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1. Introduction and notation. Let A be a finite-dimensional com-
mutative and étale algebra over K, i.e. a finite product of separable and
finite field extensions of K. With it we associate the trace form which is the
following non-degenerate quadratic form over K:

A → K, x 7→ trA/K(x2) .

It is denoted by 〈A〉. By a quadratic form over K we always mean a non-
degenerate quadratic form. We know that a quadratic form ψ over an alge-
braic number field K of dimension m ≥ 4 is isometric to a trace form of a
field extension of K if and only if the signatures of ψ are non-negative for all
real orderings of K (see [9]). Following P. E. Conner and R. Perlis [4] we call
a Witt class X of the Witt ring W (K) algebraic if X contains a trace form of
a field extension of K. Let K be an algebraic number field. The ramification
set Ram(X) of an algebraic Witt class X consists of those finite spots p of K
which are ramified in every field extension L/K with 〈L〉 ∈ X ([4], p. 166).
Let p be a finite spot of K and let κp be the residue class field of K at p.
Consider the second residue class homomorphism ∂p : W (K)→W (κp) (see
[22], 6.2.5). The investigation of trace forms over local fields gives ∂p〈L〉 = 0
for all finite spots p of K which are unramified in L/K. In [5] P. E. Conner
and N. Yui conjectured that for an algebraic class X ∈W (Q) we get

Ram(X) = {p | p is finite and ∂pX 6= 0} .
Our main result implies the validity of this conjecture. Let ΩK be the set
of spots of K.

Definition 1. Let ψ be a quadratic form over the algebraic number
field K with non-negative signatures. The ramification set Ram(ψ) of ψ is
defined by

Ram(ψ) = {p ∈ ΩK | p is finite and p is ramified

in every extension L/K with ψ 'K 〈L〉} .
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Here 'K denotes the isometry of quadratic forms over K. We call ψ
a positive form if all signatures of ψ are non-negative. In this paper we
determine the ramification set of a positive form. In particular, we prove
the following. Let ψ be a quadratic form with non-negative signatures and
let T ⊂ ΩK be a finite set of finite spots with T ∩Ram(ψ) = ∅. Then there
is a field extension L/K with ψ 'K 〈L〉 and all p ∈ T are unramified in
L/K.

The proof of this result is organized as follows. We start with forms of
dimension n = 4. Next suppose n = 2l ≥ 8. Then we can choose a quadratic
field extension F/K such that all p ∈ T are quadratically unramified in
F/K and such that there is a positive form ϕ over F with ψ 'K trF/K(ϕ)
and {P ∈ ΩF | P ∩ oK = p ∈ T } ∩ Ram(ϕ) = ∅. Hence by induction we
get the result for forms of dimension 2l. As usual, we write P | p to indicate
that P ∈ ΩF is a spot lying above p ∈ ΩK , and trF/K(ϕ) is the “Scharlau
transfer” of the form ϕ (see [22], p. 47). We treat forms of arbitrary even
dimension in a similar way. Next we consider forms of odd dimension. We use
Mestre’s deformation process. We can choose trace forms ψi of dimension
1, 2 or 4 with Ram(ψi) ∩ T = ∅ and ψ 'K ⊥ψi. Hence ψ is isometric to
the trace form of some étale algebra A = K1 × . . . ×Kν and all p ∈ T are
unramified in every field extension Ki/K. Then we prove that there is a
deformation of the algebra A leaving the trace form intact and preserving
the decomposition structure of all spots p ∈ T .

We call ψ a normal (abelian, cyclic) trace form if there is a normal
(abelian, cyclic) field extension L/K with ψ 'K 〈L〉. In [7] we determined
all normal (abelian, cyclic) trace forms of an algebraic number field. In
this paper we investigate the Galois ramification set GRam(ψ) of a normal
trace form ψ, i.e. the set of all finite spots which are ramified in every Galois
extension L/K with ψ 'K 〈L〉. In general, Ram(ψ) and GRam(ψ) coincide
if ψ is a normal trace form.

We begin by fixing our notations. Let K be an algebraic number field.
Then oK is the ring of integers of K. Let p ∈ ΩK be a spot. Then Kp is
a completion of K at p. If p is a finite spot, then vp : K → Z denotes the
normalized valuation of K defined by p. ∆p ∈ oK is an element which is
a non-square unit at p such that Kp(

√
∆p)/Kp is unramified. Let L/K be

a finite field extension and let p ∈ ΩK , P ∈ ΩL be spots with P | p. The
inertia degree of P | p is denoted f(P/p). If L/K is a Galois extension, then
we also write fp(L/K) and we set np(L/K) = [LP : Kp]. If L/K is any
finite field extension, then ΛL/K = NL/K(L∗) ·K∗2.
〈a1, . . . , an〉 denotes the diagonal form a1t

2
1 + . . . + ant

2
n. Let ψ be a

quadratic form over K. Then dimKψ is the dimension of ψ, detK ψ ∈ K∗
is its determinant. Let a, b ∈ K∗. Then (a, b)K denotes the generalized
quaternion algebra generated over K by i, j and satisfying i2 = a, j2 = b,
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ij = −ji. The class of (a, b)K in the Brauer group Br(K) of K is also
denoted by (a, b)K . Let ψ 'K 〈a1, . . . , an〉 be a diagonalization of ψ. The
Hasse invariant HKψ of ψ is defined by

HKψ =
⊗

i<j

(ai, aj)K ∈ Br(K) .

In(K) is the nth power of the fundamental ideal of W (K). The Scharlau
transfer of the one-dimensional form 〈λ〉, λ ∈ L∗, is called the scaled trace
form, and denoted by 〈L〉λ.

Again, let K be an algebraic number field and let p ∈ ΩK be a finite
spot. Hpψ ∈ {−1, 1} is the local Hasse invariant of ψ and (a, b)p denotes the
local Hilbert symbol. Let p ∈ ΩK be a real spot. Then signp ψ denotes the
signature of ψ with respect to the ordering induced by p.

2. The main results. We get the following well-known result from local
trace form considerations (see [4], I.5, II.5 or [11]). This gives the necessary
condition for p 6∈ Ram(ψ). For the convenience of the reader we sketch a
proof.

Proposition 1. Let L/K be a finite extension of algebraic number fields.

(1) Let p ∈ ΩK be a finite spot. If p is unramified in L/K, then p is
unramified in K(

√
detK〈L〉)/K and Hp〈L〉 = (2,detK〈L〉)p.

(2) Let p ∈ ΩK be a real spot. Then [LP : Kp] = 1 for all spots P ∈ ΩL
lying above p if and only if signp〈L〉 = [L : K].

P r o o f. (1) Let p ∈ ΩK . We know

〈L⊗K Kp〉 'Kp ⊥P|p〈LP〉
(see [4], I.5.1). If p is unramified in L/K, then the local extension LP/Kp is
unramified for any P ∈ ΩL lying above p. The trace form of an unramified
local extension is first determined in [11]. Let LP/Kp be an unramified local
extension of degree f . Then 〈LP〉 'Kp f · 〈1〉 if f is odd.

Let f be even. Then Kp(
√

detKp〈LP〉)/Kp is the unique unramified
extension of degree 2 and we get Hp〈LP〉 = (2,detKp〈LP〉)p (see also [8],
Theorem 1).

(2) Let p be a real spot of K. By a classical result of Sylvester we know
that the signature signp〈L〉 equals the number of spots P ∈ ΩL lying above
p and such that the local degree is 1 ([22], 3.2.6 or [23]).

We now state the main results of this paper.

Theorem 1. Let K be an algebraic number field. Let ψ be a positive
quadratic form over K of dimension ≥ 4 or let ψ 'K 〈2, 2D〉, D 6∈ K∗2

or ψ 'K 〈1, 2, D〉, D ∈ K∗. Let T ⊂ ΩK be a finite set of finite spots
with p unramified in K(

√
detK ψ)/K and Hpψ = (2, detK ψ)p. Then there
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is a field extension L/K with ψ 'K 〈L〉 and such that all spots p ∈ T are
unramified in L/K. If n = dimKψ is even, we can choose L/K such that
f(P/p) ∈ {n, n/2} for all P ∩ oK = p ∈ T . In particular ,

Ram(ψ)

= {p ∈ ΩK | p ramifies in K(
√

detK ψ)/K or Hpψ 6= (2, detK ψ)p} .
Corollary 1. The conjecture of Conner and Yui holds true.

P r o o f. If p is a non-dyadic spot, then p is unramified inK(
√

detK〈L〉)/K
and Hp〈L〉 = (2, detK〈L〉)p is equivalent to ∂p〈L〉 = 0. Hence by Theo-
rem 1 it remains to consider the prime 2. Let X ∈ W (Q) be a Witt class
with ∂2X = 0, i.e. ord2 disX is even. Choose a quadratic form ψ ∈ X
such that detQ ψ ≡ 1, 5 mod 8. Then H2ψ 6= H2(ψ ⊥ 2 · 〈1,−1〉) and
ψ ⊥ 2 · 〈1,−1〉 ∈ X. Hence we can choose ψ ∈ X such that 2 is unram-
ified in Q(

√
detQ ψ) and H2ψ = (2, detQ ψ)2. By Theorem 1 there is a field

extension L/Q such that 2 is unramified in L/Q and 〈L〉 'Q ψ ∈ X.

In the next theorem we consider the Galois ramification set of a normal
trace form. Let µd be the group of dth roots of unity.

Theorem 2. Let K be an algebraic number field and let ψ be a quadratic
form of dimension n = 2lm, m odd , over K. Let D ∈ K∗ with detK ψ ≡
D mod K∗2.

(1) Let n be odd. Then ψ is a normal trace form iff ψ is a cyclic trace
form iff ψ 'K n · 〈1〉. Then GRam(ψ) = Ram(ψ) = ∅.

(2) Let n = 2m ≡ 2 mod 4. Then ψ is a normal trace form iff ψ is a cyclic
trace form iff ψ 'K m · 〈2, 2D〉 and D 6∈ K∗2. Then GRam(ψ) = Ram(ψ).

(3) Let n = 2lm ≡ 0 mod 4 and D ∈ K∗2. Then ψ is a normal trace form
iff ψ is an abelian trace form iff signp ψ ∈ {0, n} for all real spots p ∈ ΩK .
But ψ is not a cyclic trace form. Then GRam(ψ) = Ram(ψ) = {p ∈ ΩK |
Hpψ = −1}.

(4) Let n = 4m ≡ 4 mod 8 and D 6∈ K∗2. Then ψ is a normal trace
form iff ψ is a cyclic trace form iff D = a2 + b2 with a, b ∈ K and ψ 'K
m · 〈1, D, c, c〉 for some c ∈ K∗. Then GRam(ψ) = Ram(ψ).

(5) Let n = 2lm ≡ 0 mod 8 and D 6∈ K∗2. Then ψ is a normal trace form
iff ψ is a cyclic trace form iff HKψ = (2, D)K , signp ψ ∈ {0, n} for all real
spots p ∈ ΩK and K(

√
D)/K is contained in a cyclic extension of degree 2l.

Then Hpψ = 1 for all non-dyadic spots and for all infinite spots p ∈ ΩK .
Set Tl := {p ∈ ΩK , p | 2 and p is completely non-split in K(µ2l)/K}. Then
either GRam(ψ) = Ram(ψ), or K(µ2l)/K is not cyclic, Tl = {p0} and p0

is unramified in K(
√
D)/K. Then Ram(ψ) ⊂ GRam(ψ) ⊂ Ram(ψ) ∪ {p0}.

(6) Let ψ be a normal (cyclic) trace form and let T ⊂ ΩK be a finite set
of finite spots with T ∩ GRam(ψ) = ∅. If detK ψ 6∈ K∗2 and n ≡ 0 mod 8
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suppose K(µ2l)/K is cyclic or Tl = ∅ or Tl 6⊂ T . Then there is an abelian
(cyclic) field extension L/K with ψ 'K 〈L〉 and all p ∈ T are unramified in
L/K.

3. Positive forms of even dimension. We start with forms of dimen-
sion 4.

Lemma 1. Let K be a field of char(K) 6= 2 and let f(X) = X4−2aX2 +
b ∈ K[X] be an irreducible and separable polynomial. Set L = K[X]/(f(X)).
Then

〈L〉 'K 〈1, a2 − b, ab, a(a2 − b)〉 .
Hence detK〈L〉 ≡ b mod K∗2 and

HK〈L〉 = (a,−b(a2 − b))K ⊗ ((a2 − b),−1)K .

For a proof see [4], Theorem I.10.1.

Lemma 2. Theorem 1 holds for quadratic forms of dimension 4.

P r o o f. Let ψ 'K 〈1, u, v, uvD〉 and suppose T 6= ∅. The equation

ux2
1 + vx2

2 + uvDx2
3 = D(Dx2

4 − 1)

has a solution in K since ψ is a positive form of dimension 4. The set

S = {p ∈ ΩK | p is real or p 6∈ T with Hpψ 6= (−D,−1)p}
is finite and disjoint from T . Let τ ∈ K be an element with

(1) (Dτ2 − 1)(Dx2
4 − 1) ∈ K∗2p for all p ∈ S and

(2) D(Dτ2 − 1)∆ ∈ K∗2p for all p ∈ T , where ∆ ∈ K∗ is a non-square
unit at all p ∈ T such that Kp(

√
∆p)/Kp is unramified.

Set g(X) = X2 + 2Dτ2X + Dτ2. The discriminant of g(X) satisfies
dis(g(X)) = 4Dτ2(Dτ2 − 1) ≡ ∆modKp

∗2 for all p ∈ T . Since T 6= ∅, the
polynomial g(X) is irreducible. Let g(β) = 0 and set F = K(β). By the
Hasse–Minkowski Local Global Principle 〈u, v, uvD〉 represents D(Dτ2−1).
We can choose w ∈ K∗ such that −wβ 6∈ F ∗2 and

ψ 'K 〈1, D(Dτ2 − 1), w, w(Dτ2 − 1)〉 .
Hence

h(X) = g(−X2w−1)w2 = X4 − 2Dwτ2X2 +Dw2τ2 ∈ K[X]

is irreducible. Set M = K[X]/(h(X)). From Lemma 1 we know ψ 'K 〈M〉.
The extension Kp(

√
D(Dτ2 − 1))/Kp is quadratically unramified for all p ∈

T since D(Dτ2 − 1)∆ ∈ K∗2p .
Now let p ∈ T be a non-dyadic spot which ramifies in M/K, hence

p = P2 with f(P/p) = 2. From [6], Satz 5.5(3), we know 1 = Hp〈M〉 =
−(π,−D)p, where π ∈ K is a prime at p. Hence −D∆ ∈ K∗2p for these
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spots, which gives −(Dτ2−1) ∈ K∗2p . Therefore the form 〈1, (Dτ2 − 1)〉 'Kp

〈1,−1〉 is isotropic over Kp.
Next let p ∈ T be a dyadic spot and let P ∈ ΩF , P̃ ∈ ΩM be spots

with P̃ |P and P | p. Suppose that D ∈ K∗2p and −wβ 6∈ F ∗2P . Then M
P̃

=

Kp(
√
∆,
√
z) for some z ∈ K∗p with −wβz ∈ F ∗2P . We further get 1 = Hpψ =

Hp〈M〉 = (−∆, z)p. Thus 〈1, Dτ2 − 1〉 'Kp 〈1,∆〉 represents z ∈ K∗p over
Kp.

Let p ∈ T be a dyadic spot with D∆ ∈ K∗2p . Then NF/K(−wβ) ≡
NF/K(β) = g(0) ≡ ∆modKp

∗2. Thus [M
P̃

: Kp] = 4 and M
P̃
/Kp is a cyclic

extension (see [6], Satz 2.2(3)(b)). Every square class in the kernel of the
map NFP/Kp

: F ∗P → K∗p contains some z ∈ K∗p . Hence there is some z ∈ K∗p
with −wβz ≡ ∆P modFP

∗2. We get

(z,−1)p = Hp〈FP〉−wβz ·Hp〈FP〉−wβ = Hp〈FP〉2∆P
·Hp〈FP〉−2wβ

= Hp(trFP/Kp
(〈2, 2∆P〉)) ·Hp〈MP̃

〉 = 1 ,

since M = F (
√−wβ) and trFP/Kp

(〈2, 2∆P〉) is the trace form of the unique
unramified extension of Kp having degree 4. Thus 〈1, Dτ2 − 1〉 'Kp 〈1, 1〉
represents z ∈ K∗p over Kp.

Hence 〈1, Dτ2 − 1〉 represents some z ∈ K∗ with

(1) vp(z) is odd, if p ∈ T is a non-dyadic spot which ramifies in M/K,
(2) z ∈ K∗2p if p ∈ T is unramified in M/K,
(3) −wβz ∈ FP

∗2, if p is a dyadic spot with D ∈ K∗2p , −wβ 6∈ FP
∗2 and

p ramifies in M/K and
(4) FP(

√−wβz )/Kp is unramified of degree 4 if D∆ ∈ K∗2p and p ∈ T
is a dyadic spot which ramifies in M/K.

Hence 〈w,w(Dτ2 − 1)〉 'K 〈zw, zw(Dτ2 − 1)〉. Now

f(X) = X4 − 2Dwzτ2X2 +Dw2z2τ2 ∈ K[X]

defines the desired field extension of degree 4.

Let F/K be a finite field extension of algebraic number fields with
[F : K] = m. M. Krüskemper [16] investigated the transfer of quadratic
forms. He gave sufficient conditions for a positive quadratic form ψ of dimen-
sion nm, n ≥ 3, to be the transfer of a positive form ϕ over F . The proof of
the next result follows the lines of [16], Lemma 7, and [15], Lemma 1, where
a similar result is proven without taking care of the ramification of primes.
We construct the field extensions with the help of Grunwald’s Theorem.
This simplifies some of Krüskemper’s original proofs.

Proposition 2. Let ψ be a positive quadratic form of dimension mn,
n ≡ 0 mod 4, over the algebraic number field K. Let T ⊂ ΩK be a finite set
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of finite spots which are unramified in K(
√

detK ψ)/K and such that Hpψ =
(2, detK ψ)p. Let F/K be a Galois extension of degree m with detK ψ ∈
ΛF/K , signp〈F 〉 = m for all real spots p ∈ ΩK and fp(F/K) = m for all
p ∈ T . Suppose, further , that T contains no dyadic spot if m is even and
m 6= 2. Then there is a positive quadratic form ϕ over F with

(1) ψ 'K trF/K(ϕ) and
(2) all P ∈ ΩF with P ∩ oK = p ∈ T are unramified in F (

√
detF ϕ)/F

and we get HPϕ = (2, detF ϕ)P for these spots.

P r o o f. Let TF be the set of spots P of F for which P ∩ oK = p ∈ T .
First let ϕ be an arbitrary quadratic form of even dimension over F such
that all P ∈ TF are unramified in F (

√
detF ϕ)/F . A manipulation with

Hasse invariants and Hilbert symbols implies Hpψ = HPϕ for all p ∈ T ,
P ∈ TF , P ∩ oK = p (use [6], Satz 0.6 and Satz 3.9). Thus we only have to
prove that there is a positive form ϕ over F with ψ 'K trF/K(ϕ) and all
P ∈ TF are unramified in F (

√
detF ϕ)/F .

First let ψ be a torsion form. Let m be even. Then detK ψ is totally
positive, hence a sum of squares. Since F/K is a Galois extension with
detK ψ ∈ ΛF/K , there is a totally positive element λ′ ∈ F with NF/K(λ′) ≡
detK ψ mod K∗2 (apply [16], Proposition 7(b)). We can choose some totally
positive z ∈ K such that zλ′∆P ∈ FP

∗2 or zλ′ ∈ FP
∗2 for all P ∈ TF . Note

that T contains no dyadic spots if m 6= 2. Set λ = z · λ′. If m is odd, set
λ = detK ψ. Hence NF/K(λ) ≡ detK ψmodK∗2, λ is totally positive and all
P ∈ TF are unramified in F (

√
λ)/F . Now ψ − trF/K(〈1,−λ〉) is a torsion

form in I2(K). By a result of Leep and Wadsworth (see [18], Theorem 1.11,
resp. [14], Theorem 1.2) there is a torsion form % ∈ I2(F ) with

trF/K(%) = ψ − trF/K(〈1,−λ〉) .
Of course, the torsion form % ⊥ 〈1,−λ〉 is a positive form with

detF (% ⊥ 〈1,−λ〉) ≡ λ ≡ 1, ∆P modFP
∗2

for all P ∈ TF .
Finally, let ψ be an arbitrary form for which the condition of the propo-

sition holds. We can choose a form % over F such that

(1) dimF % ≡ 0 mod 4,
(2) 0 ≤ signP % ≤ n for all real spots P ∈ ΩF ,
(3)

∑
P|p signP % = signp ψ for all real spots p ∈ ΩK ,

(4) all P ∈ TF are unramified in F (
√

detF %)/F and HP% = (2, detF %)P,
where detF % ∈ FP

∗2 iff detK ψ ∈ K∗2p , P | p.

Thus by [22], 3.4.5, trF/K(%)− ψ is a torsion form with

detK(trF/K(%)− ψ) ≡ NF/K(detF %) · detK ψ ≡ 1 modKp
∗2
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and

Hp(trF/K(%)− ψ) = Hp(trF/K(%)) ·Hp(−ψ) · (NF/K(detF %), detK ψ)p

= HP% ·Hpψ = (2, detF %)P · (2, detK ψ)p = 1

for all p ∈ T . We get detK(trF/K(%) − ψ) ∈ ΛF/K . By the above, there is
a torsion form τ over F with trF/K(τ) = trF/K(%) − ψ and all P ∈ TF are
unramified in F (

√
detF τ)/F and HPτ = (2, detF τ)P for these spots. The

Witt class of %− τ can be represented by a form ϕ of dimension n (see [22],
6.6.6). Hence ψ 'K trF/K(ϕ). It follows that detF ϕ ≡ detF % · detF τ mod
F ∗2 and HPϕ = HP(% − τ) = HP% · HP(−τ) · (detF %, detF (−τ))P =
(2, detF ϕ)P for all P ∈ TF .

Lemma 3. Theorem 1 holds for positive forms of dimension n = 2lm, m
odd , l ≥ 2.

P r o o f. First let m = 1. We proceed by induction on l. If l = 2, use
Lemma 2. Let l ≥ 3. We can choose some totally positive P ∈ oK such that

(1) Kp(
√
P )/Kp is quadratic unramified for all p ∈ T and

(2) (detK ψ, P )K = 0, hence detK ψ ∈ ΛF/K , where F = K(
√
P ).

Now apply Proposition 2. Next let m be an arbitrary odd number. By the
Theorem of Grunwald–Hasse–Wang [21], Korollar 6.9, we can choose some
cyclic field extension F/K of degree m with fp(F/K) = m for all p ∈ T .
Now apply Proposition 2 again.

We have to consider forms of dimension n ≡ 2 mod 4 separately since
forms of dimension 2 are somewhat exceptional. A binary quadratic form
ψ is a trace form iff ψ 'K 〈2, 2D〉 with D 6∈ K∗2. Based on a result of
E. Bender [1], M. Krüskemper gave a local global principle for scaled trace
forms of odd dimension over an algebraic number field (see [16], Theorem 1).
We give a stronger version of this result.

Proposition 3. Let F/K be an extension of algebraic number fields
of odd degree m. Let ψ be a quadratic form of dimension m over K with
|signp ψ|≤signp〈F 〉 for all real spots p∈ΩK and Hpψ=(detK ψ,−1)(m+1)/2

p

for all non-dyadic spots p ∈ ΩK for which there is only one spot of F lying
above p. Let S be a finite set of finite spots containing all dyadic spots and all
non-dyadic spots which ramify in F/K or in K(

√
detK ψ)/K or for which

Hpψ 6= (detK ψ,−1)(m+1)/2
p .

(1) Then for every p ∈ S there is some λp ∈ F ∗ with 〈F 〉λp 'Kp ψ.
(2) Suppose that for every p ∈ S there is some λp ∈ K∗ with 〈F 〉λp 'Kp

ψ. Then there is some λ ∈ F ∗ with ψ 'K 〈F 〉λ and λ · λp ∈ FP
∗2 for all

P ∈ ΩF with P ∩ oK = p ∈ S.
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P r o o f. (1) Let FP/Kp be an extension of non-dyadic fields with [FP :
Kp] = m. Then Hp〈FP〉λ = (detKp〈FP〉λ,−1)(m+1)/2

p (see [6], Satz 4.2). If
p is a finite spot which splits over F , then use [16], Lemma 6. If p does
not split over F , apply [2], Lemma 3, for dyadic spots, and note that 〈F 〉λ,
λ = detK〈F 〉 · detK ψ and ψ have the same determinant.

(2) See [16], Proofs of Proposition 1 and Theorem 1.

Lemma 4. Theorem 1 holds for quadratic forms ψ of dimension n =
2m ≡ 2 mod 4.

P r o o f. By the above we can assume n 6= 2. Assume further T 6= ∅.
Choose some non-dyadic spot p0 ∈ ΩK with ∂p0ψ = 0, p0 6∈ T and −1 ∈
K∗2p0

. Let S ⊂ ΩK be the set of non-dyadic spots with ∂pψ 6= 0. Then S is
a finite set with S ∩ T = ∅. Because of the Theorem of Grunwald–Hasse–
Wang [21], Korollar 6.9, there is a cyclic field extension F/K of degree m
such that

(1) fp(F/K) = m for all p ∈ T ,
(2) np(F/K) 6= m for all p ∈ S,
(3) np0(F/K) = 1.

Let TF be the set of spots P of F with P ∩ oK = p ∈ T . Then signp(〈2〉 ⊗
ψ−〈F 〉) = signp ψ−m and signp ψ ≥ 0 gives |signp(〈2〉⊗ψ−〈F 〉)| ≤ m for
all real p ∈ ΩK . Therefore there is a form ϕ of dimension m over K which
is Witt-equivalent to 〈2〉 ⊗ ψ − 〈F 〉 (see [22], 6.6.6). Thus ψ 'K 〈2〉 ⊗ ϕ ⊥
〈F 〉2. Let p be a non-dyadic spot with (detKϕ,−1)(m+1)/2

p 6= Hpϕ. Then
vp(detK ϕ) ≡ 1 mod 2 or Hpϕ = −1. We know Hpϕ = Hp(〈2〉 ⊗ ψ) =
(2, detKψ)p·Hpψ. Hence p ∈ S. But np(F/K) 6= m for these spots. Therefore
we can choose some λp ∈ F ∗ with 〈F 〉λp 'Kp ϕ for these spots.

Let p ∈ T . Set λp = 1 if detK ψ ∈ K∗2p and λp = ∆P if detK ψ 6∈ Kp
∗2,

where P ∈ TF is the unique spot lying above p ∈ T . Then 〈F 〉λp 'Kp ϕ
(use [6], Satz 3.9(3)).

Fix some P0 ∈ ΩF lying above p0. If ψ 'K n · 〈1〉, let a ∈ F ∗ be an
element with vP0(a) ≡ 1 mod 2 and a ∈ FP

∗2 for all P 6= P0, P | p0. Set
λp0 = a ·σ(a) with 〈σ〉 = G(F/K). Then λp0 6∈ F ∗2 and 〈F 〉λp0

'Kp0
m · 〈1〉

(see proof of [15], Proposition 2).
By Proposition 3 there is some λ ∈ F ∗ with ϕ 'K 〈F 〉λ and λ ∈ FP

∗2

if detK ψ ∈ K∗2p , resp. λ · ∆P ∈ FP
∗2 if detK ψ 6∈ Kp

∗2 for all p ∈ T and
λ · λp0 ∈ F ∗2P0

if ψ 'K n · 〈1〉. Thus ψ 'K trF/K(〈2, 2λ〉).
Now λ ∈ F ∗2 gives ψ 'K trF/K(〈2, 2〉) 'K n · 〈1〉, which contradicts

λ ≡ λp0 6≡ 1 mod F ∗2P0
. Set L = F (

√
λ). Then all P ∈ TF are unramified in

L/F .
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4. Positive forms of odd dimension. Now we treat positive forms
of odd dimension. We modify our original proof of [9], resp. [10], which is
based on a deformation process of Mestre [20]. We first recall this result.

Proposition 4. Let K be an algebraic number field. Let f1(X), . . . , fs(X)
∈ oK [X] be monic polynomials such that f(X) = f1(X) . . . fs(X) has odd
degree m ≥ 3. Then there are monic polynomials p1(X), . . . , ps(X) ∈ oK [X]
and a polynomial q(X) ∈ oK [X] such that

(1) K[X]/(fi(X)) ' K[X]/(pi(X)) for i = 1, . . . , s.
(2) deg(q(X)) < deg(f(X)).
(3) p(X) = p1(X) . . . ps(X) and q(X) are relatively prime. Hence

F (T,X) = p(X)− Tq(X) ∈ oK [T,X]

is irreducible.
(4) For every τ ∈ K the trace forms of K[X]/(f(X)) and K[X]/(F (τ,X))

over K are isometric.

P r o o f. See [20], Proposition (1) and (2), and [9], Theorem 2.

We need this result in the following version.

Proposition 5. Let K be an algebraic number field. Let f(X) ∈ K[X]
be a monic separable polynomial of odd degree m ≥ 3. Let T ⊂ ΩK be a
finite set of finite spots. There is a polynomial F (T,X) ∈ oK [T,X] and
there are infinitely many elements τ ∈ K such that F (τ,X) ∈ oK [X] is a
monic irreducible polynomial with the following properties:

(1) 〈K[X]/(f(X))〉 'K 〈K[X]/(F (τ,X))〉.
(2) Let p ∈ T and let f(X) = f1(X) . . . fr(X) be the decomposition of

f(X) into monic prime factors in Kp[X]. Then F (τ,X) factors in Kp[X]
as F (τ,X) = F1(X) . . . Fr(X) and

Kp[X]/(fi(X)) ' Kp[X]/(Fi(X)) for i = 1, . . . , r ;

i.e. f(X) and F (τ,X) have the same ramification structure for all p ∈ T .

P r o o f. Let p(X), q(X) ∈ oK [X] be as in Proposition 4. Obviously, the
ramification structures of f(X) and of p(X) coincide for all spots p ∈ ΩK .
Let π ∈ oK be an element with vp(π) > 0 for all p ∈ T . We can choose some
s ∈ N such that F (πsT,X) has the following property.

For every τ ∈ oK the polynomials F (πsτ,X) and p(X) (hence F (πsτ,X)
and f(X)) have the same ramification structure for all p ∈ T . Use [3], IV § 3
Satz 1 and Bemerkung and [17], Proposition 4, or apply [19], Exercise 24.22.
Then use Hilbert’s Irreducibility Theorem.

Lemma 5. Let K be an algebraic number field. Let ψ be a positive
quadratic form of dimension m ≥ 5 over K. Let T ⊂ ΩK be a finite set



Ramification set of a positive quadratic form 143

of finite spots of K. There are elements a1, . . . , as ∈ oK , s = [(m − 5)/2],
and there is a positive quadratic form ϕ of dimension 4 over K such that

(1) ψ 'K ϕ ⊥ 〈2, 2a1〉 ⊥ . . . ⊥ 〈2, 2as〉 if m is even and
(2) ψ 'K ϕ ⊥ 〈1〉 ⊥ 〈2, 2a1〉 ⊥ . . . ⊥ 〈2, 2as〉 if m is odd ,

and for all p ∈ T we get ai ∈ K∗2p , detK ψ · detK ϕ ∈ K∗2p and Hpψ = Hpϕ.

P r o o f. If m is odd, then ψ 'K ψ̃ ⊥ 〈1〉 with some positive form ψ̃.
Hence assume m is even. By the Approximation Theorem we can choose
some a ∈ K∗ such that

(1) a ∈ K∗2p if p ∈ T .
(2) Let p ∈ ΩK be a real spot. Then a is negative at p iff signp ψ 6=

dimK ψ.

The Hasse–Minkowski Local Global Principle gives ψ 'K ψ1 ⊥ 〈a〉 with
signp ψ1 = signp ψ − signp a ≥ 0, since dimK ψ ≥ 4. By induction we get

ψ 'K ψ̃ ⊥ 〈a1, . . . , as〉, where a1, . . . , as ∈ K∗ have the properties (1) and
(2). Let p ∈ ΩK be a real spot. Then ai ∈ −p implies aj ∈ −p for m ≥ j ≥ i.
We further get signp(ψ̃ ⊥ s · 〈−2〉) ∈ {0, 2, 4}. Hence ψ̃ 'K ϕ ⊥ s · 〈2〉 with
dimK ϕ = 4 and ϕ is a positive form.

P r o o f o f T h e o r e m 1. The trace forms of dimension ≤ 3 are 〈1〉,
〈2, 2D〉 with D 6∈ K∗2 and 〈1, 2, D〉 with D ∈ K∗ (see [4], III 3.6). By
Lemmas 3 and 4 it remains to consider positive forms of odd dimension.
Then use Lemmas 5 and 2 and Proposition 5.

5. Proof of Theorem 2. In [7], Theorem 1, we classified all normal,
abelian and cyclic trace forms of an algebraic number field. Hence in view
of Proposition 1 we only have to prove (6).

(1) By the Very Weak Existence Theorem of Grunwald [12] there is a
cyclic field extension L/K of degree n with np(L/K) = 1 for all p ∈ T .
Hence all p ∈ T are unramified in L/K.

Since the compositum of unramified field extensions is an unramified
field extension we can assume n = 2l ≥ 2. Hence the proof of (2) is obvious.

(3) Because of the proof of Lemma 2 we can assume n = 2l ≥ 8.
(a) ψ ∈ I3(K). By the Theorem of Grunwald–Hasse–Wang [21], Korol-

lar 6.9, there is a Galois extension L/K with G(L/K) ' (Z2)l and such
that every p ∈ T is unramified in L/K and, for a real spot, np(L/K) = 2
iff signp ψ = 0.

(b) ψ 6∈ I3(K). We use the Very Weak Existence Theorem of Grun-
wald [12]. There is a cyclic field extension F/K of degree 2l−1 with

(1) np(F/K) = 2l−1 if Hpψ = −1,
(2) np(F/K) = 1 if p is a real spot or p ∈ T .
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Hence detK〈F 〉 6∈ Kp
∗2 ifHpψ = −1. Thus there is some a ∈ K∗ withHKψ =

(detK〈F 〉, a)K and a is negative at p iff signp ψ = 0 (see proof of Proposi-
tion 3 in [7]). Choose some totally positive b ∈ K∗ with (b, detK〈F 〉)K
= 0 and ab ∈ K∗2p for all p ∈ T . Set L = F (

√
ab).

(4) Since HKψ = (c,−1)K , we can define local extensions L(p)/Kp as
follows (see [6], Satz 3.14, 3.16):

(1) L(p) = C if signp ψ = 0 and p is a real spot; otherwise let L(p) = R,
(2) L(p)/Kp is unramified of degree 4 if D∆ ∈ K∗2p and p ∈ T ,
(3) L(p) = Kp if D ∈ K∗2p and p ∈ T ,
(4) ψ 'Kp 〈L(p)〉 where L(p)/Kp is cyclic of degree 4 if D 6∈ Kp

∗2 and
either p ∈ Ram(ψ) or p is dyadic,

(5) L(p) = Kp(
√
c) if D ∈ K∗2p and either p ∈ Ram(ψ) or p is dyadic.

These are finitely many local conditions. By [13], Korollar zu Satz 8,
the quadratic extension K(

√
D)/K is contained in a cyclic field extension

M/K of degree 4 which has the given completion at the above spots, i.e.
MP ' L(p) , P | p. Now choose a totally positive element t ∈ K∗ as follows:

(1) t ∈ K∗2p , if p ∈ T ∪ Ram(ψ) or p is dyadic,
(2) vp(t) ≡ 1 mod 2, if Hpψ 6= Hp〈M〉,
(3) vp(t) ≡ 0 mod 2 for all other spots except maybe one non-dyadic

spot p0 6∈ T ∪ Ram(ψ) with Hpψ = Hp〈M〉.

Set F = K(
√
D), M = F (

√
x+ y

√
D). Then L = F (

√
tx+ ty

√
D)

defines the desired field extension.
(5) Use [13], Korollar zu Satz 8.
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