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1. Introduction and notation. The aim of the present paper is to
develop in a unified way some analytic results for a rather general class of
L-functions. This class is defined axiomatically and the axioms are modelled
on the basic properties of the zeta and L-functions associated with algebraic
number fields and automorphic forms which appear in number theory.

A first attempt in this direction was made in Perelli [14] and Perelli–
Puglisi [15]. Here we present a more satisfactory set of axioms, and con-
centrate our investigations mainly on problems connected with the zero-free
regions and real zeros.

Special attention is given to the problem of the uniformity of the results.
Among the parameters involved in the definition of our general L-functions,
we have chosen to give uniform results only in the main parameter which
appears in the functional equation (see Section 2). This is usually the pa-
rameter which reflects the more interesting quantities connected with the
underlying algebraic structures. At the cost of complications in the details
one could obtain results similar to those in Sections 4 and 5, with complete
uniformity in all parameters.

A crucial role is played throughout the paper by the concept of irre-
ducibility and its connection with the Rankin–Selberg type convolution for
general L-functions. Apparently, in the present abstract setting the prob-
lems associated with the distribution of zeros of an L-function are closely
related to the analytic properties of the Rankin–Selberg type convolution of
the L-function itself.

We finally remark that the present paper can be viewed as a first step
toward a satisfactory establishment of the qt-principle asked for in a general
setting in Lang’s paper [9].

We will use the following basic notation. Further notation will be intro-
duced later on.

K— an algebraic number field, n = [K : Q],
p — a prime ideal of K, a — an ideal of K,
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PK = {prime ideals of K}, IK = {ideals of K},
Na — the norm of a over Q,
ζK(s) — the Dedekind zeta function of K,
ζ(s) — the Riemann zeta function,
s = σ + it,
dk(n) — the general divisor function,
|S|— the cardinality of the set S.

We will use the following notation for the Laurent expansion at s = 1:

ζ(s) =
∞∑

j=−1

rj(s− 1)j ,

ζK(s) =
∞∑

j=−1

rj(K)(s− 1)j ,

L(s,A) =
∞∑

j=−m(A)

rj(A)(s− 1)j if m(A) ≥ 1

(see Section 2 for the meaning of L(s,A) and m(A)).

2. The axioms

Definition 1. Let K be an algebraic number field, called the base field .
The class LK of general L-functions over K is defined by the following
axioms (A1)–(A4).

(A1) (Euler product with Ramanujan–Petersson condition). There exist
a positive integer M = M(A) and a sequence A = (Ap)p∈PK

of complex
square matrices of order M and with monic characteristic polynomial Pp =
PAp ∈ C[X] satisfying the following properties: there exists a finite subset
P0

K = P0
K(A) of PK such that

(i) if p ∈ PK \ P0
K then the eigenvalues χ

j
(p) = χA

j
(p) satisfy |χ

j
(p)| =

1, j = 1, . . . ,M ,
(ii) if p ∈ P0

K then the eigenvalues χ
j
(p) = χA

j
(p) satisfy 0 ≤ |χ

j
(p)| ≤

1, j = 1, . . . ,M.

We assume P0
K to be minimal, i.e. |χ

j
(p)| < 1 for some j for every

p ∈ P0
K . The prime ideals of P0

K are called exceptional primes of A.
We write Pp(X) = XM + eM−1X

M−1 + . . .+ e0, ej = eAj (p).
The general L-function L(s,A) is defined, in σ > 1, by

(2.1) L(s,A) =
∏
p

M∏
j=1

(1− χ
j
(p)Np−s)−1 .
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(A2) (Meromorphic continuation). The function L(s,A) has an analytic
continuation over C except possibly at s = 1, where it has a pole of order
m(A) ≥ 0.

(A3) (Growth condition). There exists an absolute constant 0 < δ < 1/2
such that for every ε > 0

L(s,A) �A,ε exp(exp(ε|t|)), |t| → ∞ ,

uniformly in −δ ≤ σ ≤ 1 + δ.
(A4) (Functional equation). There exists a sequence A∗ = (A∗p)p∈PK

of complex square matrices, satisfying the same kind of properties as A in
(A1), such that L(s,A∗) satisfies conditions of the same kind as L(s,A)
in (A2) and (A3). Moreover, there exist N = N(A) ∈ N, QA > 0, αi =
αi(A) ∈ R+, i = 1, . . . , N , βi = βi(A) ∈ C, i = 1, . . . , N , wA ∈ C such that

Φ(s,A) = wAΦ(1− s,A∗) ,
where

Φ(s,A) = Qs
A

N∏
i=1

Γ (αis+ βi)L(s,A) ,

Φ(s,A∗) = Qs
A

N∏
i=1

Γ (αis+ βi)L(s,A∗) .

We will denote the quantities introduced in (A1)–(A3) adding ∗ when re-
ferred to L(s,A∗). We write ∆(s) =

∏N
i=1 Γ (αis + βi) and A = A(A) =∑N

i=1 αi.

Definition 2. Let L(s,A) ∈ LK . The degree n of the base field K and
the quantities M,M∗, N,wA, αi, βi, i = 1, . . . , N, are called the parameters
of A (or of L(s,A)). The quantity QA is called the main parameter of A
(or of L(s,A)). We will denote by QK the main parameter of ζK(s). Note
that the parameters of ζK(s) are essentially reduced to n.

We will need the following fifth axiom:

(A5) (Tensor product). Let L(s,A) ∈ LK and define, in σ > 1,

L(s,A⊗A) =
∏
p

m(A)∏
i,j=1

(1− χ
i
(p)χ

j
(p)Np−s)−1 ,

L(s,A⊗A) =
∏
p

m(A)∏
i,j=1

(1− χ
i
(p)χ

j
(p)Np−s)−1 .

Then

(i) L(s,A⊗A) = P (s,A⊗A)L(s, ˜A⊗A),
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(ii) L(s,A⊗A) = P (s,A⊗A)L(s, ˜A⊗A),

where L(s, ˜A⊗A) and L(s, ˜A⊗A) belong to LK and

P (s,A⊗A) =
∏
p∈P

M(A)2∏
j=1

(1− λj(p)Np−s) ,

and similarly for P (s,A⊗A), where P = PK(A⊗A) (resp. P = PK(A⊗A))
is a suitable finite, possibly empty, subset of PK and λj(p) = λj(p,A⊗A)
(resp. λj(p,A⊗A)) are suitable complex numbers satisfying 0 ≤ |λj(p)| ≤
1. Whenever we refer to the parameters and main parameter of A ⊗ A
or L(s,A ⊗ A) (resp. A ⊗ A or L(s,A ⊗ A)) we will always mean the
parameters and main parameter of the general L-function L(s, ˜A⊗A) (resp.

L(s, ˜A⊗A)), which will be denoted, by abuse of notation, by A⊗A (resp.

A⊗A) instead of ˜A⊗A (resp. ˜A⊗A). Moreover, we assume that∑
p∈P

logNp � log(QA⊗A + 2) ,(2.2)

∑
p∈P

logNp � log(QA⊗A + 2) ,(2.3)

where the �-symbol may depend on the parameters of A⊗A (resp. A⊗A)
but not on its main parameter. We will use the notation

Q = max(QA, QA⊗A, QA⊗A, QK)

unless explicitly stated.

We need some more definitions.

Definition 3. Let L(s,A) ∈ LK satisfy (A5). We say that A (or
L(s,A)) is irreducible over K if L(s,A⊗A) has a simple pole at s = 1.

Definition 4. Let L(s,A) ∈ LK be irreducible over K. We say that

(i) A (or L(s,A)) is complex if L(s,A⊗A) is holomorphic at s = 1,
(ii) A (or L(s,A)) is real if L(s,A⊗A) has a simple pole at s = 1,
(iii) A (or L(s,A)) is totally real if Pp ∈ R[X] for every p ∈ PK .

By (2.1) we can write L(s,A) and −L′

L (s,A) as Dirichlet series over K,
i.e. in the form ∑

a∈IK

c(a)Na−s .

We will use the following notation:

L(s,A) =
∑

a∈IK

c(a,A)Na−s (σ > 1) ,
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−L
′

L
(s,A) =

∑
a∈IK

Λ(a,A)Na−s (σ > 1)

and similarly for the other functions described above. We can also write
L(s,A) and −L′

L (s,A) over Q, i.e. as ordinary Dirichlet series (see also
Remark 1(ii)), in which case we use the notation

L(s,A) =
∞∑

m=1

c(m,A)m−s (σ > 1)

and similarly for the other functions. The above notations cause no confu-
sion if L(s,A) ∈ LQ.

Definition 5. Let L(s,A) ∈ LK . We say that A (or L(s,A)) is positive
if Λ(a,A) ≥ 0 for every a ∈ IK .

R e m a r k 1 (Comments on the axioms and definitions).
(i) Given L(s,A) ∈ LK , one may consider any sequence of complex

square matrices A′ = (A′p)p∈PK
where A′p has the same eigenvalues as Ap.

Clearly A′ gives rise to the same general L-function. Hence LK may be re-
garded as the quotient of the “good sequences of complex matrices” modulo
the relation “the pth matrices have the same eigenvalues”. We have chosen
the matrix approach since it is in some sense operational, as (A5) shows.
Moreover, given L(s,A), L(s,B) ∈ LK , we write

(2.4) L(s,A+ B) = L(s,A)L(s,B) ,

(2.5) L(s,A) =
∏
p

M(A)∏
j=1

(1− χ
j
(p)Np−s)−1 .

By Lemma 1 below we have L(s,A + B), L(s,A) ∈ LK , so that LK is
closed under the “addition” and “conjugation” operations. In Section 7
we will briefly discuss some problems connected with the “tensor product”
operation, defined in general as

L(s,A⊗ B) =
∏
p

M(A)∏
i=1

M(B)∏
j=1

(1− χ
i
(p)ψj(p)Np−s)−1 ,

where χ
i
(p) are the eigenvalues of Ap and ψj(p) are the eigenvalues of Bp.

(ii) It is well known from the decomposition law in algebraic number
fields that, writing (p) =

∏s
i=1 pei

i and Npi = pfi one has
∑s

i=1 eifi = n.
Moreover, as p runs over the prime numbers, only a finite number of pi have
ei > 1. Since

(1− χXk) =
k∏

j=1

(1− χ
j
X) ,
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where χ 6= 0 and χ
j

are the k-roots of χ, given L(s,A) ∈ LK we may write,
in σ > 1,

(2.6) L(s,A) =
∏
p

nM∏
j=1

(1− χ
j
(p)p−s)−1 ,

where the χ
j
(p) are obtained from the χj(p) by taking suitable k-roots with

k ≤ n and satisfy |χ
j
(p)| = 1, j = 1, . . . , nM if p ∈ PQ \ P0

Q, |χj
(p)| ≤

1, j = 1, . . . , nM if p ∈ P0
Q, with a suitable finite subset P0

Q of PQ. It is not
difficult to describe the χ

j
(p)’s and P0

Q in terms of the χ
j
(p)’s, P0

K , n, M
and the discriminant of K. It follows from (2.6) that any L(s,A) ∈ LK can
be viewed as a general L-function over Q. The above observation holds true,
with suitable modifications, for any subfield H of K, hence if L(s,A) ∈ LK

then L(s,A) ∈ LH for every subfield H of K.
(iii) We give a brief heuristical discussion of the concept of irreducibility.

Call two general L-functions L(s,A) and L(s,B) compatible if L(s,A ⊗ B)
defined above has good analytic properties, i.e. it satisfies properties similar
to those of L(s,A ⊗ A) stated in (A5). Then, heuristically, an irreducible
general L-function is not the product of pairwise compatible L-functions.
Indeed, if

L(s,A) =
r∏

i=1

L(s,Ai)

then

L(s,A⊗A) =
r∏

i=1

L(s,Ai ⊗Ai)
r∏

i,j=1
i 6=j

L(s,Ai ⊗Aj) .

Hence L(s,A⊗A) has a pole at s = 1 of order≥ r > 1 since L(1,Ai⊗Aj) 6= 0
and L(s,Ai ⊗ Ai) are positive, and this contrasts with the definition of
irreducibility.

We remark that the irreducibility condition depends on the base field .
A typical example is the Dedekind zeta function of a quadratic field K:
ζK(s) is primitive over K but not over Q, as is easy to check. This is the
motivation for stating the axioms over general algebraic number fields.

(iv) The axiom (A5) is clearly inspired by the Rankin–Selberg convo-
lution in the theory of modular forms. At the present state of knowledge
it appears that some assumptions of the type (A5) are needed in order to
obtain zero-free regions in the general case, for instance when M ≥ 2. From
the theory of automorphic forms one sees that a perhaps more natural ob-
ject would be the symmetric product rather than the tensor product. The
introduction of the finite Euler products P (s,A⊗A) and P (s,A⊗A), and
the assumptions on them, are connected with facts like: if χ is a primitive
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Dirichlet character then χ2 is not necessarily primitive. The estimates (2.2)
and (2.3) are consistent with the classical case.

(v) Definition 4 is inspired by the classical subdivision into real and
complex characters. Since, by Lemma 1 below, L(s,A⊗A) = L(s,A⊗A) if
A is totally real, it is clear that A totally real implies A real and c(a,A) ∈ R.
Moreover, if A is complex there exist a ∈ IK such that c(a,A) ∈ C \ R.
However, if A is real we have no control over the nature of the Dirichlet
coefficients of L(s,A), in our general case.

(vi) A more natural definition of positivity for L(s,A) would be c(a,A)
≥ 0. Lemma 1 implies that c(a,A) ≥ 0 if Λ(a,A) ≥ 0, but the vice-versa
seems not to be true if M ≥ 3, at least in the general situation.

R e m a r k 2 (Relaxation of the axioms). The stated axioms are not the
weakest required in order to obtain results of the kind presented below. We
list here some possible relaxations of the axioms. We have chosen the above
axioms for sake of simplicity. We also remark that we will not use the full
force of the axioms in each of our results. Every single result could be stated
under a “minimal” set of assumptions.

(i) Here we present the general L-functions in a normalized form. Given
k > 0, one could consider L-functions satisfying a functional equation of the
form

Φ(s,A) = wAΦ(k − s,A∗)
with eigenvalues satisfying a condition of the form |χ

i
(p)| ≤ Np(k−1)/2. In

this case the absolute convergence of the Euler product is in σ > (k + 1)/2
and the possible pole is at s = (k + 1)/2. A suitable renormalization would
be needed in (A5) in the definition of L(s,A⊗A) and L(s,A⊗A), and the
growth condition should be assumed for (k − 1)/2− δ ≤ σ ≤ (k + 1)/2 + δ.

(ii) One could consider more general functional equations, of the form

Φ(s,A) = wAΨ(1− s,A∗)
with

Ψ(s,A∗) = Qs
A∗

N(A∗)∏
i=1

Γ (αi(A∗)s+ βi(A∗))L(s,A∗) .

Other poles at points s with σ ≤ 1 could be allowed. In this case problems
could arise in the proof of the zero-free regions, if such poles are “close”
to s = 1. Moreover, one could consider nonlinear Γ -factors of the form∏N

i=1 Γ (Qi(s)), Qi ∈ C[X], in the functional equation. In this case one
would be faced with functions of order greater than 1, and related additional
problems.

(iii) One could define L(s,A) by means of a sequence A = (Ap)p∈PK
of

complex square matrices of order Mp ≤ M for every prime p, with eigen-
values satisfying |χ

i
(p)| ≤ 1 for every j = 1, . . . ,Mp and p ∈ PK . We have
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chosen to use (A1) in order to give a genuine meaning of “dimension of
the Euler product” to the parameter M, which would be lost in this more
general case.

(iv) One can show that the set of axioms (A1)–(A4) is equivalent to the
set of axioms obtained replacing ε by π/2 in (A3). The proof is based on
the Phragmén–Lindelöf theorem. We have chosen to state (A3) as it is since
it applies directly in order to show that LK is closed under addition.

Since the Euler product (2.1) converges absolutely in σ > 1, we have
L(s,A) 6= 0 in σ > 1. The functional equation allows one to define, in the
usual way, the trivial zeros of L(s,A), located at poles of ∆(s), the critical
strip 0 ≤ σ ≤ 1, which contains all the other zeros of L(s,A), and the critical
line σ = 1/2. By comparing (2.1) with ζK(s)M one sees that m(A) ≤ M,
and from (2.6) we get

(2.7) |c(m,A)| ≤ dnM (m) .

3. Examples. Classical examples of general L-functions are the Rie-
mann zeta function, the Dirichlet L-functions formed with primitive charac-
ters, the Dedekind zeta function of an algebraic number field and the Hecke
L-series associated with suitable characters. Other examples, when suitably
normalized, are the zeta functions associated with the eigenfunction mod-
ular forms for SL(2,Z) and its congruence subgroups, which satisfy (A1)
by Deligne’s proof of Ramanujan’s conjecture. It is well known that all
the above examples satisfy axiom (A5). More generally, suitable classes of
L-functions associated with automorphic functions are indeed classes of
general L-functions (see Gelbart–Shahidi [3]), although examples by N.
Kurokawa cast doubts on the validity, in general, of axiom (A1)(i).

Several axiomatic treatments of L-functions exist in the literature. Here
we list some of them. First we point out the recent papers of Selberg [17]
and Duke–Iwaniec [2], the first dealing mainly with the distribution of values
of L-functions and the second with estimates of the coefficients. Kurokawa
[7] studies a very general class of Euler products. His results show that the
Ramanujan–Petersson type condition is a natural one to assume in order
to have analytic continuation of the Euler product. The problem of the
zero-free regions is treated in great generality by Moreno [13], who develops
the ideas in Chapter 2 of Deligne [1]. An axiomatic treatment of problems
concerning the distribution of zeros and values of L-functions is given by
Joyner [6]. We point out that his axioms essentially follow from ours, hence
the results stated in his book also hold for a fairly wide subclass of general
L-functions. Several properties of the coefficients of Dirichlet series with a
functional equation have been studied in a well known series of papers by
Chandrasekharan–Narasimhan and others; for recent results in this direction
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see Hafner [5]. Redmond [16] deals with explicit formulae, and Goldfeld–
Viola [4] treat the problem of averages of special values of L-functions.

Further examples of general L-functions are contained in the references
of Perelli [14].

4. The results. Before stating our results, we make two more remarks.

R e m a r k 3 (Uniformity of the results). Our results will be uniform
only in the main parameter of the general L-functions which come into
play. This means that the O,� and o symbols and the other constants
may depend, unless explicitly stated, only on the parameters (see Definition
2) and not on the other quantities involved in the definition of a general
L-function. This situation reflects the q-uniformity problem in the theory
of Dirichlet L-functions. The problem of the dependence on the base field K,
which gives rise to well-known problems even in the case of ζK(s), deserves
some further comments. All the well-known quantities connected with K,
such as the degree and the discriminant, may a priori be contained in all
the quantities used in the definition of the general L-functions. However, in
most concrete examples this is not the case. For instance, the influence of
the structure of K on the Dirichlet coefficients of L(s,A) is controlled by
n. Also, N usually depends only on n, and αi, |βi|, i = 1, . . . , N, |wA| are
often bounded by absolute constants, although applications of L-functions
are known in which uniformity in the αi’s and |βi|’s is important. The
most interesting quantities connected with K are usually embodied in the
main parameter, and this is the quantity which will be controlled explicitly.
Hence we can assert that the dependence on K of our constants is restricted
to those quantities which are involved in the parameters.

In our general case there is no a priori connection between the main
parameters QA, QA⊗A and QA⊗A. However, in most examples there is a
polynomial dependence between the above quantities, of the form

(QA)a � QA⊗A, QA⊗A � (QA)b ,

where a and b are suitable constants depending at most on M .

R e m a r k 4. When stating a result on L(s,A) we will use the following
convention.

(i) If (A5) is not used, then all the constants explicitly or implicitly
contained in the statement of the result and in its proof may depend, unless
explicitly stated, at most on the parameters of A. The uniformity is only
in QA.

(ii) If (A5) is used, then such constants may depend, unless explicitly
stated, at most on the parameters of A, A⊗A and A⊗A, and the uniformity
is only in QA, QA⊗A, QA⊗A and QK .
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All the constants are effectively computable.

Theorem 1. Let L(s,A) ∈ LK .

(i) If A is positive and m(A) = 1, then L(s,A) 6= 0 in the region

(4.1) σ > 1− C1

log(Q+ 2)(|t|+ 2)
, t ∈ R ,

except for a possible simple real zero βA < 1; here Q = QA and C1 > 0 is
a suitable constant.

(ii) If A satisfies (A5), is irreducible over K, complex and m(A) = 0,
then L(s,A) 6= 0 in the region (4.1), where C1 > 0 is a suitable constant.

(iii) If A satisfies (A5), is irreducible over K, real and m(A) = 0,
then L(s,A) 6= 0 in the region (4.1) except for a possible simple zero %A =
βA + iγA satisfying

βA < 1, |γA| <
20C1

log(Q+ 2)
,

where C1 > 0 is a suitable constant. If , in addition, A is totally real , then
%A, if it exists, is real.

Definition 6. The possible zero %A (resp. βA) is called the Siegel zero.
In those cases in which the Siegel zero is defined we write

δ(A) =
{ 1 if the Siegel zero exists ,

0 otherwise .
Theorem 1 clearly reflects the zero-free region for the Dirichlet L-func-

tions. It contains the classical zero-free region for ζK(s) and a zero-free
region for L(s,A⊗A) if A is irreducible. Vinogradov’s type zero-free regions
appear to be very difficult to obtain in a general setting, although they have
been found in some cases, see e.g. Sokolovskĭı [18] and Mitsui [12].

Theorem 2. Let L(s,A) ∈ LK and

R1(T ) =
{
s ∈ C : |s− 1| ≤ 1

log(T + 20)

}
.

(i) If m(A) = 0 then

L(j)(s,A)
j!

� lognM+j(QA + 2)
j!

+
1

2j(QA + 2)

uniformly for j ≥ 0 and s ∈ R1(QA).
(ii) If m(A) = 1, let g(s) = (s− 1)L(s,A). Then

g(j)(s)
j!

� lognM+j−1(QA + 2)
2j

uniformly for j ≥ 0 and s ∈ R1(QA).
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From (ii) we get, in particular,

(4.2) rj(A) � lognM+j(QA + 2)
2j

uniformly for j ≥ −1.
We observe that Theorem 2, when suitably specialized, gives the classical

estimate

L(1, χ) � log q

in the case of Dirichlet L-functions. We also remark that the dependence
on j in Theorem 2 can, if necessary, be improved.

Theorem 3. Let L(s,A) ∈ LK and

R2(T ) =
{
s ∈ C : 1− C1

5 log(T + 2)
≤ σ ≤ 1, |t| ≤ 40C1

log(T + 2)

}
,

where C1 is the constant which appears in Theorem 1.

(i) If A satisfies (A5), is irreducible over K and m(A) = 0, then

L′

L
(s,A) =

δ(A)
s− %A

+O(log(Q+ 2)) ,

where s ∈ R2(Q).
(ii) If A is positive and m(A) = 1, let g(s) = (s− 1)L(s,A). Then

g′

g
(s) =

δ(A)
s− βA

+O(log(QA + 2)) ,

where s ∈ R2(QA).

From (ii) we get, in particular,

(4.3)
L′

L
(s,A) = − 1

s− 1
+

δ(A)
s− βA

+O(log(QA + 2))

with s ∈ R2(QA) \ {1} and

(4.4)
r0(A)
r−1(A)

=
δ(A)

1− βA
+O(log(QA + 2)) .

We have the following

Corollary. Let L(s,A) ∈ LK and

R3(T ) =
{
s ∈ C : 1− C1

6 log(T + 2)
≤ σ ≤ 1, |t| ≤ 30C1

log(T + 2)

}
,

where C1 is the constant which appears in Theorem 1.
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(i) If A satisfies (A5), is irreducible over K and m(A) = 0, we have

L(j)

L
(s,A) �j δ(A)

log(Q+ 2)
|s− %A|j−1

+ logj(Q+ 2)

for s ∈ R3(Q) and j ≥ 2.
(ii) If A is positive and m(A) = 1, let g(s) = (s− 1)L(s,A). Then

g(j)

g
(s) �j δ(A)

log(QA + 2)
|s− βA|j−1

+ logj(QA + 2)

for s ∈ R3(QA) and j ≥ 2.
Here the � symbols may also depend on j.

From (ii) we obtain, in particular,

(4.5)
rj(A)
r−1(A)

� δ(A)
log(QA + 2)
(1− βA)j

+ logj+1(QA + 2) .

Theorem 3 allows one to save a log(Q+ 2) in the result which follows from
a direct application of Lemma 4 in Section 5. This is often relevant in
applications.

Now we state a generalization of Hecke’s theorem.

Theorem 4. Let L(s,A) ∈ LK .

(i) If A is positive and m(A) = 1, then

r−1(A) � δ(A)(1− βA) +
1− δ(A)

log(QA + 2)
.

(ii) If A satisfies (A5), is irreducible over K and m(A) = 0, then if
δ(A) = 1 we have

|L(1 + iγA,A)| � min
(

|1− βA|
|r−1(K)r−1(A⊗A)|1/2

,

∣∣∣∣ 1− βA

r0(K)r−1(A⊗A)

∣∣∣∣1/2

,

∣∣∣∣ 1− βA

r−1(K)r0(A⊗A)

∣∣∣∣1/2)
,

and if δ(A) = 0 we have

|L(1 + it,A)| � min
(

log−1(Q+ 2)
|r−1(K)r−1(A⊗A)|1/2

,
log−1/2(Q+ 2)

|r0(K)r−1(A⊗A)|1/2
,

log−1/2(Q+ 2)
|r−1(K)r0(A⊗A)|1/2

,
1

|r0(K)r0(A⊗A)|1/2
,

1
|r−1(K)r1(A⊗A)|1/2

,
1

|r1(K)r−1(A⊗A)|1/2

)
,

uniformly for |t| ≤ 20C1/ log(Q+ 2).



On general L-functions 159

From Theorem 2 and (ii) of Theorem 4 we get, in particular,

(4.6) |L(1 + iδ(A)γA,A)| � δ(A)
|1− βA|

lognM−1(Q+ 2)
+

1− δ(A)
lognM (Q+ 2)

.

This result should be compared with Theorem 1 in Perelli–Puglisi [15]. We
also observe that (4.6) gives the classical result of Hecke in the case of
Dirichlet L-functions with real characters, and the estimate

L(1, χ) � 1
log q

in the case of complex characters.
Before stating our last result we need one more assumption.

(A6) (Symmetry of the Siegel zero). Let L(s,A) ∈ LK . If L(%A,A) = 0
for some %A = βA + iγA satisfying

1− C1

log(Q+ 2)
< βA < 1, |γA| <

20C1

log(Q+ 2)
,

where C1 is the constant which appears in Theorem 1, then L(%̃A,A) = 0
for some %̃A = β̃A + iγA satisfying 0 < β̃A < 1/ log(Q+ 2), where Q = QA
if A is positive.

Assumption (A6) is a trivial consequence of the functional equation in
most concrete cases. In our general case we can at most deduce that L(1−
%A,A∗) = 0, but at any rate we have no direct connection betweenA andA∗.

Theorem 5. Let L(s,A) ∈ LK satisfy (A6), and let ε > 0 be any
constant.

(i) If A is positive and m(A) = 1, then

r−1(A) �ε (QA + 2)−2−ε .

(ii) If A satisfies (A5), is irreducible over K, m(A) = 0 and L(s,A⊗
A) ∈ LK then

|L(1 + iγA,A)| �ε ((QK + 2)(QA + 2)2(QA⊗A + 2))−2−ε .

Here the constant implicit in the � symbol may also depend on ε and is
effectively computable.

A direct application of Theorem 5 to the Dedekind zeta function of a
quadratic field gives the poor estimate

L(1, χ) �ε
1

q1+ε
.

However, the method of proof of Theorem 5 gives better estimates in many
concrete cases, due to a better estimation of the left hand side of (6.41) and
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(6.44) below. For instance, it is not difficult to prove that, if [K : Q] = n,
then

(4.7) r−1(K) �ε (QK + 2)−2(1−1/n)−ε if n ≥ 3

and

(4.8) r−1(K) � (QK + 2)−1 if n = 2 .

Hence (4.8) recovers the classical estimate

L(1, χ) � q1/2 ,

by an essentially analytic method. The estimates (4.7) and (4.8) should be
compared with Theorem 1 of Stark [20]. The dependence on n of the� sym-
bol in (4.7) is not easy to make explicit. As usual, from the results of Theo-
rem 5 one can obtain analogous lower bounds on 1−βA. Such results should
be compared with Corollary 5.2 of Lagarias–Montgomery–Odlyzko [8].

If L(s,A⊗A) is not a general L-function, i.e. the factor P (s,A⊗A) is
non-trivial, the method of proof of Theorem 5 only gives

|L(1 + iγA,A)| � (Q+ 2)C3 ,

provided A satisfies (A5) and (A6), is irreducible over K and m(A) = 0,
where C3 > 0 is a suitable constant depending on the parameters of A⊗A.
This is due to the fact that the estimate (2.3) only implies a poor estimate
of the form

P (s,A⊗A) � (QA⊗A + 2)c(σ)

where c(σ) may depend on the parameters of A⊗A.
Our last result concerns the structure of L(s,A) with A complex. Let A

be irreducible over K. If A is real it is quite possible that m(A) > 0, since
a positive A is in particular real. If A is complex one would expect that
m(A) = 0. In fact, we have

Theorem 6. Let L(s,A) ∈ LK be irreducible. If A is complex then
m(A) = 0.

The proof is inspired by Hadamard’s proof of ζ(1 + it) 6= 0.

5. Some lemmas. Let L(s,A) satisfy (A1). By the absolute conver-
gence of (2.1) we have, in σ > 1,

(5.1) logL(s,A) =
∑

p

∞∑
m=1

1
mNpms

( M∑
j=1

χ
j
(p)m

)
,

hence

(5.2) Λ(a,A) =
{ ∑M

j=1 χj
(p)m logNp if a = pm ,

0 otherwise .
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By (5.1) we have, in σ > 1,

(5.3) L(s,A) =
∏
p

∞∏
m=1

∞∑
k=0

1
k!

(
1
m

M∑
j=1

χ
j
(p)mNp−ms

)k

,

and from (2.1) we get

(5.4) c(pm,A) =
∑

m1+...+mM=m
mj≥0

χ
1
(p)m1 . . . χ

M
(p)mM .

Lemma 1. Let L(s,A), L(s,B) ∈ LK .

(a) L(s,A+ B), L(s,A) ∈ LK .
(b) The following conditions are equivalent :

(i) Pp ∈ R[X] for every p ∈ PK .
(ii) Λ(a,A) ∈ R for every a ∈ IK .
(iii) c(a,A) ∈ R for every a ∈ IK .

Hence if either (i), (ii) or (iii) holds we have c(a,A) = c(a,A) ∈ R,
Λ(a,A) = Λ(a,A) ∈ R and also L(s,A) = L(s,A).

(c) (i) If Pp ∈ R[X] for every p ∈ PK then c(a,A⊗A) = c(a,A⊗A) ∈
R and Λ(a,A ⊗ A) = Λ(a,A ⊗ A) ∈ R for every a ∈ IK . In
particular , L(s,A⊗A) = L(s,A⊗A).

(ii) Λ(a,A⊗A) ≥ 0 for every a ∈ IK .
(d) (i) Λ(a,A) ≥ 0 for every a ∈ IK implies c(a,A) ≥ 0 for every

a ∈ IK .
(ii) If c(a,A) ≥ 0 for every a ∈ IK then c(m,A) ≥ 0 for every

m ∈ N.
(e) If L(s,A) satisfies (A5) and is irreducible over K, then L(s,A)

satisfies (A5) and is irreducible over K.

P r o o f. (a) We define (A+ B)p to be the diagonal matrix of order 2M
having the eigenvalues of Ap and Bp on the diagonal, and (A1) is satisfied.
Axiom (A2) is clearly satisfied, and since ε can be chosen arbitrarily small
(A3) is also satisfied. Axiom (A4) follows by multiplying the functional
equations of L(s,A) and L(s,B).

Analogously, we define Ap to be the diagonal matrix of order M having
the conjugates of the eigenvalues of Ap on the diagonal, and (A1) is satisfied.
In σ > 1 we have

L(s,A) = L(s,A), c(a,A) = c(a,A) ,

hence (A2) is satisfied. Axiom (A3) is clearly satisfied, and the functional
equation of L(s,A) is

Φ(s,A) = wAΦ(1− s,A∗) ,
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where A∗ is defined similarly to A and

Φ(s,A) = Qs
A

N∏
i=1

Γ (αis+ βi)L(s,A) ,

and similarly for Φ(s,A∗).
(b) By (5.2), (5.4) and definition of Pp(X) in (A1) it is clear that

ei, Λ(a,A) and c(a,A) are symmetric polynomials in χ
1
(p), . . . , χ

M
(p).

Moreover, it is well known (see Macdonald [11]) that each such set of poly-
nomials generates over R a symmetric polynomial. Hence (i)–(iii) are equiv-
alent.

(c) If Pp ∈ R[X] then {χ
j
(p)}j=1,...,M = {χ

j
(p)}j=1,...,M , hence

{χ
i
(p)χ

j
(p)}i,j=1,...,M = {χ

i
(p)χ

j
(p)}i,j=1,...,M

and (i) follows by arguments similar to those in (b). From (5.2) we see that
(ii) follows easily.

(d) We observe that (i) follows from (5.3) and (ii) is clear since c(m,A)
is a suitable linear combination of c(a,A) with positive coefficients.

(e) This is again clear since L(s,A⊗A) = L(s,A⊗A) and L(s,A⊗A) =
L(s,A⊗A), and hence

L(s,A⊗A) =
∏
p∈P

M2∏
j=1

(1− λj(p)Np−s)L(s, ˜A⊗A)

where, by (a), L(s, ˜A⊗A) ∈ LK .

R e m a r k 5. If K = Q we have that L(s,A) = L(s,A) implies Pp ∈
R[X]. Indeed, by the identity principle, we have c(m,A) = c(m,A) and
hence Pp ∈ R[X]. Also, L(s,A⊗A) = L(s,A⊗A) implies

M∑
i,j=1

(χ
i
(p)χ

j
(p))m =

M∑
i,j=1

(χ
i
(p)χ

j
(p))m ,

hence
∑M

j=1 χj
(p)m ∈ R and so Pp ∈ R[X]. If K 6= Q the identity principle

does not hold, due to the possibility of ideals with the same norm. In
particular, a Dirichlet series over K which is real on the real axis does not
necessarily have real coefficients. Hence, for instance, L(s,A) = L(s,A)
does not imply c(a,A) ∈ R.

Lemma 2. Let L(s,A) ∈ LK and a, b ∈ R, a < b. There exists a constant
C2 = C2(a, b) > 0 such that

(s− 1)m(A)L(s,A) �a,b ((QA + 2)(|t|+ 2))C2

uniformly for a ≤ σ ≤ b and t ∈ R .
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P r o o f. Since (s−1)m(A)L(s,A) is entire and m(A) ≤M, Lemma 2 fol-
lows from the Phragmén–Lindelöf theorem, using (A3), (2.7), the functional
equation and well known properties of the Γ -function.

Let

N(T,A) = |{% = β + iγ : L(%,A) = 0, β ≥ 0, |γ| ≤ T}| .

Lemma 3. Let L(s,A) ∈ LK . Then

N(T,A) =
2A
π
T log T+

2
π

( N∑
i=1

αi(logαi−1)+logQA
)
T+O(log T (QA+2))

for T ≥ 2. Hence for 0 ≤ H ≤ T ,

N(T +H,A)−N(T,A) � (H + 1) log T (QA + 2) .

P r o o f. Lemma 3 follows by classical arguments (see e.g. Perelli [14],
Theorem 1).

Lemma 4. Let L(s,A) ∈ LK . Then

−L
′

L
(s,A) =

m(A)
s− 1

−
∑

|t−γ|≤1

1
s− %

+O(log(QA + 2)(|t|+ 2)) ,

where % = β + iγ runs over the zeros of L(s,A), uniformly for −1 ≤ σ ≤ 2
and t ∈ R.

P r o o f. We use Lemma α of Titchmarsh [21], Ch. 3. Note that the
constants involved in Lemmas α, β and γ are absolute. Let T ∈ R and

f(s) = (s− 1)m(A)L(s,A) ,

and let s0 = σ0 + iT with suitable σ0 > 1 such that∣∣∣∣ 1
f(s0)

∣∣∣∣ ≤ ζK(σ0)M

|s0 − 1|m(A)
≤ 2 .

We choose r = 4(σ0 + 2) in Lemma α. Then by Lemma 2 we have∣∣∣∣ f(s)
f(s0)

∣∣∣∣ � ((QA + 2)(|T |+ 2))C2 for |s− s0|≤r .

Lemma 4 follows from Lemma 3 and Lemma α, taking T = t.

Lemma 5. Let k ≥ 1 and h ≥ 0 be integers. Let a0, ak, . . . , ak+h be
defined by

(5.5)
1

s(s+ k) . . . (s+ k + h)
=
a0

s
+

ak

s+ k
+ . . .+

ak+h

s+ k + h

and let Pk,h(X) = a0 + akX
k + . . . + ak+hX

k+h. Then Pk,h(x) ≥ 0 for
x ∈ [0, 1] and a0 > 0.



164 E. Carletti et al .

P r o o f. Computing the residue of (5.5) at s = 0,−k, . . . ,−(k + h) we
get

Pk,h(x) =
(k − 1)!
(k + h)!

(1− x)h+1Qk,h(x) ,

where Qk,h(x) =
∑k−1

i=0

(
h+i

i

)
xi, and Lemma 5 follows, since clearly a0 =

1
k(k+1)...(k+h) .

We wish to thank Roberto Dvornicich for pointing out the above elegant
proof of Lemma 5.

6. Proof of the results. We will denote by c1, c2, . . . suitable positive
constants satisfying the convention of Remark 4. We will begin with c1 in
the proof of each theorem.

P r o o f o f T h e o r e m 1. (i) We use the classical inequality 3+4 cos θ+
cos 2θ ≥ 0 which gives, since Λ(a,A) ≥ 0,

(6.1) −3
L′

L
(σ,A)− 4 Re

L′

L
(σ + it,A)− Re

L′

L
(σ + 2it,A) ≥ 0

for σ > 1. Lemma 4 and (6.1) give
3

σ − 1
+ 4 Re

1
σ − 1 + it

+ Re
1

σ − 1 + 2it
− 3 Re

∑
|Im %|≤1

1
σ − %

(6.2)

− 4 Re
∑

|t−Im %|≤1

1
σ + it− %

− Re
∑

|2t−Im %|≤1

1
σ + 2it− %

+O(log(QA + 2)(|t|+ 2)) ≥ 0 ,

where % runs over the zeros of L(s,A).
Let % = β + iγ be a zero of L(s,A) and

σ = 1 +
c1

log(QA + 2)(|γ|+ 2)
,

with c1 > 0 to be chosen later.
If |γ| ≥ 1/ log(QA + 2), from (6.2) we get, choosing t = γ and neglecting

some negative terms,
3

σ − 1
− 4
σ − β

+O(log(QA + 2)(|γ|+ 2)) ≥ 0

and (i) follows in this case, by choosing c1 suitably small.
If 0 < |γ| < 1/ log(QA + 2) we take into account the conjugate zero

% = β − iγ, and from (6.2), choosing t = γ and neglecting some negative
terms, we get

3
σ − 1

− 4
σ − β

+
5(σ − 1)

(σ − 1)2 + γ2
− 7(σ − β)

(σ − β)2 + γ2
+O(log(QA + 2)) ≥ 0
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and (i) follows in this case too, by choosing c1 suitably small.
If γ = 0 we denote by β ≤ βA the two real simple zeros with largest real

part of L(s,A), if they exist, with the convention that a double zero coincides
with two simple zeros. Choosing t = 0 and neglecting some negative terms,
from (6.2) we get

8
σ − 1

− 16
σ − β

+O(log(QA + 2)) ≥ 0

and again (i) follows in this case by choosing c1 suitably small.
(ii) In this case we use the inequality

0 ≤ 2(1 + η cos θ)2 = 2 + η2 + 4η cos θ + η2 cos 2θ .

Writing
M∑

j=1

χ
j
(p)m = η(p,m) exp(iθ(p,m)) = ηeiθ ,

we clearly have, in σ > 1,

(6.3) −2
ζ ′K
ζK

(σ)− L′

L
(σ,A⊗A)−4 Re

L′

L
(σ+it,A)−Re

L′

L
(σ+2it,A⊗A)

=
∑

p

∞∑
m=1

logNpNp−σm(2 + η2 + 4η cos(θ −mt logNp)

+ η2 cos(2θ − 2mt logNp)) ≥ 0 .

Let % = β + iγ be a zero of L(s,A). We observe that

−L
′

L
(s,A⊗A) = −P

′

P
(s,A⊗A)− L′

L
(s, ˜A⊗A)

and, by the assumption in (A5), in σ ≥ 1/2,

−P
′

P
(s,A⊗A) �

∑
p

∞∑
m=1

logNpNp−σm
∣∣∣ M2∑

j=1

λj(p)m
∣∣∣(6.4)

�
∑

p

logNp � log(QA⊗A + 2) .

A similar result holds for A⊗A. Hence a result completely analogous to
Lemma 4 holds, for 1/2 ≤ σ ≤ 2, for L(s,A⊗A) and L(s,A⊗A).

When |γ| > 1/ log(Q + 2) the proof of (ii) is similar to the one of (i).
When 0 ≤ |γ| ≤ 1/ log(Q+2) we see from (6.3) that there is only a pole with
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residue 3 at s = 1 to play against a pole with residue ≤ −4 at s = β + iγ
since L(s,A ⊗ A) is holomorphic at s = 1, and (ii) follows as before from
Lemma 4, (6.3) and (6.4).

(iii) We use again (6.3). Let % = β + iγ be a zero of L(s,A). When
|γ| > 1/ log(Q + 2) the proof of (iii) runs exactly as in (i). When 0 ≤
|γ| ≤ 1/ log(Q+ 2) the situation is a bit more complicated, due to the fact
that we cannot assume the existence of the conjugate zero % = β − iγ. Let
0 < c2, c3 < 1 to be chosen later,

σ = 1 +
c2

log(Q+ 2)
and

c3
log(Q+ 2)

≤ |γ| ≤ 1
log(Q+ 2)

.

By Lemma 4, (6.3) and (6.4), choosing t = γ and neglecting some negative
terms we get

(6.5)
3

σ − 1
− 4
σ − β

+
σ − 1

(σ − 1)2 + γ2
+O(log(Q+ 2)) ≥ 0 .

A computation shows that (6.5) implies

(6.6) β < 1− c4
log(Q+ 2)

provided

(6.7) 0 < c4 <
c2
2

(c3/c2)2

1 + 3(c3/c2)2

and c2 is sufficiently small.
Let now 0 ≤ |γ| ≤ c3/ log(Q+ 2) and suppose there exists another zero

%A = βA + iγA of L(s,A) such that β ≤ βA and 0 ≤ |γA| ≤ c3/ log(Q+ 2).
In this case from (6.3) with t = γ we obtain, in the usual way,

(6.8)
3

σ − 1
− 4
σ − β

+
σ − 1

(σ − 1)2 + 4γ2

− 4(σ − βA)
(σ − βA)2 + (γ − γA)2

+O(log(Q+ 2)) ≥ 0 .

Choosing

(6.9) c3 = 20c4 and c3 = c2/5 ,

a computation shows that (6.8) implies

(6.10) β < 1− c4
log(Q+ 2)

,

provided c2 is sufficiently small. Now, (6.7) is satisfied with the choices in
(6.9), hence (6.6) and (6.10) give (iii), except for βA < 1.
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In order to show that βA < 1, we consider

H(s) = ζK(s)L(s+ iγA,A)L(s− iγA,A)L(s,A⊗A) =
∑

a

a(a)Na−s

in σ > 1. It is easy to see, computing the Dirichlet coefficients of −H′

H (s),
that a(a) ≥ 0 for every a ∈ IK . If βA = 1 then

L(1 + iγA,A) = L(1− iγA,A) = 0 ,

hence H(s) would be holomorphic at s = 1, and H(1) 6= 0 since %A is simple.
Let β0 < 1 be the largest real zero of H(s). In σ > 1 we have

logH(s) =
∑

a

b(a)Na−s

with b(a) ≥ 0 for every a ∈ IK , and logH(s) is holomorphic in σ > β0. Hence
by Landau’s theorem we see that

∑
a b(a)Na−s is convergent in σ > β0. Thus

logH(σ) ≥ 0 in σ > β0, hence H(σ) ≥ 1 in σ > β0, which contradicts the
fact that β0 is a zero of H(s). Since H(s) does indeed have real zeros < 1,
due to the trivial zeros of ζK(s), we obtain a contradiction, hence βA < 1.

Finally, if A is totally real we can exploit the existence of the conjugate
zero % = β − iγ as in the proof of (i), thus proving that %A, if it exists, is
real.

P r o o f o f T h e o r e m 2. (i) Writing L(j)(s,A) over Q we see by (2.7)
that, in σ > 1,

L(j)(s,A) =
∞∑

m=1

cj(m,A)m−s, |cj(m,A)| ≤ dnM (m) logj m.

Let z = x+ iy, 1 + z ∈ R1(QA) and

Fj(s, z) = ζ(s)L(j)(s+ z,A) =
∞∑

m=1

aj(m, z)m−s, σ > 1 .

Clearly

(6.11) |aj(m, z)| ≤ dnM+1(m) logj(m)m|x| .

First we need an estimate for Fj(s, z). By Cauchy’s integral formula,

L(j)(s+ z,A) =
j!

2πi

∫
C

L(w,A)
(w − (s+ z))j+1

dw ,

where C = {w ∈ C : |w−(s+z)| = 2}. Hence by Lemma 2 we get, uniformly
for −1 ≤ σ ≤ 3, j ≥ 0 and 1 + z ∈ R1(QA),

(6.12) Fj(s, z) �
j!
2j

((QA + 2)(|t|+ 2))c1 , |s− 1| ≥ 1/4 .
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Now, by Perron’s formula we have

(6.13)
∞∑

m=1

aj(m, z)e−m/X

=
1

2πi

2+i∞∫
2−i∞

Fj(s, z)Γ (s)Xs ds

= L(j)(1 + z,A)Γ (1)X +
1

2πi

1/2+i∞∫
1/2−i∞

Fj(s, z)Γ (s)Xs ds .

From (6.11) and well known estimates for the average order of dk(m)
(see Linnik [10], Ch. 1), by partial summation we get

(6.14)
∞∑

m=1

aj(m, z)e−m/X � X1+1/ log(QA+2) lognM+j(X)

uniformly for j ≥ 0 and 1 + z ∈ R1(QA). From (6.12) we have

(6.15)
1

2πi

1/2+i∞∫
1/2−i∞

Fj(s, z)Γ (s)Xs ds� j!
2j
X1/2(QA + 2)c1 .

Hence from (6.13)–(6.15) we obtain

L(j)(1 + z,A) � X1/ log(QA+2) lognM+j(X) +
j!
2j
X−1/2(QA + 2)c1 ,

and (i) follows by choosing X = (QA + 2)2(c1+1).
(ii) Although it would be possible to prove (ii) in a way similar to (i),

we give here a slight variation which is simpler in this case. Using
∞∑

m=1

c(m,A)e−m/X =
1

2πi

2+i∞∫
2−i∞

L(s,A)Γ (s)Xs ds

= r−1(A)Γ (1)X +
1

2πi

1/2+i∞∫
1/2−i∞

L(s,A)Γ (s)Xs ds

we obtain, as in (i),

(6.16) r−1(A) � lognM−1(QA + 2) .

Now we apply again Perron’s formula in the form

(6.17)
∞∑

m=1

c(m,A)m−se−m/X

=
1

2πi

2+i∞∫
2−i∞

L(s+ w,A)Γ (w)Xw dw
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= r−1(A)Γ (1− s)X1−s

+ L(s,A) +
1

2πi

−1/2+i∞∫
−1/2−i∞

L(s+ w,A)Γ (w)Xw dw

where s satisfies
1

4 log(QA + 2)
≤ |s− 1| ≤ 4

log(QA + 2)
.

Choosing X = (QA + 2)c2 , c2 suitable, and arguing as in (i), from (6.16)
and (6.17) we get

(6.18) L(s,A) � lognM (QA + 2)

provided

(6.19)
1

4 log(QA + 2)
≤ |s− 1| ≤ 4

log(QA + 2)
.

Let g(s) = (s− 1)L(s,A). For j ≥ 0, we have

(6.20)
g(j)(s)
j!

=
1

2πi

∫
C

(w − 1)L(w,A)
(w − s)j+1

dw

where

s ∈ R1(QA) and C =
{
w ∈ C : |w − s| = c3

log(QA + 2)

}
with suitable c3 = c3(s) ≥ 2, such that C is contained in the region (6.19).
From (6.18)–(6.20) we get

g(j)(s)
j!

� 2−j lognM+j−1(QA + 2)

uniformly for j ≥ 0 and s ∈ R1(QA). Since g(j)(s)/j! = rj−1(A), (ii)
follows.

P r o o f o f T h e o r e m 3 a n d C o r o l l a r y . We will assume that
δ(A) = 1 in the proof of Theorem 3, otherwise the reasoning is much the
same and even simpler. Moreover, we may clearly assume that C1 < 1/2,
where C1 is the constant which appears in Theorem 1, so that the range in
which Theorem 2 is applied below is contained in R1(Q).

(i) We make the following choice in Lemma γ of Titchmarsh [21], Ch. 3,
no 9:

r =
1
4
, r′ =

C1

3 log(Q+ 2)
, s0 = 1 +

C1

100 log(Q+ 2)
+ it, |t| ≤ 40C1

log(Q+ 2)
and

f(s) =
L(s,A)
s− %A

.
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By (i) of Theorem 2, in the circle |s− s0| ≤ 1/(2 log(Q+ 2)) we have

f(s) =
∞∑

j=1

L(j)(%A,A)
j!

(s− %A)j−1(6.21)

�
∞∑

j=1

(
lognM+1(Q+ 2)

j!
+ 2−j log1−j(Q+ 2)

)
� lognM+1(Q+ 2) .

By Lemma 2, in the region
1

2 log(Q+ 2)
≤ |s− s0| ≤

1
4

we have

(6.22) f(s) � (Q+ 2)c1

for suitable c1 > 0. Moreover,

1
f(s0)

= (s0 − %A)
∏
p

M∏
j=1

(1− χ
j
(p)Np−s0)(6.23)

� ζ

(
1 +

C1

100 log(Q+ 2)

)nM

� lognM (Q+ 2) .

Hence from (6.21)–(6.23) we get, in |s− s0| ≤ 1/4,

(6.24)
f(s)
f(s0)

� (Q+ 2)c2

for suitable c2 > 0. Since

(6.25)
f ′

f
(s) =

L′

L
(s,A)− 1

s− %A
,

we have

(6.26)
f ′

f
(s0) � −ζ

′

ζ

(
1 +

C1

100 log(Q+ 2)

)
+ log(Q+ 2) � log(Q+ 2) .

From the zero-free region of Theorem 1 we see that f(s) 6= 0 in the part
σ ≥ σ0 − 2r′ of the circle |s − s0| ≤ r, and (i) follows from Lemma γ and
(6.24)–(6.26).

(ii) In this case we choose f(s) = g(s)/(s − βA) and the proof runs
exactly as in case (i).

Now we turn to the proof of the Corollary.
(i) Let

f(s) = (s− %A)δ(A)L
′

L
(s,A) ,
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which is holomorphic in the region (4.1). By Cauchy’s integral formula, for
j ≥ 1 we have

(6.27) f (j)(s) =
j!

2πi

∫
C

f(w)
(w − s)j+1

dw, s ∈ R3(Q) ,

where

C =
{
w ∈ C : |w − s| = C1

100 log(Q+ 2)

}
.

Hence w ∈ R2(Q) so that by Theorem 3 we get

f(w) � log1−δ(A)(Q+ 2) ,
and hence by (6.27),

(6.28) f (j)(s) � logj+1−δ(A)(Q+ 2) .

At this point one may use a recursive expression for L(j)

L (s,A) involving
f (i)(s), with i ≤ j − 1, and suitable powers of s − %A and L′

L (s,A). An
application of Theorem 3 shows that the “main terms”, of order 1/(s−%A)j ,
cancel and using (6.28) we get (i).

(ii) The proof is the same as in (i).
P r o o f o f T h e o r e m 4. (i) Suppose δ(A) = 1. Writing L(s,A) over

Q, by Perron’s formula, for 9/10 ≤ s0 < 1 we have
∞∑

m=1

c(m,A)m−s0e−m/X =
1

2πi

1+i∞∫
1−i∞

L(s0 + w,A)Γ (w)Xw dw(6.29)

= r−1(A)Γ (1− s0)X1−s0 + L(s0,A)

+
1

2πi

−1/2+i∞∫
−1/2−i∞

L(s0 + w,A)Γ (w)Xw dw .

Since, by Lemma 1(d), c(1,A) = 1 and c(m,A) ≥ 0 for m ∈ N, choosing
s0 = βA we deduce from Lemma 2 that

1
2
≤

∞∑
m=1

c(m,A)m−βAe−m/X(6.30)

=
r−1(A)
1− βA

(1 + o(1))X1−βA +O(X−1/2(QA + 2)c1)

for suitable c1 > 0. Now we choose X = c2(QA + 2)c3 , with suitable c2, c3
> 0, so that (6.29) reduces to

(6.31) 1 � r−1(A)
1− βA

since X1−βA � 1.
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If δ(A) = 0 we choose

s0 = 1− C1

2 log(QA + 2)
,

where C1 is the constant which appears in Theorem 1, in (6.29). Noting
that L(s0,A) < 0, the previous argument gives in this case

(6.32) 1 � r−1(A)
log(QA + 2)

,

and (i) follows from (6.31) and (6.32).
(ii) Let δ(A) = 1, 9/10 ≤ s0 < 1, |t| ≤ 20C1/ log(Q+ 2) and

Ft(s) = ζK(s)L(s+ it,A)L(s− it,A)L(s,A⊗A)

=
∑

a

bt(a)Na−s, σ > 1 .

In σ > 1 we have

−F
′
t

Ft
(s) =

∑
p

∞∑
m=1

logNp Np−sm
∣∣∣1 +

M∑
j=1

(χ
j
(p)Np−it)m

∣∣∣2 .
Hence, writing Ft(s) over Q, by Lemma 1 we get bt(1) = 1 and bt(m) ≥ 0
for m ∈ N, so that as in (i) we have

1
2
≤

∞∑
m=1

bt(m)m−s0e−m/X(6.33)

= Rt(X, s0) + Ft(s0) +
1

2πi

−1/2+i∞∫
−1/2−i∞

Ft(s0 + w)Γ (w)Xw dw ,

where Rt(X, s0) is the residue of Ft(s0 + w)Γ (w)Xw at the double pole in
w = 1− s0. We recall that, by Lemma 1(a), L(s,A) ∈ LK .

A computation shows that

(6.34) Rt(X, s0)

= X1−s0 |L(1 + it,A)|2
∑

j1+...+j6=−1

1
j2!j3!j5!j6!

rj1(K)
L(j2)

L
(1 + it,A)

× L(j3)

L
(1− it,A)rj4(A⊗A)Γ (j5)(1− s0) logj6 X .

Now we choose t = γA, s0 = βA and X = c4(Q + 2)c5 , with suitable
c4, c5 > 0. Since in (6.33) we have Re(s0 + w) > 0, we get

P (s0 + w,A⊗A) � (QA⊗A + 2)c6
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with suitable c6 > 0. Hence, as in (i), we get

1
2πi

−1/2+i∞∫
−1/2−i∞

Ft(s0 + w)Γ (w)Xw dw � (Q+ 2)c7X−1/2

for suitable c7 > 0, so that (6.33) gives

(6.35) 1 � |RγA(X, s0)| .

Since logX � 1/|1 − βA|, from (6.34), Lemma 1(e), Theorem 3 and its
Corollary we see that the worst cases are given by the following choices of
(j1, . . . , j6):

(−1, 0, 0,−1, 1, 0), (−1, 0, 0, 0, 0, 0), (0, 0, 0,−1, 0, 0) .

Accordingly, from (6.34) and (6.35) we get

(6.36) 1 � |L(1 + iγA,A)|2 max
(
|r−1(K)r−1(A⊗A)|

|1− βA|2
,

|r−1(K)r0(A⊗A)|
|1− βA|

,
|r0(K)r−1(A⊗A)|

|1− βA|

)
.

Let now δ(A) = 0. Choose

s0 = 1− C1

2 log(Q+ 2)
and |t| ≤ 20C1

log(Q+ 2)
.

Let

η(A) =
{

0 if ζK(s0)L(s0,A⊗A) ≤ 0,
1 if ζK(s0)L(s0,A⊗A) > 0.

Consider

Gt(s) = ζ(s)η(A)Ft(s)

and denote by ct(m) its Dirichlet coefficients over Q. Clearly

(6.37) Gt(s0) ≤ 0 .

Suppose η(A) = 1. Then, by Perron’s formula and (6.37), choosing X =
c8(Q+ 2)c9 with suitable c8, c9 > 0, as before we obtain

(6.38)
∑

m≤X

ct(m)m−s0e−m/X � |R̃t(X, s0)|

where R̃t(X, s0) is the residue of Gt(s0 + w)Γ (w)Xw at the triple pole at
w = 1− s0. A computation similar to the one leading to (6.34), Theorem 3
and its Corollary, and the relation

1
1− s0

� logX � 1
1− s0
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give in this case

|R̃t(X, s0)| � |L(1 + it,A)|2(6.39)

×max(|r−1(K)r−1(A⊗A)| log3(Q+ 2) ,

|r0(K)r−1(A⊗A)| log2(Q+ 2) ,

|r−1(K)r0(A⊗A)| log2(Q+ 2) ,

|r0(K)r0(A⊗A)| log(Q+ 2) ,

|r1(K)r−1(A⊗A)| log(Q+ 2) ,

|r−1(K)r1(A⊗A)| log(Q+ 2)) .

But

ct(m) =
∑
d|m

bt(d) ,

hence ∑
m≤X

ct(m)m−s0e−m/X �
∑

m≤X

∑
d|m

bt(d)
1
m
�

∑
d≤X

bt(d)
d

∑
m′≤X/d

1
m′(6.40)

�
∑

m≤X

1
m
� log(Q+ 2) .

The result of (ii) now follows, in the case η(A) = 1, from (6.36), (6.38)–
(6.40). When η(A) = 0 we have Gt(s) = Ft(s). In this case the proof is
simpler, and the result a bit stronger, since the last three terms in (6.39) do
not appear.

P r o o f o f T h e o r e m 5. (i) We may clearly suppose δ(A) = 1, oth-
erwise Theorem 4 gives a much better result. Using the notation of Lemma
5, by Perron’s formula we have∑

m≤X

c(m,A)m−β̃APk,h(m/X) =
1

2πi

2+i∞∫
2−i∞

L(β̃A + w,A)Xw

w(w + k) . . . (w + k + h)
dw ,

where h and k are sufficiently large. Shifting the line of integration to
Re(w) = −k+1/2 and computing the residue of the integrand at w = 1−β̃A
we get, since the integrand is holomorphic at w = 0 by (A6),

(6.41)
∑

m≤X

c(m,A)m−β̃APk,h(m/X)

= r−1(A)X1−β̃A(1− β̃A)−1
k+h∏
j=k

(1− β̃A + j)−1
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+
1

2πi

−k+1/2+i∞∫
−k+1/2−i∞

L(β̃A + w,A)Xw

w(w + k) . . . (w + k + h)
dw .

By the functional equation, on the line σ = β̃A − k + 1/2 we have

(6.42) L(s,A) �k (QA + 2)1−2(β̃A−k+1/2)(|t|+ 2)c1

for suitable c1 > 0, depending also on k. Choosing h sufficiently large as
a function of k, from (6.41), (6.42) and Lemma 5 we get, recalling that
0 < β̃A < 1/ log(QA + 2),

(6.43) 1 �k r−1(A)X1−β̃A + (QA + 2)2kX−k+1/2 .

Choosing X = c2(QA + 2)2+1/(k−1/2), from (6.43) we obtain

r−1(A) �k (QA + 2)−2−1/(k−1/2)

and (i) follows by taking k sufficiently large.
(ii) Again we suppose δ(A) = 1. Let

Ft(s) = ζK(s)L(s+ it,A)L(s− it,A)L(s,A⊗A) =
∞∑

m=1

bt(m)m−s,

where t = γA. Applying Perron’s formula and shifting the line of integration
as in (i) we get

(6.44)
∑

m≤X

bt(m)m−β̃APk,h(m/X)

=
1

2πi

−k+1/2+i∞∫
−k+1/2−i∞

Ft(β̃A + w)Xw

w(w + k) . . . (w + k + h)
dw +Rt(X, β̃A) ,

where Rt(X, β̃A) is the residue of the integrand at the double pole at w =
1− β̃A. By the functional equation, on the line σ = β̃A − k + 1/2 we have

(6.45) Ft(s) �k ((QK + 2)(QA + 2)2(QA⊗A + 2))1−2(β̃A−k+1/2)(|t|+ 2)c3

for suitable c3 > 0, depending also on k. We have

Rt(X, β̃A) �k X
1−β̃A

∑
j1+...+j6=−1

rj1(K)
L(j2)(1 + it,A)

j2!
L(j3)(1− it,A)

j3!

× rj4(A⊗A)
logj5 X

j5!
cj6(h, k) ,

where cj6(h, k) is connected with the expansion of 1
w(w+k)...(w+k+h) at w =

1− β̃A, and j6 ≥ 0. Hence by Theorem 2 we get

(6.46) |Rt(X, β̃A)| �h,k |L(1 + it,A)|X1−β̃A logc4(Q+ 2)
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for suitable c4 > 0. Now we choose

X = c5((QK + 2)(QA + 2)2(QA⊗A + 2))2+1/(k−1/2)

and h sufficiently large compared with k, and the conclusion of (ii) follows
as before from (6.44)–(6.46).

P r o o f o f T h e o r e m 6. Writing in polar form
M∑

j=1

χ
j
(p)m = η(p,m) exp(iθ(p,m)), −π < θ(p,m) ≤ π ,

as σ → 1+ we have

Re logL(σ,A) =
∑

p

∞∑
m=1

η(p,m) cos θ(p,m)
mNpmσ

(6.47)

=
∑

p

η(p) cos θ(p)Np−σ +O(1) ,

where η(p) = η(p, 1) and θ(p) = θ(p, 1). Since η(p) ≤M for every p, define,
for σ > 1,

R(σ,A) =
∑

p

η(p) cos θ(p)Np−σ ,

RK(σ) =
∑

p

Np−σ, R(σ, |A|) =
∑

p

η(p)Np−σ ,

R(σ,A⊗A) =
∑

p

η(p)2 cos 2θ(p)Np−σ, R(σ,A⊗A) =
∑

p

η(p)2Np−σ .

Suppose now that m(A) > 0. By (6.47) we have

(6.48) R(σ,A) ∼ m(A) log
1

σ − 1
, RK(σ) ∼ R(σ,A⊗A) ∼ log

1
σ − 1

as σ → 1+. By the Cauchy–Schwarz inequality we have

R(σ,A) ≤ R(σ, |A|) ≤ (RK(σ)R(σ,A⊗A))1/2

so that by (6.48) we have

(6.49) m(A) = 1 and R(σ, |A|) ∼ log
1

σ − 1
as σ → 1+ .

Let 0 < α < π/4 and 0 < δ < 1 be suitable numbers to be chosen later.
Denote by # the condition that the summation in the above five series is
restricted to those p for which |θ(p)| ≤ α. Analogously ## will mean that
|θ(p)| > α, ∗ will mean that η(p) ≥ 1− δ and ∗∗ that η(p) < 1− δ. Define

λ = λ(σ) =
R(σ, |A|)#

R(σ, |A|)
.



On general L-functions 177

From (6.48) and (6.49) we see that given any ε > 0, for σ > 1 sufficiently
close to 1 we have

(6.50) R(σ,A)# ≤ R(σ, |A|)# = λR(σ, |A|) ,
(6.51) R(σ,A)## ≤ R(σ, |A|)## cosα = (1− λ)R(σ, |A|) cosα ,
(6.52) R(σ,A) ≥ (1− ε)R(σ, |A|) .
From (6.50)–(6.52) we obtain

(1− ε) ≥ λ+ (1− λ) cosα ,

hence

(6.53) (1− λ) ≤ ε

1− cosα
.

From (6.48), (6.49) and (6.53) we see that for σ → 1+ we have

(6.54) R(σ,A⊗A)

= R(σ,A⊗A)# +R(σ,A⊗A)##

≥ R(σ,A⊗A)#∗ +R(σ,A⊗A)#∗∗ −MR(σ, |A|)##

≥ (1− δ) cos 2α(R(σ, |A|)#∗ −M(1− λ)R(σ, |A|)

= (1− δ) cos 2α(R(σ, |A|)# −R(σ, |A|)#∗∗)−M(1− λ)R(σ, |A|)

≥ (1− δ) cos 2α(λR(σ, |A|)−R(σ, |A|)∗∗)−M(1− λ)R(σ, |A|)

≥ (1− δ) cos 2α(λ(1− ε)RK(σ)− (1− δ)RK(σ))

−M(1− λ)(1 + ε)RK(σ)

= ((1− δ) cos 2α(λ(1− ε)− (1− δ))−M(1− λ)(1 + ε))RK(σ) .

Choosing for example λ = 1/2, α = 1/100 and ε < 10−6/M , we see from
(6.54) that

R(σ,A⊗A) ≥ 1
100

RK(σ) as σ → 1+ ,

a contradiction since A is complex. Hence m(A) = 0.

7. Further problems. In the present section we list some further
problems and remarks concerning general L-functions.

1) First of all we remark that a number of applications follow from
our axioms and results, such as prime number theorems, explicit formulae,
estimates for the average of the coefficients and so on.

2) The main defect of the present paper is the lack of the generalization
of Siegel’s theorem. A statement of this sort was made in Perelli–Puglisi [15],
but it turns out that the proof contains a serious mistake. In fact, one could
get Siegel’s theorem assuming suitable properties of functions of the type
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L(s,A⊗ B), when A and B are irreducible. The required properties would
be in the spirit of the Aramata–Brauer theorem concerning the divisibility
of ζK(s) by ζ(s) if K is normal over Q, and could indeed be interpreted as
an abstract and analytic statement of this sort. A proof of a Siegel-type
result using only (A1)–(A5) appears to be difficult, since it would provide
in particular a proof of the Siegel–Brauer theorem without using Brauer’s
theory.

3) Here we list some interesting problems.
(i) From Theorem 2 one gets, in particular,

(7.1) L(1,A) � lognM (QA + 2)

for any entire L-function. This is, in general, the best one can prove at
present, since it is not possible to exclude situations like n = 1 and A =
χ

1
+ . . .+ χ

M
, where χ

j
are Dirichlet characters (mod q). However, we did

not assume the irreducibility condition in the proof of (7.1). We expect that
if A is irreducible over K and m(A) = 0, then

L(1,A) � logn(Q+ 2) .

Something similar should happen in the estimate from below, if in addition
δ(A) = 0. In this case we expect

L(1,A) � log−n(Q+ 2) .

(ii) Let A be irreducible over K and m(A) = 0. From Theorem 1 we
get a zero-free region for L(s,A) and L(s,A ⊗ A). It would be desirable
to have a zero-free region for L(s,A ⊗ A) too, assuming (A1)–(A5). We
observe that one cannot expect A ⊗ A to be irreducible, as the results on
the Rankin–Selberg convolution show.
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