

3. Proof of Theorem 1.1. Assume N > 4. To apply the preceding
proposition, we let I = (N + 1)¥ and Ly = (k 4+ 1)*. The condition that
v*Lo > 1 is then equivalent to

N < (k+1)k=D/k _q,
If we choose t large enough that

(9) L; > maX{NSk:?” e446k6} _ pA46K°
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then Theorem 1.2 gives [L;,0) € 5’](\’;)(6/{ logk + (3log 6 4 4)k). Now from
v=(1-1/Lg)/k, we may write

(o) (1)

k1) 1 1 _ 11
og( ) Lo Lo 1 ks
Og<k>>k ok = 12k T FED

t
log Ly = <k i 1) (klog(k+1) — klogv) — klogwv

Since

this implies
1/ kY
log L — | — .
8%t > 13 <k: - 1>
If we note that

lo k > L — L >l
B\k—1) k-1 2-12 &

we obtain (9) provided

2
t > k:<610gk:—|—log<5:1))i>>.

Taking t = [6k log k+T7k], then, yields the desired conclusion. By Lemma 2.3,
it remains to show for this choice of ¢ that (aN*, L;) € S](\];) (I](\];)) (we have
[L¢,00) € 5’](\’;)([](\’,“)) because 6klogk + (3log6 + 4)k < I](f) for 4 < N <
(k4 1)B=D/k 1),
By Lemma 2.8 and Proposition 2.9, we have
k
N +2
N*. L W(E t+(k—N) | —=
(aN" L) € Sy +a+t+( ) N1l
and this follows from
N +2
N+1

If E=a+ (-1, then (10) becomes

(10) E—i—a—i—t—i—(k:—N)[( ﬂg[}v’“)—z\r’wra—z.

(11) a+ﬂ+t+(k—N)KW>k]—N’“g—1

while £ = N¥ — 8 implies the inequality

(12) t+(k—N)[<Mﬂ _p<-2.
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To prove that (11) and (12) obtain for all N and k satisfying
4<N<(k+1)EDF_q
we employ Theorem 1.3 to deduce
37F < B/NF <1 -37F,
The left hand side of (11) is then bounded above by

N+1\" N\ N +2\
) (2 1 _ Ny =22
( v > <3> +6klogk + Tk + (k )< +1)

and hence is < —1 for N and k unless
(i) N=4,6<k<34,or
(i) N=5,8 <k <11.
Additionally, we bound the left hand side of (12) by
k k
N +2 N
1 —N){——— ] — | =
6klogk + Tk + (k )<N+1> <3> ,
which is < —2 for all values of NV and k under consideration except
(iii) N =4, 6 < k <32, and
(iv) N=5,8 <k <11.

Checking that (11) and (12) hold for the cases (i), (ii) and (iii), (iv)
respectively, we conclude the proof of the theorem by noting that M =
aNF —1¢ S](\],C)(]\f’C + o — 3) and thus

e (s (5]

4. Concluding remarks. If N = 3 and k£ > 6, we can show that
gs(k) = 3"+ [(4/3)"] — 2
provided
(13) 1(4/3)"]| > (9/4)~"

(in general, we require only
N+1\" (A -
N N+1 ’
which is rather weaker than Theorem 1.3). Though we have (13) for all
but finitely many k by Mahler’s result, it seems difficult to prove effective

bounds approaching the above in strength (see Baker and Coates [1] for the
only known nontrivial bound in this situation). As mentioned previously,
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the case N = 2 (the ideal Waring problem) also remains open. The best
effective result for ||(3/2)%]| is due to Dubitskas, who proved

THEOREM 4.1 (Dubitskas [7]). There is an effectively computable ko
such that if k> kg, then

1(3/2)%|] > (1.734)7*.
Unfortunately, this falls rather short of the desired lower bound of

(4/3)7"
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